Wyoming wind creating jobs

By Casper Star-Tribune


NFPA 70b Training - Electrical Maintenance

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today
Hundreds of new wind turbines are under construction right now in Wyoming to serve a growing demand for renewable energy across the West.

This emerging "green" energy export industry promises to create dozens - perhaps hundreds - of full-time jobs in the state.

Yet partisan politics in Washington, D.C., could stall what looks to be the beginnings of a boom in Cowboy State wind and power line development, according to local energy experts.

After several temporary extensions, the federal production tax credit for "utility scale" wind development is again set to expire, this time at the end of the year. Wind advocates say the start-and-stop nature of the tax credit has likely restrained the development of wind energy for years.

But the looming expiration date has almost completely stalled plans for projects that are not already under construction, according to one developer.

"It is imperative that our political leaders support the extension of support for renewable energy, right now. Otherwise, this growing industry will come to a complete halt," said private wind developer Bruce Morley.

Both Sens. John Barrasso and Mike Enzi, R-Wyo., voted against a measure this month that included an extension of the production tax credit. They said they were forced to vote against it because it was lumped in with other energy tax measures they didn't agree with.

Wind advocates say the overwhelming bipartisan support of the tax credit for wind makes a tempting target to attach other, more partisan tax measures. Senate Republicans and Democrats have been locked in a battle over tax breaks to the established fossil-fuel industries versus emerging renewable energy industries.

"Had the tax credit been voted on by itself, it would have passed the Senate almost unanimously with Sen. Enzi 100 percent behind it," said Enzi spokeswoman Elly Pickett.

"Sen. Barrasso is very supportive of incentives for clean energy, but the details matter. This legislation contained a number of provisions he did not agree with, and as such, he could not lend his support to it," said Barrasso spokesman Gregory Keeley.

Pickett said Enzi had just signed on as a co-sponsor to a "stand-alone" measure to extend the tax credit for another year.

Morley said new investment in Wyoming wind is at an absolute standstill. Developers need certainty, perhaps even more than the federal tax incentive itself. He said even an extension of the tax credit with a scheduled phaseout would help wind developers make plans with the investment banking community.

"Further, we need a long-term, stable government policy toward renewables, clean coal and nuclear," Morley said. "We can't afford to play political games with this, even though this is an election year."

Ron Lehr of the American Wind Energy Association said both Republicans and Democrats are guilty of playing politics with the tax credit.

"They're putting politics ahead of the interest of their state," Lehr said. "It has bipartisan support, but it gets trapped in these political battles."

Bryce Freeman, administrator for the Wyoming Office of Consumer Advocate and member of the Wyoming Infrastructure Authority board, testified before a congressional committee this week about the need to give renewable energy developers some certainty, particularly for electrical transmission.

"There are costs associated with inaction. Those costs are real and in the long term could prove to be much higher than the costs of the transmission investments," Freeman testified before the Senate Committee on Energy and Natural Resources.

On behalf of the Infrastructure Authority, Freeman advocated for giving states tax-exempt bonding for electrical transmission, "experimental" business models to recover investments in systemwide grids and designating national corridors for the infrastructure.

In an interview with the Star-Tribune, Freeman said projects such as the Wyoming-Colorado Intertie are likely to move forward without the legislative requests. That project spans 300 miles and only two states.

But transmission proposals such as Gateway West and TransWest Express each span more than 1,000 miles and several states.

"These other projects we're working on, (congressional proposals) could be the tipping factor in getting people interested in developing," Freeman said.

All told, there are projects in various stages of development that would add nearly 10,000 megawatts of new electrical generation in the region -- mostly Wyoming. That's a significant new "value-added" industry for the state to complement its exports of raw energy materials.

"It doesn't matter what we decide to use as far as a future resource, we're going to need transmission to get it done, even for demand-side management," Freeman aid.

Freeman said the Wyoming Infrastructure Authority isn't directly addressing the production tax credit for commercial wind development. But he said developers in the region seem justifiably frustrated.

