Renewable home energy

By GreenMuze


High Voltage Maintenance Training Online

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today
Dependent upon where you live in the world, the carbon emissions generated for each kilowatt of energy consumed in your home will vary.

EveryoneÂ’s electricity provider has a different carbon emission value, dependent upon whether the electrical power is generated using coal, gas, oil, nuclear or from renewable sources such as hydro, wind or solar. Even if your utility advertises itself as providing green power, check on what type of energy they are buying from other providers during off-peak hours, it can make a big difference to their aggregate emissions.

If the electrical utility that generates your power has a lot of hydroelectric plants, which are considered to be renewable energy sources, then the corresponding emissions may be low. In the U.S. Pacific Northwest there is a lot of hydro and the emission rate is around 0.408kgs per kilowatt-hour, but elsewhere in the U.S. the emission rate can be as high as 0.890kg per kWh, according to 2005 data.

In British Columbia, Canada, BC Hydro buys a lot of cheap rate electricity from Alberta and the U.S., which is profitable for BC Hydro who then sells it at a higher rate to domestic customers. It is also profitable for suppliers since they get some money to offset the cost of keeping their power stations running twenty-four hours a day.

However, this arrangement is not so great for the eco-friendly home-owner who really wants to lower their emissions and carbon footprint. Even though eco-friendly home owners may do all they can to reduce their energy consumption at home, buy a hybrid vehicle, or even a plug-in hybrid or electric car, the one thing they canÂ’t do is buy green power from the grid that is truly free from an emissionsÂ’ footprint.

For people seeking truly green sources of energy, the best alternative is to generate your own electricity, knowing it is going to be sustainable, and have lower emissions than anything you can get from the electrical grid. It is unlikely you can generate enough energy to power your home completely, unless you have a very low energy consumption, live in a very sunny location with year round sun, a windy location with wind blowing much of the time, or happen to have a large river flowing through your property.

However, there are many options available home owners interested in generating their own electricity, but most involve quite an initial investment of money and resources, so it is best to thoroughly research what is possible in the area where you live.

If you really would like to try and generate electricity for yourself, at least enough to provide for a low energy use home of around 10-12kWh per day, then combining a solar photovoltaic system and a small wind-turbine might be worth considering.

Generally, when there is sunny weather it usually is not windy until it cools a little at night or warms during the day and a breeze starts to blow. Similarly, if it is windy during the day then often it is not sunny, since a weather front may be pushing clouds along with the breeze.

A more economical option is a combined solar and wind system and is best combined with electricity supplied from the grid (unless you are completely off-grid), so that batteries are not required. Batteries generally are a costly part of creating a renewable home energy system. However, by utilizing grid electricity, homeowners will be trading clean renewable energy with the more emission intensive grid.

It is not possible for everyone to have a photovoltaic system and a wind-turbine, but if you live in the countryside, or have at least an acre of open space, then a small wind-turbine of around 3-5kW capacity and an estimated 1 square metre of solar panel will give a reasonable energy production, at a higher price than what you can buy it directly from the grid though.

In western Canada, such a system would cost around $20,000-25,000 plus tax, produce a yearly average of 5.7megaWh and a kWh cost of around 40 cents versus 8 cents from the grid directly. With an energy efficient home using an estimated 11kWh per day (4megaWh a year), then 2.1megaWh would need to be purchased from the grid when wind and solar arenÂ’t enough at certain times of the year. When your home system is producing more then 3.8megaWh it can be sold back to the grid.

Creating renewable energy systems can be costly for the homeowner, but for some people being able to have emission free electricity (after writing off the carbon cost of buying and constructing the system) is be worth the price. For the plug-in hybrid or electric vehicle owner, a home renewable energy source to recharge their vehicle would make a daily commute almost carbon free too.

Related News

Kenya Power on the spot over inflated electricity bills

Kenya Power token glitches, inflated bills disrupt prepaid meters via M-Pesa paybill 888880 and third-party vendors like Vendit and Dynamo, causing delays, fast-depleting tokens, and billing estimates; customers report weekend outages and business losses.

 

Key Points

Service failures delaying token generation and disputed charges from estimated meter readings and slow processing.

✅ Impacts M-Pesa paybill 888880 and authorized third-party vendors

✅ Causes delays, fast-depleting tokens, weekend business closures

✅ Linked to system downtime, billing estimates, meter reading gaps

 

Kenya Power is again on the spotlight following claims of inflated power bills and a glitch in its electronic payment system that made it impossible to top up tokens on prepaid meters.

