Ottawa too partisan on emissions

By Toronto Star


NFPA 70b Training - Electrical Maintenance

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
Under the proposed federal emissions trading program, tar sands developers will be eligible for up to $700 million in "carbon credits" – even as they increase their greenhouse gas emissions.

Meanwhile, Ontario will get nothing for closing its coal-fired plants, thereby eliminating about half of the province's greenhouse gas emissions.

Sounds absurd, right? But that is the analysis of World Wildlife Fund-Canada, and it is supported by officials from the provincial government and its utility, Ontario Power Generation.

Here's why: rather than mandate absolute reductions in greenhouse gas emissions, the federal government has opted for cuts in the "intensity" of emissions.

Thus, the overall output of greenhouse gases from Alberta's tar sands will rise as production expands, but as long as the per-barrel level of emissions comes down, the oil companies will be rewarded.

A study by the Tyndall Centre for Climate Change Research, a respected British institute, commissioned by WWF-Canada to look at the federal emissions trading proposals, calculates that reward at up to $700 million.

"This is a plan in which it pays to pollute," says Mike Russill, president of WWF-Canada. A federal environment official challenged the $700 million figure but offered no alternative calculation, saying, "We have not done the analysis by sector."

The official did confirm that, under the current federal plan, Ontario will get nothing for closing its coal-fired plants by 2014 because it earlier announced it would do so – and Ottawa does not want to reward anyone retroactively.

The official stressed that the plan is under review, and, indeed, there have been talks about the coal-fired plants between bureaucrats from both governments.

But a query on the matter to the office of federal Environment Minister John Baird was met with a ferocious response that focused on Premier Dalton McGuinty's failure to close the coal-fired plants by 2007, as he originally promised.

"The reality is that Ontario is still waiting for the premier to make good on his broken promise to close down Ontario's coal-fired power plants," emailed Amanda Galbraith, a spokesperson for Baird. "Just this year we gave Ontario over half a billion dollars ($582.6 million) for clean air and climate change initiatives. Even with that kind of support Premier McGuinty still won't take action.

"Premier McGuinty is just like his federal cousin, Stéphane Dion. When greenhouse gases were rising year after year, Dion did nothing. Just like the premier is still doing nothing while Ontario's air gets dirtier and dirtier."

Put aside for a moment the substantive inconsistencies with this response.

(Yes, Ontario got $582.6 million, but as part of a national "trust fund" established by Ottawa; Alberta received $156 million from the same fund. The emissions trading credits are supposed to be over and above that. And while one can always accuse the McGuinty government of not doing enough on the climate-change front, it is demonstrably wrong to say it is doing nothing while it is pouring billions into alternative power sources – nuclear, gas, hydro, solar and wind – and conservation.)

What is truly remarkable about the response from Baird's office is its partisan tone.

It suggests relations between Conservative Ottawa and Liberal Queen's Park have hit a new nadir, with negative ramifications for both climate change and other important federal-provincial files.

Related News

COVID-19 Pandemic Puts $35 Billion in Wind Energy Investments at Risk, Says Industry Group

COVID-19 Impact on U.S. Wind Industry: disrupting wind power projects, tax credits, and construction timelines, risking rural revenues, jobs, and $35B investments; AWEA seeks Congressional flexibility as OEM shutdowns like Siemens Gamesa intensify delays.

 

Key Points

Pandemic disruptions threaten 25 GW of projects, $35B investment, rural revenues, jobs, and tax-credit timelines.

✅ 25 GW at risk; $35B investment jeopardized

✅ Rural taxes and land-lease payments may drop $8B

✅ AWEA seeks Congressional flexibility on tax-credit deadlines

 

In one of the latest examples of the havoc that the novel coronavirus is wreaking on the U.S. economy and the crisis hitting solar and wind sector alike, the American Wind Energy Association (AWEA) -- the national trade association for the U.S. wind industry -- yesterday stated its concerns that COVID-19 will "pose significant challenges to the American wind power industry." According to AWEA's calculations, the disease is jeopardizing the development of approximately 25 gigawatts of wind projects, representing $35 billion in investments, even as wind additions persist in some markets amid the pandemic.

Rural communities, where about 99% of wind projects are located, in particular, face considerable risk. The AWEA estimates that rural communities stand to lose about $8 billion in state and local tax payments and land-lease payments to private landowners. In addition, it's estimated that the pandemic threatens the loss of over 35,000 jobs, and the U.S. wind jobs outlook underscores the stakes, including wind turbine technicians, construction workers, and factory workers.

