Keeping the lights on in New York

By New York Post


NFPA 70e Training - Arc Flash

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$199
Coupon Price:
$149
Reserve Your Seat Today
The worst blackout in North American history hit five years ago today. Trees falling on three trans mission lines in Ohio sparked a chain reaction that shut down more than 100 power plants and caused massive power failures throughout the Northeast, Midwest and southern Canada.

The two-day power outage hit New York City especially hard, costing the five boroughs an estimated $1 billion in damages and lost revenue.

With the lights out and performances canceled, Broadway lost about $1 million. The city's 22,000 restaurants lost between $75 million and $100 million; a result of spoiled food and lost business. Drugstore chain Duane Reade reported losses nearing $3.3 million.

The blackout cost city taxpayers nearly $10 million as the fire and police departments and Consolidated Edison worked overtime to restore power to the city.

But it didn't end in 2003. In 2006, western Queens lost power for a week - the longest outage in the city's history. In June 2007, The Bronx and Manhattan's Upper East Side lost power, shutting down the subway during rush hour and causing gridlock as traffic lights went out.

And this year, the city's seen minor, local power disruptions in June, July and August. Even before the summer began, Con Ed reported a June record for electric use, the city's fourth-highest all-time peak - a whopping 12,987 megawatts of electricity. July saw another record, and the second-highest electricity use ever for a weekend in New York City and Westchester County.

For all the efforts to get Con Ed's 3.2 million customers in New York City and Westchester to conserve, the demand for electricity continues to grow. The New York Independent System Operator - the independent agency that runs the state power grid - says the Empire State will needs to add at least 2,350 MW of electricity-generation capacity by 2017.

Running close to generation or transmission capacity makes it more likely that we'll see another large blackout - with all the millions in losses for the city that entails.

The window for addressing our state's mounting energy concerns is rapidly closing. Lawmakers and utilities need to take several critical steps to ensure that our growing energy demands are met:

• Because it takes up to five years to bring a power plant online, renewing the state power-plant-siting law (Article X, which lapsed at the end of 2002) is a must. A streamlined siting process will let us develop the generation capacity needed to avoid (or reduce the severity of) power disruptions.

• New power sources aren't enough: We need efficient, reliable transmission lines, too. Our energy-transmission infra- structure requires significant investment if we're to reduce the odds for future interruptions.

• New incentives for developing renewable power sources (wind, hydro etc.) could diversify our energy mix and reduce our reliance on fossil-fuel power.

• Keeping Indian Point on-line is crucial: It provides up to 40 percent of New York City's electricity demand - critical power needed for our subways, hospitals and schools.

Five years after the 2003 blackout, George Santayana's adage - "Those who cannot learn from history are doomed to repeat it" - has never been more true.

Related News

New Power Grid “Report Card” Reveal Dangerous Vulnerabilities

U.S. Power Grid D+ Rating underscores aging infrastructure, rising outages, cyber threats, EMP and solar flare risks, strained transmission lines, vulnerable transformers, and slow permitting, amplifying reliability concerns and resilience needs across national energy systems.

 

Key Points

ASCE's D+ grade flags aging infrastructure, rising outages, and cyber, EMP, and weather risks needing investment.

✅ Major outages rising; weather remains top disruption driver.

✅ Aging transformers, transmission lines, limited maintenance.

✅ Cybersecurity gaps via smart grid, EV charging, SCADA.

 

The U.S. power grid just received its “grade card” from the American Society of Civil Engineers (ASCE) and it barely passed.

The overall rating of our antiquated electrical system was a D+. Major power outages in the United States, including widespread blackouts, have grown from 76 in 2007 to 307 in 2011, according to the latest available statistics. The major outage figures do not take into account all of the smaller outages which routinely occur due to seasonal storms.

The American Society of Civil Engineers power grid grade card rating means the energy infrastructure is in “poor to fair condition and mostly below standard, with many elements approaching the end of their service life.” It further means a “large portion of the system exhibits significant deterioration” with a “strong risk of failure.”

Such a designation is not reassuring and validates those who purchased solar generators over the past several years.