Thousands of customers started experiencing the hitch in tokens generation on Friday evening, with the problem extending through the weekend.

Small businesses such as barber shops that top up multiple times a week were hardest hit.

“My business usually thrives during weekends but I was forced to close early in the evening due to lack of power although I had paid for the tokens that were never generated,” said Mr John Kamau, a fast food restaurant owner in Nairobi.

Kenya Power processes up to 200,000 electronic transactions per day for power users, with 85 per cent done through its Safaricom M-Pesa paybill number 888880.

The remaining share is handled by its authorised third party vendors such as Vendit (paybill number 501200) and Dynamo (800904), which charge a premium for the transaction.

The sole electricity distributor admitted its system encountered challenges that crippled token generation across all vendors, advising customers on prepaid meters to buy the units from Kenya Power banking halls across the country until normalcy returned.

 

STATEMENT

“The IT team is trying to figure out where the problem was before we issue a comprehensive statement on the issue,” the firm responded to Nation queries, adding that the issue had been resolved by yesterday afternoon.

Customers who use Vendit confirmed to Nation they had successfully bought tokens yesterday afternoon.

However, there have been complaints that third party vendors process tokens almost in real time, unlike Kenya Power which, despite indicating a 30 minute delay in its service promise, sometimes takes up to six hours.  

But other users complained of inflated power bills after being slapped with abnormally high charges.

 

TOKENS

The holder of account number 30624694, for instance, received a post-paid bill of Sh16,765 last month, up from Sh894 the previous month.

She indulged the company and ended up paying just over Sh1,000.

There have also been complaints of tokens getting depleted too fast. For instance, one customer who normally uses Sh4,000 per month complained of her credit running out in a week.

Kenya Power maintains it cannot read all post-paid meters across the country, compelling it to make estimates for a number of customers.

The company argues it is not cost-effective to have meter readers go to all homes. The firm recently indicated plans to put all domestic consumers on prepaid meters to reduce non-payment of electricity bills and cut operation costs on meter reading and postage.

 

POWER CONSUMPTION

The Nairobi Securities Exchange-listed firm has also adopted a new integrated customer management system to enable consumers to self-check their power consumption and understand their electricity bill and payment obligations through a phone app.

In the past, concerns have been rife that customers often encounter delays when buying tokens through paybill number 888880, unlike through other vendors.

This has raised questions on the ownership of the vendors and the cash commissions they are entitled to, with holiday scam warnings circulating in some markets as well.

 

FOUL PLAY

Kenya Power has, however, denied any foul play, saying the authorisation of other vendors was to ease pressure on its payment channel, which handles 85 per cent of the nearly 200,000 transactions per day.

“In fact we have 11 vendors, including Equitel, it’s just that people are only aware of Vendit and Dynamo because they have been aggressive in their marketing,” the company said.

Kenya Power has been battling court cases over inflated power bills after it emerged that the utility firm was backdating bills worth Sh10.1 billion from last November.

 

Related News

View more

US Dept. of Energy awards Washington state $23.4 million to strengthen infrastructure

Washington Grid Resilience Grant funds DOE-backed modernization to harden Washington's electric grid against extreme weather, advancing clean energy, affordable and reliable electricity, and community resilience under the Bipartisan Infrastructure Law via projects and utility partnerships.

 

Key Points

A $23.4M DOE grant to modernize Washington's grid, boost weather resilience, and deliver clean, reliable power.

✅ Targets outages, reliability, and community resilience statewide.

✅ Prioritizes disadvantaged areas and quality clean energy jobs.

✅ Backed by Bipartisan Infrastructure Law and DOE funding.

 

Washington state has received a $23.4 million Grid Resilience State and Tribal Formula Grant from the U.S. Department of Energy (DOE) to modernize the electric grid through smarter electricity infrastructure and reduce impacts due to extreme weather and natural disasters. Grid Resilience State and Tribal Formula Grants aim to ensure the reliability of power sector infrastructure so that communities have access to affordable, reliable, clean electricity.

“Electricity is an essential lifeline for communities. Improving our systems by reducing disruptive events is key as we cross the finish line of a 100% clean electricity grid and ensure equitable benefits from the clean energy economy reach every community,” said Gov. Jay Inslee.

The federal funding for energy resilience will enhance and expand ongoing current grid modernization and resilience efforts throughout the state. For example, working directly with rural and typical end-of-the-line customers to develop resilience plans and collaborating with communities and utilities, including smart city efforts in Spokane as examples, on building resilient and renewable infrastructure for essential services.