The development of wind projects is heavily reliant on the earning of tax credits, and debates over a Solar ITC extension highlight potential impacts on wind. However, in order to qualify for the current credits, project developers are bound to begin construction before Dec. 31, 2020. With local and state governments implementing various measures to stop the spread of the virus, the success of project developers' meeting this deadline is dubious, as utility-scale solar construction slows nationwide due to COVID-19. Addressing this and other challenges, the AWEA is turning to the government for help. In the trade association's press release, it states that "to protect the industry and these workers, AWEA is asking Congress for flexibility in allowing existing policies to continue working for the industry through this period of uncertainty."

Illustrating one of the ways in which COVID-19 is affecting the industry, Siemens Gamesa, a global leader in the manufacturing of wind turbines, closed a second Spanish factory this week after learning that a second of its employees had tested positive for the novel coronavirus.

 

Related News

View more

Turkish powership to generate electricity from LNG in Senegal

Karpowership LNG powership in Senegal will supply 15% of the grid, a 235 MW floating power plant bound for Dakar, enabling fast deployment, base-load electricity, and cleaner natural gas generation for West Africa.

 

Key Points

A 235 MW floating plant supplying 15% of Senegal's grid with fast, reliable, lower-emission LNG electricity.

✅ 235 MW LNG-ready floating plant meets 15% of Senegal's demand

✅ Rapid deployment: commercial operations expected early October

✅ Cleaner natural gas conversion planned after six months

 

Turkey's Karpowership company, the designer and builder of the world's first floating power plants and the global brand of Karadeniz Holding, will meet 15% of Senegal's electricity needs from liquefied natural gas (LNG) with the 235-megawatt (MW) powership Ayşegül Sultan, which started its voyage from Turkey to Senegal, where an African Development Bank review of a coal plant is underway, on Sunday.

Karpowership, operating 22 floating power plants in more than 10 countries around the world, where France's first offshore wind turbine is now producing electricity, has invested over $5 billion in this area.

In a statement to members of the press at Karmarine Shipyard, Karpowership Trade Group Chair Zeynep Harezi said they aimed to provide affordable electricity to countries in need of electricity quickly and reliably, as projects like the Egypt-Saudi power link expand regional grids, adding that they could commission energy ships capable of generating the base electric charge of the countries, as tidal power in Nova Scotia begins supplying the grid, in a period of about a month.

Harezi recalled that Karpowership commissioned the first floating energy ship in 2007 in Iraq, followed by Lebanon, Ghana, Indonesia, Mozambique, Zambia, Gambia, Sierra Leone, Sudan, Cuba, Guinea Bissau and Senegal, while Scottish tidal power demonstrates marine potential as well. "We meet the electricity needs of 34 million people in many countries," she stressed. Harezi stated that the energy ships, all designed and produced by Turkish engineers, use liquid fuel, but all ships can covert to the second fuel.

Considering the impact of electricity production on the environment, Harezi noted that they plan to convert the entire fleet from liquid fuel to natural gas, with complementary approaches like power-to-gas in Europe helping integrate renewables. "With a capacity of 480 megawatts each, the world's largest floating energy vessels operate in Indonesia and Ghana. The conversion to gas has been completed in our project in Indonesia. We have also initiated the conversion of the Ghana vessel into gas," she said.

Harezi explained that they would continue to convert their fleets to natural gas in the coming period. "Our 235-MW floating electric vessel, the Ayşegül Sultan, sets sail today to meet 15% of Senegal's electricity needs on its own. After an approximately 20-day cruise, the vessel will reach Dakar, the capital of Senegal, and will begin commercial operation in early October," Harezi continued. "We plan to use liquid fuel as bridging fuel in the first six months. At the end of the first six months, we will start to produce electricity from LNG on our ship. Thus, Ayşegül Sultan will be the first project to generate electricity from LNG in Africa, while the world's most powerful tidal turbine is delivering power to the grid, officials said. Our floating power plant to be sent to Mozambique is designed to generate electricity from LNG. It is also scheduled to start operations in the next year."

 

Related News

View more

Duke Energy installing high-tech meters for customers

Duke Energy Smart Meters enable remote meter reading, daily energy usage data, and two-way outage detection via AMI, with encrypted data, faster restoration, and remote connect/disconnect for Indiana customers in Howard County.

 

Key Points

Advanced meters that support remote readings, daily usage insights, two-way outage detection, and secure, encrypted data.