#google#

The vulnerable state of the power grid gets very little play by mainstream media outlets. Concerns about a solar flare or an electromagnetic pulse (EMP) attack instantly sending us back to an 1800s existence are legitimate, but it may not take such an extreme act to render the power grid a useless tangle of wires. The majority of the United States’ infrastructure and public systems evaluated by the ASCE earned a “D” rating. A “C” ranking (public parks, rail and bridges) was the highest grade earned. It would take a total of $3.6 trillion in investments by 2020 to fix everything, the report card stated. To put that number in perspective, the federal government’s budget for all of 2012 was slightly more, $3.7 trillion.

“America relies on an aging electrical grid and pipeline distribution systems, some of which originated in the 1880s,” the report read. “Investment in power transmission has increased since 2005, but ongoing permitting issues, weather events, including summer blackouts that strain local systems, and limited maintenance have contributed to an increasing number of failures and power interruptions. While demand for electricity has remained level, the availability of energy in the form of electricity, natural gas, and oil will become a greater challenge after 2020 as the population increases. Although about 17,000 miles of additional high-voltage transmission lines and significant oil and gas pipelines are planned over the next five years, permitting and siting issues threaten their completion. The electric grid in the United States consists of a system of interconnected power generation, transmission facilities, and distribution facilities.”

 

Harness the power of the sun when the power goes out…

There are approximately 400,000 miles of electrical transmission lines throughout the United States, and thousands of power generating plants dot the landscape. The ASCE report card also stated that new gas-fired and renewable generation issues increase the need to add new transmission lines. Antiquated power grid equipment has reportedly prompted even more “intermittent” power outages in recent years.

The American Society of Civil Engineers accurately notes that the power grid is more vulnerable to cyber attacks than ever before, including Russian intrusions documented in recent years, and it cites the aging electrical system as the primary culprit. Although the decades-old transformers and other equipment necessary to keep power flowing around America are a major factor in the enhanced vulnerability of the power grid, moving towards a “smart grid” system is not the answer. As previously reported by Off The Grid News, smart grid systems and even electric car charging stations make the power grid more accessible to cyber hackers. During the Hack in the Box Conference in Amsterdam, HP ArcSight Product Manager Ofer Sheaf stated that electric car charging stations are in essence a computer on the street. The roadway fueling stations are linked to the power grid electrical system. If cyber hackers garner access to the power grid via the charging stations, they could stop the flow of power to a specific area or alter energy distribution levels and overload the system.

While a relatively small number of electric car charging stations exist in America now, that soon will change. Ongoing efforts by both federal and state governments to reduce our reliance on fossil fuels have resulted in grants and privately funded vehicle charging station projects. New York Governor Andrew Cuomo in April announced plans to build 360 such electrical stations in his state. A total of 3,000 car charging stations are in the works statewide and are slated for completion over the next five years.

SHIELD ActWeather-related events were the primary cause of power outages from 2007 to 2012, according to the infrastructure report card. Power grid reliability issues are emerging as the greatest threat to the electrical system, with rising attacks on substations compounding the risks. The ASCE grade card also notes that retiring and rotating in “new energy sources” is a “complex” process. Like most items we routinely purchase in our daily lives, many of the components needed to make the power grid functional are not manufactured in the United States.

The SHIELD Act is the first real piece of federal legislation in years drafted to address power grid vulnerabilities. While the single bill will not fix all of the electrical system issues, it is a big step in the right direction – if it ever makes it out of committee. Replacing aging transformers, encasing them in a high-tech version of a Faraday cage, and stockpiling extra units so instant repairs are possible would help preserve one of the nation’s most critical and life-saving pieces of infrastructure after a weather-related incident or man-made disaster.

“Geomagnetic storm environments can develop instantaneously over large geographic footprints,” solar geomagnetic researcher John Kappenman said about the fragile state of the power grid. He was quoted in an Oak Ridge National Laboratory report. “They have the ability to essentially blanket the continent with an intense threat environment and … produce significant collateral damage to critical infrastructures. In contrast to well-conceived design standards that have been successfully applied for more conventional threats, no comprehensive design criteria have ever been considered to check the impact of the geomagnetic storm environments. The design actions that have occurred over many decades have greatly escalated the dangers posed by these storm threats for this critical infrastructure.”