“This is a significant opportunity to supplement our state investments in building a robust, resilient electric grid that supports our long-term vision for clean, affordable and reliable electricity – the foundation for economic growth and job creation that strengthens our communities and keeps Washington globally competitive. It shows once again that we are maximizing the federal funding being made available by the Biden-Harris Administration to invest in the country’s infrastructure,” said Washington State Department of Commerce Director Mike Fong.

Across the border, British Columbia's clean energy shift adds regional momentum for resilient, low-carbon power.

Goals include:

Reducing the frequency, duration and impact of outages as climate change impacts on the grid intensify while enhancing resiliency in historically disadvantaged communities.
Strengthening prosperity by expanding well-paying, safe clean energy jobs accessible to all workers and ensuring investments have a positive effect on quality job creation and equitable economic development.

Building a community of practice and maximizing project scalability by identifying pathways for scaling innovations such as integrating solar into the grid across programs.

“The Grid Resilience Formula Grants will enable communities in Washington to protect households and businesses from blackouts or power shutdowns during extreme weather,” said Maria Robinson, Director, Grid Deployment Office, U.S. Department of Energy. “Projects selected through this program will benefit communities by creating good-paying jobs to deliver clean, affordable, and reliable energy across the country.”

DOE has also announced $34 million for grid improvements to bolster reliability nationwide.

“An innovative, reliable, and efficient power grid is vital to Washington’s continued economic growth and for community resilience especially in disadvantaged areas,” said U.S. Rep. Strickland, Co-Lead of the bipartisan Grid Innovation Caucus. “The funding announced today will invest in our energy grid, support good-paying jobs, and means a cleaner, more energy-efficient future.”

Funded through the Bipartisan Infrastructure Law and administered by DOE’s Grid Deployment Office, with related efforts such as California grid upgrades advancing nationwide, the Grid Resilience State and Tribal Formula Grants distribute funding to states, territories, and federally recognized Indian Tribes, over five years based on a formula that includes factors such as population size, land area, probability and severity of disruptive events, and a locality’s historical expenditures on mitigation efforts. Priority will be given to projects that generate the greatest community benefit providing clean, affordable, and reliable energy.

 

Related News

View more

COVID-19 Pandemic Puts $35 Billion in Wind Energy Investments at Risk, Says Industry Group

COVID-19 Impact on U.S. Wind Industry: disrupting wind power projects, tax credits, and construction timelines, risking rural revenues, jobs, and $35B investments; AWEA seeks Congressional flexibility as OEM shutdowns like Siemens Gamesa intensify delays.

 

Key Points

Pandemic disruptions threaten 25 GW of projects, $35B investment, rural revenues, jobs, and tax-credit timelines.

✅ 25 GW at risk; $35B investment jeopardized

✅ Rural taxes and land-lease payments may drop $8B

✅ AWEA seeks Congressional flexibility on tax-credit deadlines

 

In one of the latest examples of the havoc that the novel coronavirus is wreaking on the U.S. economy and the crisis hitting solar and wind sector alike, the American Wind Energy Association (AWEA) -- the national trade association for the U.S. wind industry -- yesterday stated its concerns that COVID-19 will "pose significant challenges to the American wind power industry." According to AWEA's calculations, the disease is jeopardizing the development of approximately 25 gigawatts of wind projects, representing $35 billion in investments, even as wind additions persist in some markets amid the pandemic.

Rural communities, where about 99% of wind projects are located, in particular, face considerable risk. The AWEA estimates that rural communities stand to lose about $8 billion in state and local tax payments and land-lease payments to private landowners. In addition, it's estimated that the pandemic threatens the loss of over 35,000 jobs, and the U.S. wind jobs outlook underscores the stakes, including wind turbine technicians, construction workers, and factory workers.

The development of wind projects is heavily reliant on the earning of tax credits, and debates over a Solar ITC extension highlight potential impacts on wind. However, in order to qualify for the current credits, project developers are bound to begin construction before Dec. 31, 2020. With local and state governments implementing various measures to stop the spread of the virus, the success of project developers' meeting this deadline is dubious, as utility-scale solar construction slows nationwide due to COVID-19. Addressing this and other challenges, the AWEA is turning to the government for help. In the trade association's press release, it states that "to protect the industry and these workers, AWEA is asking Congress for flexibility in allowing existing policies to continue working for the industry through this period of uncertainty."