"From my own personal perspective, I think it's crazy," he said. "There are a lot of people with money - the Wall Street types in institutional development - just waiting to develop these renewable projects. But they're paralyzed because it's on again and off again."

Related News

Westinghouse AP1000 Nuclear Plant Breaks A First Refueling Outage Record

AP1000 Refueling Outage Record showcases Westinghouse nuclear power excellence as Sanmen Unit 2 completes its first reactor refueling in 28.14 days, highlighting safety, reliability, outage optimization, and economic efficiency in China.

 

Key Points

It is the 28.14-day initial refueling at Sanmen Unit 2, a global benchmark achieved with Westinghouse AP1000 technology.

✅ 28.14-day first refueling at Sanmen Unit 2 sets global benchmark

✅ AP1000 design simplifies systems, improves safety and reliability

✅ Outage optimization by Westinghouse and CNNC accelerates schedules

 

Westinghouse Electric Company China operations today announced that Sanmen Unit 2, one of the world's first AP1000® nuclear power plants, has set a new refueling outage record in the global nuclear power industry, completing its initial outage in 28.14 days.

"Our innovative AP1000 technology allows for simplified systems and significantly reduces the amount of equipment, while improving the safety, reliability and economic efficiency of this nuclear power plant, reflecting global nuclear milestones reached recently," said Gavin Liu, president of the Westinghouse Asia Operating Plant Services Business. "We are delighted to see the first refueling outage for Sanmen Unit 2 was completed in less than 30 days. This is a great achievement for Sanmen Nuclear Power Company and further demonstrates the outstanding performance of AP1000 design."

All four units of the AP1000 nuclear power plants in China have completed their first refueling outages in the past 18 months, aligning with China's nuclear energy development momentum across the sector.  The duration of each subsequent outage has fallen significantly - from 46.66 days on the first outage to 28.14 days on Sanmen Unit 2.

"During the first AP1000 refueling outage at the Sanmen site in December 2019, a Westinghouse team of experts worked side-by-side with the Sanmen outage team to partner on outage optimization, and immediately set a new standard for a first-of-a-kind outage, while major refurbishments like the Bruce refurbishment moved forward elsewhere," said Miao Yamin, chairman of CNNC Sanmen Nuclear Power Company Limited. "Lessons learned were openly exchanged between our teams on each subsequent outage, which has built to this impressive achievement."

Westinghouse provided urgent technical support on critical issues during the outage, as international programs such as Barakah Unit 1 achieved key milestones, to help ensure that work was carried out on schedule with no impact to critical path.

In addition to the four AP1000 units in China, two units are under construction at the Vogtle expansion near Waynesboro, Georgia, USA.

Separately, in the United States, a new reactor startup underscored renewed momentum in nuclear generation this year.

 

Related News

View more

Brazilian electricity workers call for 72-hour strike

Eletrobras Privatization Strike sparks a 72-hour CNE walkout by Brazil's electricity workers, opposing asset sell-offs and grid privatization while pledging essential services; unions target President Wilson Ferreira Jr. over energy-sector reforms.

 

Key Points

A 72-hour CNE walkout by Brazil's electricity workers opposing Eletrobras sell-offs, while keeping essential services.

✅ 72-hour strike led by CNE unions and federations

✅ Targets privatization plans and leadership at Eletrobras

✅ Essential services maintained to avoid consumer impact

 

Brazil's national electricity workers' collective (CNE) has called for a 72-hour strike to protest the privatization of state-run electric company Eletrobras and its subsidiaries.

The CNE, which gathers the electricity workers' confederation, federations, unions and associations, said the strike is to begin at Monday midnight (0300 GMT) and last through midnight Wednesday, even as some utilities elsewhere have considered asking staff to live on site to maintain operations.

Workers are demanding the ouster of Eletrobras President Wilson Ferreira Jr., who they say is the leading promoter of the privatization move.

Some 24,000 workers are expected to take part in the strike. However, the CNE said it will not affect consumers by ensuring essential services, a pledge echoed by utilities managing costs elsewhere such as Manitoba Hydro's unpaid days off during the pandemic.