The power grid has morphed in size tenfold during the past 50 years. While solar flares, cyber attacks, and an EMP are perhaps the most extensive and frightening threats to the electrical system, the infrastructure could just as easily fail in large portions due to weather-related events exacerbated by climate change across regions. The power grid is basically a ticking time bomb which will spawn civil unrest, lack of food, clean water, and a multitude of fires if it does go down.

 

Related News

View more

Renewable growth drives common goals for electricity networks across the globe

Energy Transition Grid Reforms address transmission capacity, interconnection, congestion management, and flexibility markets, enabling renewable integration and grid stability while optimizing network charges and access in Australia, Ireland, and Great Britain.

 

Key Points

Measures to expand transmission, boost flexibility, and manage congestion for reliable, low-carbon electricity systems.

✅ Transmission upgrades and interconnectors ease congestion

✅ Flexible markets, DER, and storage bolster grid stability

✅ Evolving network charges and access incentivize siting

 

Electricity networks globally are experiencing significant increases in the volume of renewable capacity as countries seek to decarbonise their power sectors, even as clean energy's 'dirty secret' highlights integration trade-offs, without impacting the security of supply. The scale of this change is creating new challenges for power networks and those responsible for keeping the lights on.

The latest insight paper from Cornwall Insight – Market design amidst global energy transition – looks into this issue. It examines the outlook for transmission networks, and how legacy design and policies are supporting decarbonisation, aligning with IRENA findings on renewables and shaping the system. The paper focuses on three key markets; Australia, Ireland and Great Britain (GB).

Australia's main priority is to enhance transmission capacity and network efficiency; as concerns over excess solar risking blackouts grow in distribution networks, without this, the transmission system will be a barrier to growth for decentralised flexibility and renewables. In contrast, GB and Ireland benefit from interconnection with other national markets. This provides them with additional levers that can be pulled to manage system security and supply. However, they are still trying to hone and optimise network flexibility in light of steepening decarbonisation objectives.

Unsurprisingly, renewable energy resources have been growing in all three markets, with Ireland regarded as a leader in grid integration, with this expected to continue for the foreseeable future. Many of these projects are often located in places where network infrastructure is not as well developed, creating pressure on system operation as a result.

In all three markets, unit charges are rising, driven by a reduced charging base as decentralised energy grows quickly. This combination of changes is leading to network congestion, a challenge mirrored by the US grid overhaul for renewables underway, as transmission network development struggles to keep up, and flexibility markets are being optimised and changed.

In summary, reforms are on-going in each jurisdiction to accommodate the rapid physical transformation of the generation mix. Each has its objectives and tensions which are reflective of wider global reform programmes being undertaken in most developed, liberalised and decarbonising energy markets.

Gareth Miller, CEO of Cornwall Insight, said: “Despite differences in market design and characteristics, all three markets are grappling with similar issues, that comes from committing to deep decarbonisation. This includes the most appropriate methods for charging for networks, managing access to them and dealing with issues such as network congestion and constraint.

“In all three countries, renewable projects are often placed in isolated locations, as seen in Scotland where more pylons are needed to keep the lights on, away from the traditional infrastructure that is closer to demand. However, as renewable growth is set to continue, the networks will need to transition from being demand-centric to more supply orientated.

“Both system operators and stakeholders will need to continually evaluate their market structures and designs to alleviate issues surrounding locational congestion and grid stability. Each market is at very different stages in the process in trying to improve any problems implementing solutions to allow for higher efficiencies in renewable energy integration.

“It is uncertain whether any of the proposed changes will fundamentally resolve the issues that come with increased renewables on the system. However, despite marked differences, they certainly could all learn from each other and elements of their network arrangements, as well as from US decarbonisation strategies research.”