✅ Daily energy usage available online the next day

✅ Two-way communications speed outage detection and restoration

✅ Remote connect/disconnect; manual reads optional with opt-out fee

 

Say goodbye to your neighborhood meter reader. Say hello to your new smart meter.

Over the next three months, Duke Energy will install nearly 43,000 new high-tech electric meters for Howard County customers that will allow the utility company to remotely access meters via the digital grid instead of sending out employees to a homeowner's property for walk-by readings.

That means there's no need to estimate bills when meters can't be easily accessed, such as during severe weather or winter storms.

Other counties serviced by Duke Energy slated to receive the meters include Miami, Tipton, Cass and Carroll counties.

Angeline Protogere, Duke Energy's lead communication consultant, said besides saving the company money and manpower, the new smart meters come with a host of benefits for customers enabled by smart grid solutions today.

The meters are capable of capturing daily energy usage data, which is available online the next day. Having this information available on a daily basis can help customers make smarter energy decisions and support customer analytics that avoid billing surprises at the end of the month, she said.

"The real advantage is for the consumer, because they can track their energy usage and adjust their usage before the bills come," Protogere said.

When it comes to power outages, the meters are capable of two-way communications. That allows the company to know more about an outage through synchrophasor monitoring, which can help speed up restoration. However, customers will still need to notify Duke Energy if their power goes out.

If a customer is moving, they don't have to wait for a Duke Energy representative to come to the premises to connect or disconnect the energy service because requests can be performed remotely.

Protogere said when it comes to installing the meters, the changeover takes less than 5 minutes to complete. Customers should receive advance notices from the company, but the technician also will knock on the door to let the customer know they are there.

If no one is available and the meter is safely accessible, the technician will go ahead and change out the meter, Protogere said. There will be a momentary outage between the time the old meter is removed and the new meter is installed.

Kokomo and the surrounding areas are one of the last parts of the state to receive Duke Energy's new, high-tech meters, which are commonly used by other utility companies and in smart city initiatives across the U.S.

Protogere said statewide, the company started installing smart meters in August 2016 as utilities deploy digital transformer stations to modernize the grid. To date, they have installed 694,000 of the 854,000 they have planned for the state.

The company says the information stored and transmitted on the smart meters is safe, protected and confidential. Duke Energy said on its website that it does not share data with anyone without customers' authorization. The information coming from the meters is encrypted and protected from the moment it is collected until the moment it is purged, the company said.

Digital smart meter technology uses radio frequency bands that have been used for many years in devices such as baby monitors and medical monitors. The radio signals are far below the levels emitted by common household appliances and electronics, including cellphones and microwave ovens.

According to the World Health Organization, FCC, U.S. Food and Drug Administration and Electric Power Research Institute, no adverse health effects have been shown to occur from the radio frequency signals produced by smart meters or other such wireless networks.

However, customers can still opt-out of getting a smart meter and continue to have their meter manually read.

Those who choose not to get a smart meter must pay a $75 initial opt-out fee and an additional $17.50 monthly meter reading charge per account.

If smart meters have not yet been installed, Duke Energy will waive the $75 initial opt-out fee if customers notify the company they want to opt out within 21 days of receiving the installation postcard notice.

 

Related News

View more

Nova Scotia Power says it now generates 30 per cent of its power from renewables

Nova Scotia Power Renewable Energy delivers 30% in 2018, led by wind power, hydroelectric and biomass, with coal and natural gas declining, as Muskrat Falls imports from Labrador target 40% renewables to cut emissions.

 

Key Points

It is the utility's 30% 2018 renewable mix and plan to reach 40% via Muskrat Falls while reducing carbon emissions.

✅ 18% wind, 9% hydro and tidal, 3% biomass in 2018

✅ Coal reliance fell from 76% in 2007 to 52% in 2018

✅ 58% carbon emissions cut from 2005 levels projected by 2030

 

Nova Scotia's private utility says it has hit a new milestone in its delivery of electricity from renewable resources, a trend highlighted by Summerside wind generation in nearby P.E.I.

Nova Scotia Power says 30 per cent of the electricity it produced in 2018 came from renewable sources such as wind power.

The utility says 18 per cent came from wind turbines, nine per cent from hydroelectric and tidal turbines and three per cent by burning biomass.

However, over half of the province's electrical generation still comes from the burning of coal or petroleum coke. Another 13 per cent come from burning natural gas and five per cent from imports, even as U.S. renewable generation hits record shares.

The utility says that since 2007, the province's reliance on coal-fired plants has dropped from 76 per cent of electricity generated to 52 per cent last year, as Prairie renewables growth accelerates nationally.