#google#

Eletrobras accounts for 32 percent of Brazil's installed energy generation capacity, mainly via hydroelectric plants. Besides, it also operates nuclear and thermonuclear plants, and solar and wind farms, reflecting trends captured by young Canadians' interest in electricity jobs in recent years.

The company distributes electricity in six northern and northeastern states, and handles 47 percent of the nation's electricity transmission lines, even as a U.S. grid pandemic warning has highlighted reliability risks.

The government owns a 63-percent stake in the company, a reminder that public policy shapes the sector, similar to Canada's future-of-work investment initiatives announced recently.

 

Related News

View more

For Hydro-Québec, selling to the United States means reinventing itself

Hydro-Quebec hydropower exports deliver low-carbon electricity to New England, sparking debate on greenhouse gas accounting, grid attributes, and REC-style certificates as Quebec modernizes monitoring to verify emissions, integrate renewables, and meet ambitious climate targets.

 

Key Points

Low-carbon electricity to New England, with improved emissions tracking and verifiable grid attributes.

✅ Deep, narrow reservoirs cut lifecycle GHGs in cold boreal waters

✅ Attribute certificates trace source, type, and carbon intensity

✅ Contracts require facility-level tagging for compliance

 

For 40 years, through the most vicious interprovincial battles, even as proposals for bridging the Alberta-B.C. gap aimed to improve grid resilience, Canadians could agree on one way Quebec is undeniably superior to the rest of the country.

It’s hydropower, and specifically the mammoth dam system in Northern Quebec that has been paying dividends since it was first built in the 70s. “Quebec continues to boast North America’s lowest electricity prices,” was last year’s business-as-usual update in one trade publication, even as Newfoundland's rate strategy seeks relief for consumers.

With climate crisis looming, that long-ago decision earns even more envy and reflects Canada's electricity progress across the grid today. Not only do they pay less, but Quebeckers also emit the least carbon per capita of any province.

It may surprise most Canadians, then, to hear how most of New England has reacted to the idea of being able to buy permanently into Quebec’s power grid.

​​​​​​Hydro-Québec’s efforts to strike major export deals have been rebuffed in the U.S., by environmentalists more than anyone. They question everything about Quebec hydropower, including asking “is it really low-carbon?”

These doubts may sound nonsensical to regular Quebeckers. But airing them has, in fact, pushed Hydro-Québec to learn more about itself and adopt new technology.

We know far more about hydropower than we knew 40 years ago, including whether it’s really zero-emission (it’s not), how to make it as close to zero-emission as possible, and how to account for it as precisely as new clean energies like solar and wind, underscoring how cleaning up Canada's electricity is vital to meeting climate pledges.

The export deals haven’t gone through yet, but they’ve already helped drag Hydro-Québec—roughly the fourth-biggest hydropower system on the planet—into the climate era.

Fighting to export
One of the first signs of trouble for Quebec hydro was in New Hampshire, almost 10 years ago. People there began pasting protest signs on their barns and buildings. One citizens’ group accused Hydro of planning a “monstrous extension cord” across the state.

Similar accusations have since come from Maine, Massachusetts and New York.

The criticism isn’t coming from state governments, which mostly want a more permanent relationship with Hydro-Québec. They already rely on Quebec power, but in a piecemeal way, topping up their own power grid when needed (with the exception of Vermont, which has a small permanent contract for Quebec hydropower).

Last year, Quebec provided about 15 percent of New England’s total power, plus another substantial amount to New York, which is officially not considered to be part of New England, and has its own energy market separate from the New England grid.

Now, northeastern states need an energy lynch pin, rather than a top-up, with existing power plants nearing the end of their lifespans. In Massachusetts, for example, one major nuclear plant shut down this year and another will be retired in 2021. State authorities want a hydro-based energy plan that would send $10 billion to Hydro-Québec over 20 years.

New England has some of North America’s most ambitious climate goals, with every state in the region pledging to cut emissions by at least 80 percent over the next 30 years.