 

Related News

View more

Berlin Launches Electric Flying Ferry

Berlin Flying Electric Ferry drives sustainable urban mobility with zero-emission water transit, advanced electric propulsion, quiet operations, and smart-city integration, easing congestion, improving air quality, and connecting waterways for efficient, climate-aligned public transport.

 

Key Points

A zero-emission electric ferry for Berlin's waterways, cutting congestion and pollution to advance sustainable mobility.

✅ Zero emissions with advanced electric propulsion systems

✅ Quiet, efficient water transit that eases road congestion

✅ Smart-city integration, improving access and air quality

 

Berlin has taken a groundbreaking step toward sustainable urban mobility with the introduction of its innovative flying electric ferry. This pioneering vessel, designed to revolutionize water-based transportation, represents a significant leap forward in eco-friendly travel options and reflects the city’s commitment to addressing climate change, complementing its zero-emission bus fleet initiatives while enhancing urban mobility.

A New Era of Urban Transport

The flying electric ferry, part of a broader initiative to modernize transportation in Berlin, showcases cutting-edge technology aimed at reducing carbon emissions and improving efficiency in urban transit, and mirrors progress seen with hybrid-electric ferries in the U.S.

Equipped with advanced electric propulsion systems, the ferry operates quietly and emits zero emissions during its journeys, making it an environmentally friendly alternative to traditional diesel-powered boats.

This innovation is particularly relevant for cities like Berlin, where water transportation can play a crucial role in alleviating congestion on roads and enhancing overall mobility. The ferry is designed to navigate the city’s extensive waterways, providing residents and visitors with a unique and efficient way to traverse the urban landscape.

Features and Design

The ferry’s design emphasizes both functionality and comfort. Its sleek, aerodynamic shape minimizes resistance in the water, allowing for faster travel times while consuming less energy, similar to emerging battery-electric high-speed ferries now under development in the U.S. Additionally, the vessel is equipped with state-of-the-art navigation systems that ensure safety and precision during operations.

Passengers can expect a comfortable onboard experience, complete with spacious seating and amenities designed to enhance their journey. The ferry aims to offer an enjoyable ride while contributing to Berlin’s vision of a sustainable and interconnected transportation network.

Addressing Urban Challenges

Berlin, like many major cities worldwide, faces significant challenges related to transportation, including traffic congestion, pollution, and the need for efficient public transit options. The introduction of the flying electric ferry aligns with the city’s goals to promote greener modes of transportation and reduce reliance on fossil fuels, as seen with B.C.'s electric ferries supported by public investment.

By offering an alternative to conventional commuting methods and complementing battery-electric buses deployments in Toronto that expand zero-emission options, the ferry has the potential to significantly reduce the number of vehicles on the roads. This shift could lead to lower traffic congestion levels, improved air quality, and a more pleasant urban environment for residents and visitors alike.

Economic and Environmental Benefits

The economic implications of the flying electric ferry are equally promising. As an innovative mode of transportation, it can attract tourism and stimulate local businesses near docking areas, especially as ports adopt an all-electric berth model that reduces local emissions. Increased accessibility to various parts of the city may lead to greater foot traffic in commercial districts, benefiting retailers and service providers.

From an environmental standpoint, the ferry contributes to Berlin’s commitment to achieving climate neutrality. The city has set ambitious targets to reduce greenhouse gas emissions, and the implementation of electric vessels is a key component of this strategy. By prioritizing clean energy solutions, Berlin is positioning itself as a leader in sustainable urban transport.

A Vision for the Future

The introduction of the flying electric ferry is not merely a technological advancement; it represents a vision for the future of urban mobility. As cities around the world grapple with the impacts of climate change and the need for sustainable infrastructure, Berlin’s innovative approach could serve as a model for other urban centers looking to enhance their transportation systems, alongside advances in electric planes that could reshape regional travel.

Furthermore, this initiative is part of a broader trend toward electrification in the maritime sector. With advancements in battery technology and renewable energy sources, electric ferries and boats are becoming more viable options for urban transportation. As more cities embrace these solutions, the potential for cleaner, more efficient public transport grows.