Illustrating one of the ways in which COVID-19 is affecting the industry, Siemens Gamesa, a global leader in the manufacturing of wind turbines, closed a second Spanish factory this week after learning that a second of its employees had tested positive for the novel coronavirus.

 

Related News

View more

New Electricity Auctions Will Drive Down Costs for Ontario's Consumers

IESO Capacity Auctions will competitively procure resources for Ontario electricity needs, boosting reliability and resource adequacy through market-based bidding, enabling demand response, energy storage, and flexible supply to meet changing load and regional grid conditions.

 

Key Points

A competitive, technology-neutral auction buys capacity at lowest cost to keep Ontario's grid reliable and flexible.

✅ Market-based procurement reduces system costs.

✅ Enables demand response, storage, and hybrid resources.

✅ Increases flexibility and regional reliability in Ontario.

 

The Independent Electricity System Operator (IESO) is introducing changes to Ontario's electricity system that will help save Ontarians about $3.4 billion over a 10-year period. The changes include holding annual capacity auctions to acquire electricity resources at lowest cost that can be called upon when and where they are needed to meet Ontario electricity needs. 

Today's announcement marks the release of a high level design for future auctions, with changes for electricity consumers expected as the first is set to be held in late 2022.

"These auctions will specify how much electricity we need, and introduce a competitive process to determine who can meet that need. It's a competition among all eligible resources, and it's the Ontario consumer, including industrial electricity ratepayers, who benefits through lower costs and a more flexible system better able to respond to changing demand and supply conditions," says IESO President and CEO Peter Gregg.

In the past decade, electricity supply was typically acquired through very prescriptive means with defined targets for specific types of resources such as wind and solar, and secured through 20-year contracts.  While these long-term commitments helped Ontario transform its generation fleet over the last decade, electricity cost allocation also played a role, but longer term contracts provide limited flexibility in dealing with unexpected changes in the power system. 

"Imagine signing a 20-year contract for your cable TV service. In five years' time, electricity rates could be lower, new competitors may have entered the market, or entirely new and innovative platforms and services like Netflix may have emerged. You miss out on opportunities for improvement by being locked-in," says Gregg.

Provincial electricity demand has traditionally fluctuated over time due to factors like economic growth, conservation and the introduction of generating resources on local distribution systems, with occasional issues such as phantom demand affecting customers' costs as well. Technological changes are adding another layer of uncertainty to future demand as electric vehicles, energy storage and low-cost solar panels become more common.

"Our planners do their best to forecast electricity demand, but the truth is there's no such thing as certainty in electricity planning. That's why flexibility is so important. We don't want Ontarians to have to pay more on the typical Ontario electricity bill for electricity resources than are needed to ensure a reliable power system that can continue to meet Ontario's needs," says IESO Vice President and COO Leonard Kula.

 

Related News

View more

Covid-19 puts brake on Turkey’s solar sector

Turkey Net Metering Suspension freezes regulator reviews, stalling rooftop solar permits and grid interconnections amid COVID-19, pausing licensing workflows, EPC pipelines, and electricity bill credits that drive commercial and household prosumer adoption.

 

Key Points

A pause on technical reviews freezing net metering applications and slowing rooftop solar deployment in Turkey.

✅ Monthly technical committee meetings suspended indefinitely

✅ Rooftop solar permits and grid interconnections on hold

✅ EPC firms urge remote evaluations for transparency

 

The decision by the Turkish Energy Market Regulatory Authority to halt part of the system of processing net metering applications risks bringing the only vibrant segment of the nation’s solar industry to a grinding halt, a risk amplified as global renewables face Covid-19 disruptions across markets.

The regulator has suspended monthly meetings of the committee which makes technical evaluations of net metering applications, citing concerns about the spread of Covid-19, which has already seen U.S. utility-scale solar face delays this year.

The availability of electricity bill credits for net-metering-approved households which inject surplus power into the grid, similar to how British households can sell power back to energy firms, has seen the rooftop projects the scheme is typically associated with remain the only source of new solar generation capacity in Turkey of late.

However the energy regulator’s decision to suspend technical evaluation committee meetings until further notice has seen the largely online licensing process for new solar systems practically cease; by contrast, Berlin is being urged to remove PV barriers to keep projects moving.

The Turkish solar industry has claimed the move is unnecessary, with solar engineering, procurement and construction services businesses pointing out the committee could meet to evaluate projects remotely. It has been argued such a move would streamline the application process and make it more transparent, regardless of the current public health crisis.

 

Net metering 

Turkey introduced net metering for rooftop installations last May and pv magazine has reported the specifics of the scheme, amid debates like New England's grid upgrade costs over who pays.