What’s the downside? Ask the citizens’ groups and nonprofits that have written countless op-eds, organized petitions and staged protests. They argue that hydropower isn’t as clean as cutting-edge clean energy such as solar and wind power, and that Hydro-Québec isn’t trying hard enough to integrate itself into the most innovative carbon-counting energy system. Right as these other energy sources finally become viable, they say, it’s a step backwards to commit to hydro.

As Hydro-Québec will point out, many of these critics are legitimate nonprofits, but others may have questionable connections. The Portland Press Herald in Maine reported in September 2018 that a supposedly grassroot citizens’ group called “Stand Up For Maine” was actually funded by the New England Power Generators Association, which is based in Boston and represents such power plant owners as Calpine Corp., Vistra Energy and NextEra Energy.

But in the end, that may not matter. Arguably the biggest motivator to strike these deals comes not from New England’s needs, but from within Quebec. The province has spent more than $10 billion in the last 15 years to expand its dam and reservoir system, and in order to stay financially healthy, it needs to double its revenue in the next 10 years—a plan that relies largely on exports.

With so much at stake, it has spent the last decade trying to prove it can be an energy of the future.

“Learning as you go”
American critics, justified or not, have been forcing advances at Hydro for a long time.

When the famously huge northern Quebec hydro dams were built at James Bay—construction began in the early 1970s—the logic was purely economic. The term “climate change” didn’t exist. The province didn’t even have an environment department.

The only reason Quebec scientists started trying to measure carbon emissions from hydro reservoirs was “basically because of the U.S.,” said Alain Tremblay, a senior environmental advisor at Hydro Quebec.


Alain Tremblay, senior environmental advisor at Hydro-Québec. Photograph courtesy of Hydro-Québec
In the early 1990s, Hydro began to export power to the U.S., and “because we were a good company in terms of cost and efficiency, some Americans didn't like that,” he said—mainly competitors, though he couldn’t say specifically who. “They said our reservoirs were emitting a lot of greenhouse gases.”

The detractors had no research to back up that claim, but Hydro-Québec had none to refute it, either, said Tremblay. “At that time we didn’t have any information, but from back-of-the envelope calculations, it was impossible to have the emissions the Americans were expecting we have.”

So research began, first to design methods to take the measurements, and then to carry them out. Hydro began a five-year project with a Quebec university.

It took about 10 years to develop a solid methodology, Tremblay said, with “a lot of error and learning-as-you-go.” There have been major strides since then.

“Twenty years ago we were taking a sample of water, bringing it back to the lab and analyzing that with what we call a gas chromatograph,” said Tremblay. “Now, we have an automated system that can measure directly in the water,” reading concentrations of CO2 and methane every three hours and sending its data to a processing centre.

The tools Hydro-Québec uses are built in California. Researchers around the world now follow the same standard methods.

At this point, it’s common knowledge that hydropower does emit greenhouse gases. Experts know these emissions are much higher than previously thought.

Workers on the Eastmain-1 project environmental monitoring program. Photography courtesy of Alain Tremblay.
​But Hydro-Québec now has the evidence, also, to rebut the original accusations from the early 1990s and many similar ones today.

“All our research from Université Laval [found] that it’s about a thousand years before trees decompose in cold Canadian waters,” said Tremblay.

Hydro reservoirs emit greenhouse gases because vegetation and sometimes other biological materials, like soil runoff, decay under the surface.

But that decay depends partly on the warmth of the water. In tropical regions, including the southern U.S., hydro dams can have very high emissions. But in boreal zones like northern Quebec (or Manitoba, Labrador and most other Canadian locations with massive hydro dams), the cold, well-oxygenated water vastly slows the process.

Hydro emissions have “a huge range,” said Laura Scherer, an industrial ecology professor at Leiden University in the Netherlands who led a study of almost 1,500 hydro dams around the world.

“It can be as low as other renewable energy sources, but it can also be as high as fossil fuel energy,” in rare cases, she said.

While her study found that climate was important, the single biggest factor was “sizing and design” of each dam, and specifically its shape, she said. Ideally, hydro dams should be deep and narrow to minimize surface area, perhaps using a natural valley.