It says it expects to meet the province's legislated renewable target of 40 per cent in 2020, when it begins accessing hydroelectricity from the Muskrat Falls project in Labrador.

"We have made greener, cleaner energy a priority," utility president and CEO Karen Hutt said in a news release.

"As we continue to achieve new records in renewable electricity, we remain focused on ensuring electricity prices stay predictable and affordable for our customers, including solar customers across the province."

Nova Scotia Power also projects achieving a 58 per cent reduction in carbon emissions from 2005 levels by 2030.

 

Related News

View more

Tunisia invests in major wind farm as part of longterm renewable energy plan

Sidi Mansour Wind Farm Tunisia will deliver 30 MW as an IPP, backed by UPC Renewables and CFM, under a STEG PPA, supporting 2030 renewable energy targets, grid connection, job creation, and CO2 emissions reduction.

 

Key Points

A 30 MW wind IPP by UPC and CFM in Sidi Mansour, supplying STEG and advancing Tunisia's 2030 renewable target.

✅ 30 MW capacity under STEG PPA, first wind IPP in Tunisia

✅ Co-developed by UPC Renewables and Climate Fund Managers

✅ Cuts CO2 by up to 56,645 t and creates about 100 jobs

 

UPC Renewables (UPC) and the Climate Fund Managers (CFM) have partnered to develop a 30 megawatt wind farm in Sidi Mansour, Tunisia, which, amid regional wind expansion efforts, will help the country meet its 30% renewable energy target by 2030.

Tunisia announced the launch of its solar energy plan in 2016, with projects like the 10 MW Tunisian solar park aiming to increase the role of renewables in its electricity generation mix ten-fold to 30%,

This Sidi Mansour Project will help Tunisia meet its goals, reducing its reliance on imported fossil fuels and, mirroring 90 MW Spanish wind build milestones, demonstrating to the world that it is serious about further development of renewable energy investment.

“Chams Enfidha”, the first solar energy station in Tunisia with a capacity of 1 megawatt and located in the Enfidha region. (Ministry of Energy, Mines and Energy Transition Facebook page)

This project will also be among the country’s first Independent Power Producers (IPP). CFM is acting as sponsor, financial adviser and co-developer on the project, in a landscape shaped by IRENA-ADFD funding in developing countries, while UPC will lead the development with its local team. The team will be in charge of permitting, grid connection, land securitisation, assessment of wind resources, contract procurement and engineering.

UPC was selected under the “Authorisation Scheme” tender for the project in 2016, similar to utility-scale developments like a 450 MW U.S. wind farm, and promptly signed a power purchase agreement with Société Tunisienne Electricité et du Gaz (STEG).

Brian Caffyn, chairman of UPC Group, said: “We can start the construction of the Sidi Mansour wind farm in 2020, helping stimulate the Tunisian economy, create local jobs and a social plan for local communities while respecting international environmental protection guidelines.”

Sebastian Surie, CFM’s regional head of Africa, added: “CFM is thrilled to partner with a leading wind developer in the Sidi Mansour Wind Project to assist Tunisia in meeting its renewable energy goals. As potentially the first Wind IPP in Tunisia, this Project will be a testament to how CI1’s full life-cycle financing solution can unlock investment in renewable energy in new markets, as seen in an Irish offshore wind project globally.”

The project will not only provide electricity, but also reduce CO2 emissions by up to 56,645 tonnes and create some 100 new jobs.

Wind turbine in El Haouaria, Tunisia, highlighting advances such as a huge offshore wind turbine that can power 18,000 homes. (Reuters)

Tunisia’s first power station, “Chams Enfidha,” inaugurated at the beginning of July, has a capacity of one megawatt, with an estimated cost of 3.3 million dinars ($1.18 million). The state invested 2.3 million dinars into the project ($820,000), with the remaining 1 million dinars ($360,000) provided by a private investor.

 

Related News

View more

What Will Drive Utility Revenue When Electricity Is Free?

AI-Powered Utility Customer Experience enables transparency, real-time pricing, smart thermostats, demand response, and billing optimization, helping utilities integrate distributed energy resources, battery storage, and microgrids while boosting customer satisfaction and reducing costs.

 

Key Points

An approach where utilities use AI and real-time data to personalize service, optimize billing, and cut energy costs.