Community Engagement and Education

To ensure the success of the flying electric ferry, community engagement and education will be vital. Residents must be informed about the benefits of using this new mode of transport, and outreach efforts can help build excitement and awareness around its launch. By fostering a sense of ownership among the community, the ferry can become an integral part of Berlin’s transportation landscape.

 

Related News

View more

UAE’s nuclear power plant connects to the national grid in a major regional milestone

UAE Barakah Nuclear Plant connects Unit 1 to the grid, supplying clean electricity, nuclear baseload power, and lower carbon emissions, with IAEA oversight, FANR regulation, and South Korea collaboration, supporting energy security and economic diversification.

 

Key Points

The UAE Barakah Nuclear Plant is a four-reactor project delivering clean baseload power and reducing CO2.

✅ Unit 1 online; four reactors to supply 25% of UAE electricity

✅ Cuts 21 million tons CO2 annually; clean baseload for grid

✅ FANR-licensed; IAEA and WANO oversight ensure safety

 

Unit 1 of the UAE’s Barakah plant — the Arab world’s first nuclear energy plant in the region — has connected to the national power grid, in a historic moment enabling it to provide cleaner electricity to millions of residents and help reduce the oil-rich country’s reliance on fossil fuels. 

“This is a major milestone, we’ve been planning for this for the last 12 years now,” Mohamed Al Hammadi, CEO of Emirates Nuclear Energy Corporation (ENEC), told CNBC’s Dan Murphy in an exclusive interview ahead of the news.

Unit 1, which has reached 100% power as it steps closer to commercial operations, is the first of what will eventually be four reactors, which when fully operational are expected to provide 25% of the UAE’s electricity and reduce its carbon emissions by 21 million tons a year, according to ENEC. That’s roughly equivalent to the carbon emissions of 3.2 million cars annually.

The Gulf country of nearly 10 million is the newest member of a group of now 31 countries running nuclear power operations. It’s also the first new country to launch a nuclear power plant in three decades, the last being China’s nuclear energy program in 1990.

“The UAE has been growing from an electricity demand standpoint,”  Al Hammadi said. “That’s why we are trying to meet the demand (and) at the same time have it with less carbon emissions.”

The UAE’s electricity mix will continue to include gas and renewable energy, with “the baseload from nuclear,” including emerging next-gen nuclear designs, the CEO added, which he described as a “safe, clean and reliable source of electricity” for the country.

The project is also providing “highly compensated jobs” for the Emiratis and will introduce new industries for the country’s economy, Al Hammadi said. The company noted that it has awarded roughly 2,000 contracts worth more than $4.8 billion for local companies.

International collaboration
The UAE’s nuclear watchdog FANR, the Federal Authority for Nuclear Regulation, granted the operating license for Unit 1 in February, after an extensive inspection process to ensure the plant’s compliance with regulatory requirements. The license is expected to last 60 years. The program also involved collaboration with external bodies including the U.N.’s International Atomic Energy Agency (IAEA) and the government of South Korea, and its pre-start-up review was completed in January by the World Association of Nuclear Operators (WANO). The WANO and the IAEA have conducted over 40 inspection and review missions at Barakah.   

But the project has its critics, particularly some experts from the independent Nuclear Consulting Group non-profit, who have expressed concern about Barakah’s safety features and potential environmental risks.  

In response, ENEC said the “adherence to the highest standards of safety, quality and security is deeply embedded within the fabric of the UAE Peaceful Nuclear Energy Program.”

“The Barakah Plant meets all national and international regulatory requirements and standards for nuclear safety,” a  company statement said. It added that the reactor design had been certified by the Korea Institute of Nuclear Safety, FANR and the US-based Nuclear Regulatory Commission, “demonstrating the robustness of this design for safety and operating reliability.”

Worries of regional proliferation 
The achievement for the UAE is particularly significant given tensions in the wider region over nuclear proliferation. 