Hydro-Québec’s first generation of dams, the ones around James Bay, were built the opposite way—they’re wide and shallow, infamously flooding giant tracts of land.


Alain Tremblay, senior environmental advisor at Hydro-Québec testing emission levels. Photography courtesy of Alain Tremblay
Newly built ones take that new information into account, said Tremblay. Its most recent project is the Romaine River complex, which will eventually include four reservoirs near Quebec’s northeastern border with Labrador. Construction began in 2016.

The site was picked partly for its topography, said Tremblay.

“It’s a valley-type reservoir, so large volume, small surface area, and because of that there’s a pretty limited amount of vegetation that’s going to be flooded,” he said.

There’s a dramatic emissions difference with the project built just before that, commissioned in 2006. Called Eastmain, it’s built near James Bay.

“The preliminary results indicate with the same amount of energy generated [by Romaine] as with Eastmain, you’re going to have about 10 times less emissions,” said Tremblay.

Tracing energy to its source
These signs of progress likely won’t satisfy the critics, who have publicly argued back and forth with Hydro about exactly how emissions should be tallied up.

But Hydro-Québec also faces a different kind of growing gap when it comes to accounting publicly for its product. In the New England energy market, a sophisticated system “tags” all the energy in order to delineate exactly how much comes from which source—nuclear, wind, solar, and others—and allows buyers to single out clean power, or at least the bragging rights to say they bought only clean power.

Really, of course, it’s all the same mix of energy—you can’t pick what you consume. But creating certificates prevents energy producers from, in worst-case scenarios, being able to launder regular power through their clean-power facilities. Wind farms, for example, can’t oversell what their own turbines have produced.

What started out as a fraud prevention tool has “evolved to make it possible to also track carbon emissions,” said Deborah Donovan, Massachusetts director at the Acadia Center, a climate-focused nonprofit.

But Hydro-Québec isn’t doing enough to integrate itself into this system, she says.

It’s “the tool that all of our regulators in New England rely on when we are confirming to ourselves that we’ve met our clean energy and our carbon goals. And…New York has a tool just like that,” said Donovan. “There isn’t a tracking system in Canada that’s comparable, though provinces like Nova Scotia are tapping the Western Climate Initiative for technical support.”

Hydro Quebec Chénier-Vignan transmission line crossing the Outaouais river. Photography courtesy of Hydro-Québec
Developing this system is more a question of Canadian climate policy than technology.

Energy companies have long had the same basic tracking device—a meter, said Tanya Bodell, a consultant and expert in New England’s energy market. But in New England, on top of measuring “every time there’s a physical flow of electricity” from a given source, said Bodell, a meter “generates an attribute or a GIS certificate,” which certifies exactly where it’s from. The certificate can show the owner, the location, type of power and its average emissions.

Since 2006, Hydro-Québec has had the ability to attach the same certificates to its exports, and it sometimes does.

“It could be wind farm generation, even large hydro these days—we can do it,” said Louis Guilbault, who works in regulatory affairs at Hydro-Québec. For Quebec-produced wind energy, for example, “I can trade those to whoever’s willing to buy it,” he said.

But, despite having the ability, he also has the choice not to attach a detailed code—which Hydro doesn’t do for most of its hydropower—and to have it counted instead under the generic term of “system mix.”

Once that hydropower hits the New England market, the administrators there have their own way of packaging it. The market perhaps “tries to determine emissions, GHG content,” Guilbault said. “They have their own rules; they do their own calculations.”

This is the crux of what bothers people like Donovan and Bodell. Hydro-Québec is fully meeting its contractual obligations, since it’s not required to attach a code to every export. But the critics wish it would, whether by future obligation or on its own volition.

Quebec wants it both ways, Donovan argued; it wants the benefits of selling low-emission energy without joining the New England system of checks and balances.

“We could just buy undifferentiated power and be done with it, but we want carbon-free power,” Donovan said. “We’re buying it because of its carbon content—that’s the reason.”

Still, the requirements are slowly increasing. Under Hydro-Québec’s future contract with Massachusetts (which still has several regulatory steps to go through before it’s approved) it’s asked to sell the power’s attributes, not just the power itself. That means that, at least on paper, Massachusetts wants to be able to trace the energy back to a single location in Quebec.