✅ Real-time pricing aligns retail and wholesale market signals

✅ Device control via smart thermostats and home energy management

✅ Analytics reveal appliance-level usage and personalized savings

 

The latest electric utility customer satisfaction survey results from the American Customer Satisfaction Index (ACSI) Energy Utilities report reveal that nearly every investor-owned utility saw customer satisfaction go down from 2018 to 2019. Residential customers are sending a clear message in the report: They want more transparency and control over energy usage, billing and ways to reduce costs.

With both customer satisfaction and utility revenues on the decline, utilities are facing daunting challenges to their traditional business models amid flat electricity demand across many markets today. That said, it is the utilities that see these changing times as an opportunity to evolve that will become the energy leaders of tomorrow, where the customer relationship is no longer defined by sales volume but instead by a utility company's ability to optimize service and deliver meaningful customer solutions.

We have seen how the proliferation of centralized and distributed renewables on the grid has already dramatically changed the cost profile of traditional generation and variability of wholesale energy prices. This signals the real cost drivers in the future will come from optimizing energy service with things like batteries, microgrids and peer-to-peer trading networks. In the foreseeable future, flat electricity rates may be the norm, or electricity might even become entirely free as services become the primary source of utility revenue.

The key to this future is technological innovation that allows utilities to better understand a customer’s unique needs and priorities and then deliver personalized, well-timed solutions that make customers feel valued and appreciated as their utility helps them save and alleviates their greatest pain points.

I predict utilities that adopt new technologies focused on customer experience, aligned with key utility trends shaping the sector, and deliver continual service improvements and optimization will earn the most satisfied, most loyal customers.

To illustrate this, look at how fixed pricing today is applied for most residential customers. Unless you live in one of the states with deregulated utilities where most customers are free to choose a service provider in a competitive marketplace, as consumers in power markets increasingly reshape offerings, fixed-rate tariffs or time-of-use tariffs might be the only rate structures you have ever known, though new utility rate designs are being tested nationwide today. These tariffs are often market distortions, bearing little relation to the real-time price that the utility pays on the wholesale market.

It can be easy enough to compare the rate you pay as a consumer and the market rate that utilities pay. The California ISO has a public dashboard -- as do other grid operators -- that shows the real-time marginal cost of energy. On a recent Friday, for example, a buyer in San Francisco could go to the real-time market and procure electricity at a rate of around 9.5 cents per kilowatt-hour (kWh), yet a residential customer can pay the utility PG&E between 22 cents and 49 cents per kWh amid major changes to electric bills being debated, depending on usage.

The problem is that utility customers do not usually see this data or know how to interpret it in a way that helps add value to their service or drive down the cost.

This is a scenario ripe for innovation. Artificial intelligence (AI) technologies are beginning to be applied to give customers the transparency and control over the energy they desire, and a new type of utility is emerging using real-time pricing signals from wholesale markets to give households hassle-free energy savings. Evolve Energy in Texas is developing a utility service model, even as Texas utilities revisit smart home network strategies, that delivers electricity to consumers at real-time market prices and connects to smart thermostats and other connected devices in the home for simple monitoring and control -- all managed via an intuitive consumer app.

My company, Bidgely, partners with utilities and energy retailers all over the world to apply artificial intelligence and machine learning algorithms to customer data in order to bring transparency to their electricity bills, showing exactly where the customers’ money is going down to the appliance and offering personalized, actionable advice on how to save.

Another example is from energy management company Keewi. Its wireless outlet adaptors are revealing real-time energy usage information to Texas A&M dorm residents as well as providing students the ability to conserve energy through controlling items in their rooms from their smartphones.

These are but a few examples of innovations among many in play that answer the consumer demand for increased transparency and control over energy usage.

Electric service providers will be closely watching how consumers respond to AI-driven innovation, including providers in traditionally regulated markets that are exploring equitable regulation approaches now, to stay aligned with policy and customer expectations. While regulated utilities have no reason to fear that their customers might sign up with a competitor, they understand that the revenues from electricity sales are going down and the deployment of distributed energy resources is going up. Both trends were reflected in a March report from Bloomberg New Energy Finance (via ThinkProgress) that claimed unsubsidized storage projects co-located with solar or wind are starting to compete with coal and gas for dispatchable power. Change is coming to regulated markets, and some of that change can be attributed to customer dissatisfaction with utility service.

Like so many industries before, the utility-customer relationship is on track to become less about measuring unit sales and more about driving revenue through services and delivering the best customer value. Loyal customers are most likely to listen and follow through on the utility’s advice and to trust the utility for a wide range of energy-related products and services. Utilities that make customer experience the highest priority today will emerge tomorrow as the leaders of a new energy service era.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.