Some observers have warned of a regional arms race, though the UAE already partakes in what nuclear energy experts call the “gold standard” of civilian nuclear partnerships: The U.S.-UAE 123 Agreement for Peaceful Civilian Nuclear Energy Cooperation. It allows the UAE to receive nuclear materials, equipment and know-how from the U.S. while precluding it from developing dual-use technology by barring uranium enrichment and fuel reprocessing, the processes required for building a bomb.

By contrast, nearby Iran has suspended its compliance to the multilateral 2015 deal that regulated its nuclear power development and many fear its approach toward bomb-making capability. Meanwhile, Saudi Arabia has voiced its desire to develop a nuclear energy program without adhering to a 123 agreement.

And most recently, in the wake of a historic deal that has seen the UAE become the first Gulf country to normalize relations with Israel, Iran responded by warning the agreement would bring a “dangerous future” for the Emirati government. 

But ENEC and UAE officials emphasize the program’s commitment to safety, transparency and international cooperation, and its necessity for meeting growing electricity demand by cleaner means. 

“The nuclear industry is growing, with milestones around the world being reached, and the UAE is no exception. We are pursuing our electricity demand to meet that in a safe, secure and stable manner, and also doing it in an environmentally friendly way,” Al Hammadi said.

“Having four reactors that will provide 25% of electricity for the nation and will avoid us emitting 21 million tons of CO2 on an annual basis, as part of a broader green industrial revolution approach, is a very serious step to take — and the UAE is not talking about it, it is doing it, and we are reaping the benefits of it as we speak right now.”

 

Related News

View more

Solar power growth, jobs decline during pandemic

COVID-19 Solar Job Losses are erasing five years of workforce growth, SEIA reports, with U.S. installations and capacity down, layoffs accelerating, 3 GW expected in Q2, and policy support key for economic recovery.

 

Key Points

COVID-19 Solar Job Losses describe the pandemic-driven decline in U.S. solar employment, installations, and capacity.

✅ SEIA reports a 38% national drop in solar jobs

✅ Q2 installs projected at 3 GW, below forecasts

✅ Layoffs outpace U.S. economy without swift policy aid

 

Job losses associated with the COVID-19 crisis have wiped out the past five years of workforce growth in the solar energy field, according to a new industry analysis.

The expected June 2020 solar workforce of 188,000 people across the United States is 114,000 below the pre-pandemic forecast of 302,000 workers, a shortfall tied to the solar construction slowdown according to the Solar Energy Industries Association, which said in a statement Monday that the solar industry is now losing jobs at a faster rate than the U.S. economy.

In Massachusetts, the loss of 4,284 solar jobs represents a 52 percent decline from previous projections, according to the association’s analysis.

The national 38 percent drop in solar jobs coincides with a 37 percent decrease in expected solar installations in the second quarter of 2020, and similar pressures have put wind investments at risk across the sector, the association stated. The U.S. is now on track to install 3 gigawatts of new capacity this quarter, though subsequent forecasts anticipated solar and storage growth as investments returned, and the association said the decrease from the expected capacity is equivalent to the electricity needed to power 288,000 homes.

“Thousands of solar workers are being laid off each week, but with swift action from Congress, we know that solar can be a crucial part of our economic recovery,” with proposals such as the Biden solar plan offering a potential policy path, SEIA President and CEO Abigail Ross Hopper said in a statement, as recent analyses point to US solar and wind growth under supportive policies.

Subsequent data showed record U.S. panel shipments as the market rebounded.

 

Related News

View more

Competition in Electricity Has Been Good for Consumers and Good for the Environment

Electricity Market Competition drives lower wholesale prices, stable retail rates, better grid reliability, and faster emissions cuts as deregulation and renewables adoption pressure utilities, improve efficiency, and enhance consumer choice in power markets.

 

Key Points

Electricity market competition opens supply to rivals, lowering prices, improving reliability, and reducing emissions.

✅ Wholesale prices fell faster in competitive markets

✅ Retail rates rose less than in monopoly states

✅ Fewer outages, shorter durations, improved reliability

 

By Bernard L. Weinstein

Electricity used to be boring.  Public utilities that provided power to homes and businesses were regulated monopolies and, by law, guaranteed a fixed rate-of-return on their generation, transmission, and distribution assets. Prices per kilowatt-hour were set by utility commissions after lengthy testimony from power companies, wanting higher rates, and consumer groups, wanting lower rates.