“It’s part of the contract we just signed with them,” said Guilbault. “We’re going to deliver those attributes. I’m going to select a specific hydro facility, put the number in...and transfer that to the buyers.”

Hydro-Québec says it’s voluntarily increasing its accounting in other ways. “Even though this is not strictly required,” said spokeswoman Lynn St. Laurent, Hydro is tracking its entire output with a continent-wide registry, the North American Renewables Registry.

That registry is separate from New England’s, so as far as Bodell is concerned, the measure doesn’t really help. But she and others also expect the entire tracking system to grow and mature, perhaps integrating into one. If it had been created today, in fact, rather than in the 1990s, maybe it would use blockchain technology rather than a varied set of administrators, she said.

Counting emissions through tracking still has a long way to go, as well, said Donovan, and it will increasingly matter in Canada's race to net-zero as standards tighten. For example, natural gas is assigned an emissions number that’s meant to reflect the emissions when it’s consumed. But “we do not take into account what the upstream carbon emissions are through the pipeline leakage, methane releases during fracking, any of that,” she said.

Now that the search for exactitude has begun, Hydro-Québec won’t be exempt, whether or not Quebeckers share that curiosity. “We don’t know what Hydro-Québec is doing on the other side of the border,” said Donovan.

 

Related News

View more

Smart grid and system improvements help avoid more than 500,000 outages over the summer

ComEd Smart Grid Reliability drives outage reduction across Illinois, leveraging smart switches, grid modernization, and peak demand programs to keep customers powered, improve power quality, and enhance energy savings during extreme weather and severe storms.

 

Key Points

ComEd's smart grid performance, cutting outages and improving power quality to enhance reliability and customer savings.

✅ Smart switches reroute power to avoid customer interruptions

✅ Fewer outages during extreme weather across northern Illinois

✅ Peak Time Savings rewards for reduced peak demand usage

 

While the summer of 2019 set records for heat and brought severe storms, ComEd customers stayed cool thanks to record-setting reliability during the season. These smart grid investments over the last seven years helped to set records in key reliability measurements, including frequency of outages metrics, and through smart switches that reroute power around potential problem areas, avoided more than 538,000 customer interruptions from June to August.

"In a summer where we were challenged by extreme weather, we saw our smart grid investments and our people continue to deliver the highest levels of reliability, backed by extensive disaster planning across utilities, for the families and businesses we serve," said Joe Dominguez, CEO of ComEd. "We're proud to deliver the most affordable, cleanest and, as we demonstrated this summer, most reliable energy to our customers. I want to thank our 6,000 employees who work around the clock in often challenging conditions to power our communities."

ComEd has avoided more than 13 million customer interruptions since 2012, due in part to smart grid and system improvements. The avoided outages have resulted in $2.4 billion in estimated savings to society. In addition to keeping energy flowing for residents, strong power reliability continues to help persuade industrial and commercial companies to expand in northern Illinois and Chicago. The GridWise Alliance recently recognized Illinois as the No. 2 state in the nation for its smart grid implementation.

"Our smart grid investments has vastly improved the infrastructure of our system," said Terry Donnelly, ComEd president and chief operating officer. "We review the system and our operations continually to make sure we're investing in areas that benefit the greatest number of customers, and to prepare for public-health emergencies as well. On a daily basis and during storms or to reduce wildfire risk when necessary, our customers are seeing fewer and fewer interruptions to their lives and businesses."

ComEd customers also set records for energy savings this summer. Through its Peak Time Savings program and other energy-efficiency programs offered by utilities, ComEd empowered nearly 300,000 families and individuals to lower their bills by a total of more than $4 million this summer for voluntarily reducing their energy use during times of peak demand. Since the Peak Time Savings program launched in 2015, participating customers have earned a total of more than $10 million in bill credits.

 

Related News

View more

Climate Solution: Use Carbon Dioxide to Generate Electricity

Methane Hydrate CO2 Sequestration uses carbon capture and nitrogen injection to swap gases in seafloor hydrates along the Gulf of Mexico, releasing methane for electricity while storing CO2, according to new simulation research.