National grid operator Teias confirmed recently the country added 109 MW of new solar capacity in the first quarter, most of it net-metered rooftop systems, even as Australian distributors warn excess solar can strain local networks.

Net metering has been particularly attractive to commercial electricity users because the owners of small and medium-sized businesses pay more for power, as solar reshapes electricity prices in Northern Europe, than either households or large scale industrial consumers.

Until the recent technical committee decision by the regulator, the chief obstacle to net metering adoption had been the nation’s economic travails. The Turkish lira has lost 14% of its value since January and around 36% over the last two years. The central bank has been using its foreign reserves to support state lenders and the lira but the national currency slipped near an all-time low on Friday and foreign analysts predict the central bank reserves could run dry in July.

The level of exports shipped last month was down 41% on April last year and imports fell 28% by the same comparison, further depressing the willingness of companies to make capital investments such as rooftop solar.

 

Related News

View more

Can California Manage its Solar Boom?

California Duck Curve highlights midday solar oversupply and steep evening peak demand, stressing grid stability. Solutions include battery storage, demand response, diverse renewables like wind, geothermal, nuclear, and regional integration to reduce curtailment.

 

Key Points

A mismatch between midday solar surplus and evening demand spikes, straining the grid without storage and flexibility.

✅ Midday solar oversupply forces curtailment and wasted clean energy.

✅ Evening ramps require fast, fossil peaker plants to stabilize load.

✅ Batteries, demand response, regional trading flatten the curve.

 

California's remarkable success in adopting solar power, including a near-100% renewable milestone, has created a unique challenge: managing the infamous "duck curve." This distinctive curve illustrates a growing mismatch between solar electricity generation and the state's energy demands, creating potential problems for grid stability and ultimately threatening to slow California's progress in the fight against climate change.


The Shape of the Problem

The duck curve arises from a combination of high solar energy production during midday hours and surging energy demand in the late afternoon and evening when solar power declines. During peak solar hours, the grid often has an overabundance of electricity, and curtailments are increasing as a result, while as the sun sets, demand surges when people return home and businesses ramp up operations. California's energy grid operators must scramble to make up this difference, often relying on fast-acting but less environmentally friendly power sources.


The Consequences of the Duck Curve

The increasing severity of the duck curve has several potential consequences for California:

  • Grid Strain: The rapid ramp-up of power sources to meet evening demand puts significant strain on the electrical grid. This can lead to higher operational costs and potentially increase the risk of blackouts during peak demand times.
  • Curtailed Energy: To avoid overloading the grid, operators may sometimes have to curtail excess solar energy during midday, as rising curtailment reports indicate, essentially wasting clean electricity that could have been used to displace fossil fuel generation.
  • Obstacle to More Solar: The duck curve can make it harder to add new solar capacity, as seen in Alberta's solar expansion challenges, for fear of further destabilizing the grid and increasing the need for fossil fuel-based peaking plants.


Addressing the Challenge

California is actively seeking solutions to mitigate the duck curve, aligning with national decarbonization pathways that emphasize practicality. Potential strategies include:

  • Energy Storage: Deploying large-scale battery storage can help soak up excess solar electricity during the day and release it later when demand peaks, smoothing out the duck curve.
  • Demand Flexibility: Encouraging consumers to shift their energy use to off-peak hours through incentives and smart grid technologies can help reduce late-afternoon surges in demand.
  • Diverse Power Sources: While solar is crucial, a balanced mix of energy sources, including geothermal, wind, and nuclear, can improve grid stability and reduce reliance on rapid-response fossil fuel plants.
  • Regional Cooperation: Integrating California's grid with neighboring states can aid in balancing energy supply and demand across a wider geographical area.


The Ongoing Solar Debate

The duck curve has become a central point of debate about the future of California's energy landscape. While acknowledging the challenge, solar advocates argue for continued expansion, backed by measures like a bill to require solar on new buildings, emphasizing the urgent need to transition away from fossil fuels. Grid operators and some utility companies call for a more cautious approach, emphasizing grid reliability and potential costs if the problem isn't effectively managed.


Balancing California's Needs and its Green Ambitions

Finding the right path forward is essential; it will determine whether California can continue to lead the way in solar energy adoption while ensuring a reliable and affordable electricity supply. Successfully navigating the duck curve will require innovation, collaboration, and a strong commitment to building a sustainable energy system, as wildfire smoke impacts on solar continue to challenge generation predictability.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.