About 25 years ago, the electricity landscape started to change as economists and others argued that competition could lead to lower prices and stronger grid reliability. Opponents of competition argued that consumers weren’t knowledgeable enough about power markets to make intelligent choices in a competitive pricing environment. Nonetheless, today 20 states have total or partial competition for electricity, allowing independent power generators to compete in wholesale markets and retail electric providers (REPs) to compete for end-use customers, a dynamic echoed by the Alberta electricity market across North America. (Transmission, in all states, remains a regulated natural monopoly).

A recent study by the non-partisan Pacific Research Institute (PRI) provides compelling evidence that competition in power markets has been a boon for consumers. Using data from the U.S. Energy Information Administration (EIA), PRI’s researchers found that wholesale electricity prices in competitive markets have been generally declining or flat, prompting discussions of free electricity business models, over the last five years. For example, compared to 2015, wholesale power prices in New England have dropped more than 44 percent, those in most Mid-Atlantic States have fallen nearly 42 percent, and in New York City they’ve declined by nearly 45 percent. Wholesale power costs have also declined in monopoly states, but at a considerably slower rate.

As for end-users, states that have competitive retail electricity markets have seen smaller price increases, as consumers can shop for electricity in Texas more cheaply than in monopoly states. Again, using EIA data, PRI found that in 14 competitive jurisdictions, retail prices essentially remained flat between 2008 and 2020. By contrast, retail prices jumped an average of 21 percent in monopoly states.  The ten states with the largest retail price increases were all monopoly-based frameworks. A 2017 report from the Retail Energy Supply Association found customers in states that still have monopoly utilities saw their average energy prices increase nearly 19 percent from 2008 to 2017 while prices fell 7 percent in competitive markets over the same period.

The PRI study also observed that competition has improved grid reliability, the recent power disruptions in California and Texas, alongside disruptions in coal and nuclear sectors across the U.S., notwithstanding. Looking at two common measures of grid resiliency, PRI’s analysis found that power interruptions were 10.4 percent lower in competitive states while the duration of outages was 6.5 percent lower.

Citing data from the EIA between 2008 and 2018, PRI reports that greenhouse gas emissions in competitive states declined on average 12.1 percent compared to 7.3 percent in monopoly states. This result is not surprising, and debates over whether Israeli power supply competition can bring cheaper electricity mirror these dynamics.  In a competitive wholesale market, independent power producers have an incentive to seek out lower-cost options, including subsidized renewables like wind and solar. By contrast, generators in monopoly markets have no such incentive as they can pass on higher costs to end-users. Perhaps the most telling case is in the monopoly state of Georgia where the cost to build nuclear Plant Vogtle has doubled from its original estimate of $14 billion 12 years ago. Overruns are estimated to cost Georgia ratepayers an average of $854, and there is no definite date for this facility to come on line. This type of mismanagement doesn’t occur in competitive markets.

Unfortunately, some critics are attempting to halt the momentum for electricity competition and have pointed to last winter’s “deep freeze” in Texas that left several million customers without power for up to a week. But this example is misplaced. Power outages in February were the result of unprecedented and severe weather conditions affecting electricity generation and fuel supply, and numerous proposals to improve Texas grid reliability have focused on weatherization and fuel resilience; the state simply did not have enough access to natural gas and wind generation to meet demand. Competitive power markets were not a factor.

The benefits of wholesale and retail competition in power markets are incontrovertible. Evidence shows that households and businesses in competitive states are paying less for electricity while grid reliability has improved. The facts also suggest that wholesale and retail competition can lead to faster reductions in greenhouse gas emissions. In short, competition in power markets is good for consumers and good for the environment.

Bernard L. Weinstein is emeritus professor of applied economics at the University of North Texas, former associate director of the Maguire Energy Institute at Southern Methodist University, and a fellow of Goodenough College, London. He wrote this for InsideSources.com.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.