 

Key Points

A method injecting CO2 and nitrogen into hydrates to store CO2 while releasing methane for power.

✅ Nitrogen aids CO2-methane swap in hydrate cages, speeding sequestration

✅ Gulf Coast proximity to emitters lowers transport and power costs

✅ Revenue from methane electricity could offset carbon capture

 

The world is quickly realizing it may need to actively pull carbon dioxide out of the atmosphere to stave off the ill effects of climate change. Scientists and engineers have proposed various carbon capture techniques, but most would be extremely expensive—without generating any revenue. No one wants to foot the bill.

One method explored in the past decade might now be a step closer to becoming practical, as a result of a new computer simulation study. The process would involve pumping airborne CO2 down into methane hydrates—large deposits of icy water and methane right under the seafloor, beneath water 500 to 1,000 feet deep—where the gas would be permanently stored, or sequestered. The incoming CO2 would push out the methane, which would be piped to the surface and burned to generate electricity, whether sold locally or via exporters like Hydro-Que9bec to help defray costs, to power the sequestration operation or to bring in revenue to pay for it.

Many methane hydrate deposits exist along the Gulf of Mexico shore and other coastlines. Large power plants and industrial facilities that emit CO2 also line the Gulf Coast, where EPA power plant rules could shape deployment, so one option would be to capture the gas directly from nearby smokestacks, keeping it out of the atmosphere to begin with. And the plants and industries themselves could provide a ready market for the electricity generated.

A methane hydrate is a deposit of frozen, latticelike water molecules. The loose network has many empty, molecular-size pores, or “cages,” that can trap methane molecules rising through cracks in the rock below. The computer simulation shows that pushing out the methane with CO2 is greatly enhanced if a high concentration of nitrogen is also injected, and that the gas swap is a two-step process. (Nitrogen is readily available anywhere, because it makes up 78 percent of the earth’s atmosphere.) In one step the nitrogen enters the cages; this destabilizes the trapped methane, which escapes the cages. In a separate step, the nitrogen helps CO2 crystallize in the emptied cages. The disturbed system “tries to reach a new equilibrium; the balance goes to more CO2 and less methane,” says Kris Darnell, who led the study, published June 27 in the journal Water Resources Research. Darnell recently joined the petroleum engineering software company Novi Labs as a data scientist, after receiving his Ph.D. in geoscience from the University of Texas, where the study was done.

A group of labs, universities and companies had tested the technique in a limited feasibility trial in 2012 on Alaska’s North Slope, where methane hydrates form in sandstone under deep permafrost. They sent CO2 and nitrogen down a pipe into the hydrate. Some CO2 ended up being stored, and some methane was released up the same pipe. That is as far as the experiment was intended to go. “It’s good that Kris [Darnell] could make headway” from that experience, says Ray Boswell at the U.S. Department of Energy’s National Energy Technology Laboratory, who was one of the Alaska experiment leaders but was not involved in the new study. The new simulation also showed that the swap of CO2 for methane is likely to be much more extensive—and to happen quicker—if CO2 enters at one end of a hydrate deposit and methane is collected at a distant end.

The technique is somewhat similar in concept to one investigated in the early 2010s by Steven Bryant and others at the University of Texas. In addition to numerous methane hydrate deposits, the Gulf Coast has large pools of hot, salty brine in sedimentary rock under the coastline. In this system, pumps would send CO2 down into one end of a deposit, which would force brine into a pipe that is placed at the other end and leads back to the surface. There the hot brine would flow through a heat exchanger, where heat could be extracted and used for industrial processes or to generate electricity, supporting projects such as electrified LNG in some markets. The upwelling brine also contains some methane that could be siphoned off and burned. The CO2 dissolves into the underground brine, becomes dense and sinks further belowground, where it theoretically remains.

Either system faces big practical challenges, and building shared CO2 storage hubs to aggregate captured gas is still evolving. One is creating a concentrated flow of CO2; the gas makes up only .04 percent of air, and roughly 10 percent of the smokestack emission from a typical power plant or industrial facility. If an efficient methane hydrate or brine system requires an input that is 90 percent CO2, for example, concentrating the gas will require an enormous amount of energy—making the process very expensive. “But if you only need a 50 percent concentration, that could be more attractive,” says Bryant, who is now a professor of chemical and petroleum engineering at the University of Calgary. “You have to reduce the [CO2] capture cost.”

Another major challenge for the methane hydrate approach is how to collect the freed methane, which could simply seep out of the deposit through numerous cracks and in all directions. “What kind of well [and pipe] structure would you use to grab it?” Bryant asks.

Given these realities, there is little economic incentive today to use methane hydrates for sequestering CO2. But as concentrations rise in the atmosphere and the planet warms further, and as calls for an electric planet intensify, systems that could capture the gas and also provide energy or revenue to run the process might become more viable than techniques that simply pull CO2 from the air and lock it away, offering nothing in return.

 

Related News

View more

U.S. Launches $250 Million Program To Strengthen Energy Security For Rural Communities

DOE RMUC Cybersecurity Program supports rural, municipal, and small investor-owned utilities with grants, technical assistance, grid resilience, incident response, workforce training, and threat intelligence sharing to harden energy systems and protect critical infrastructure.

 

Key Points

A $250M DOE program providing grants to boost rural and municipal utilities' cybersecurity and incident response.

✅ Grants and technical assistance for grid security

✅ Enhances incident response and threat intel sharing

✅ Builds cybersecurity workforce in rural utilities

 

The U.S. Department of Energy (DOE) today issued a Request for Information (RFI) seeking public input on a new $250 million program to strengthen the cybersecurity posture of rural, municipal, and small investor-owned electric utilities.

Funded by President Biden’s Bipartisan Infrastructure Law and broader clean energy funding initiatives, the Rural and Municipal Utility Advanced Cybersecurity Grant and Technical Assistance (RMUC) Program will help eligible utilities harden energy systems, processes, and assets; improve incident response capabilities; and increase cybersecurity skills in the utility workforce. Providing secure, reliable power to all Americans, with a focus on equity in electricity regulation across communities, will be a key focus on the pathway to achieving President Biden’s goal of a net-zero carbon economy by 2050. 

“Rural and municipal utilities provide power for a large portion of low- and moderate-income families across the nation and play a critical role in ensuring the economic security of our nation’s energy supply,” said U.S. Secretary of Energy Jennifer M. Granholm. “This new program reflects the Biden Administration's commitment to improving energy reliability and connecting our nation’s rural communities to resilient energy infrastructure and the transformative benefits that come with it.” 

Nearly one in six Americans live in a remote or rural community. Utilities in these communities face considerable obstacles, including difficulty recruiting top cybersecurity talent, inadequate infrastructure, as the aging U.S. power grid struggles to support new technologies, and lack of financial resources needed to modernize and harden their systems. 

The RMUC Program will provide financial and technical assistance to help rural, municipal, and small investor-owned electric utilities improve operational capabilities, increase access to cybersecurity services, deploy advanced cyber security technologies, and increase participation of eligible entities in cybersecurity threat information sharing programs and coordination with federal partners initiatives. Priority will be given to eligible utilities that have limited cybersecurity resources, are critical to the reliability of the bulk power system, or those that support our national defense infrastructure. 

The Office of Cybersecurity, Energy Security, and Emergency Response (CESER), which advances U.S. energy security objectives, will manage the RMUC Program, providing $250 million dollars in BIL funding over five years. To help inform Program implementation, DOE is seeking input from the cybersecurity community, including eligible utilities and representatives of third parties and organizations that support or interact with these utilities. The RFI seeks input on ways to improve cybersecurity incident preparedness, response, and threat information sharing; cybersecurity workforce challenges; risks associated with technologies deployed on the electric grid; national-scale initiatives to accelerate cybersecurity improvements in these utilities; opportunities to strengthen partnerships and energy security support efforts; the selection criteria and application process for funding awards; and more. 

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.