Canada, Germany to work together on clean energy


canada germany agreement

High Voltage Maintenance Training Online

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today

Clean Energy Transition spans hydrogen strategies, offshore wind and undersea cables, decarbonization pledges, and net-zero targets, including green vs blue hydrogen, carbon capture, sustainable aviation fuel, forest conservation, and wetland protection in Canadian policy.

 

Key Points

A shift to low-carbon systems via hydrogen, renewables, net-zero policies, carbon capture, and conservation.

✅ Hydrogen pathways: green vs blue with carbon capture

✅ Grid expansion: offshore wind and undersea cables in Japan

✅ Policy and corporate moves: net-zero, SAF, forests, wetlands

 

The Canadian federal government is set to sign a new agreement with Germany to strategize on a “clean-energy transition,” with clean hydrogen in Canada expected to be a key player the Globe and Mail reports.

“Germany is probably the world’s most interesting market for hydrogen right now, and Canada is potentially a very big power in its production,” Sabine Sparwasser, Germany’s ambassador to Canada, said in an interview.

However, some friction is expected as Natural Resources Minister Seamus O’Regan has been endorsing “blue” hydrogen, while Germany has been more interested in “green” hydrogen. The former hydrogen is produced from natural gas or other fossil fuels, while simultaneously “using carbon-capture technology to minimize emissions from the process.” In contrast, “green” hydrogen, is manufactured from non-fossil fuel sources, and cleaning up Canada's electricity is critical to meeting climate pledges.

“How the focus on blue hydrogen will be aligned with Canada’s goal of reaching climate neutrality by 2050 is not spelled out in detail,” says an executive summary of the report by the Berlin-based think tank and consultancy Adelphi. “As a result, the strategy seems to be more of a vision for the future of those provinces with large fossil fuel resources.”

According to an IEA report Canada will need more electricity to hit net-zero, underscoring the strategy questions.

 

Internationally

Japan is in talks to develop undersea cables that would bring offshore wind energy to Tokyo and the Kansai region, as the country hopes to more than quadrable its wind capacity from 10 gigawatts in 2030 to 45 gigawatts in 2040. The construction of the cables would cost about US$9.2 billion.

In Western Canada, bridging the electricity gap between Alberta and B.C. makes similar climate sense, proponents argue.

Approximately 80 per cent of that offshore power is expected to be built in Hokkaido, Tohoku, and Kyushu regions. The project is part of the country’s pledge to achieve decarbonization by 2050, according to BNN Bloomberg.

Meanwhile, Russia is falling behind in the world’s transition to clean energy.

“What’s the alternative? Russia can’t be an exporter of clean energy, that path isn’t open for us,” says Konstantin Simonov, director of the National Energy Security Fund, a Moscow consultancy whose clients include major oil and gas companies. “We can’t just swap fossil fuel production for clean energy production, because we don’t have any technology of our own.” Ultimately, natural gas will always be cheaper than renewable energy in Russia, Simonov added. This story also from BNN Bloomberg.

Finally, New Zealand’s Tilt Renewables Ltd., an electricity company, has announced it would be acquired by Powering Australian Renewables (PowAR) for NZ$2.94 billion (US$2.10 billion). PowAR is Australia’s largest owner of wind and solar energy, and the deal will give the energy giant access to Tilt’s 20 wind farms. Reuters has the story.

 

In Canada  

Air Canada has unveiled plans to fight climate change. Specifically, the airlines giant has committed to reducing greenhouse gases (GHG) by 20 per cent from flights by 2030, investing $50 million in sustainable aviation fuel (SAF), and ensuring net-zero emissions by 2050.

In other news, B.C. is facing mounting pressure to abstain from logging “old growth forests” while the government transitions to more sustainable forestry policies. A report titled A New Future for Old Forests called on the provincial government to act within six months to protect such forests in April 2020.

The province's Site C mega dam is billions over budget but will go ahead, the premier said, highlighting the energy sector's complexity.

Last September, the province announced, “it would temporarily defer old growth harvesting in close to 353,000 hectares in nine different areas.” The B.C. government will hold consultations with First Nations and other forestry stakeholders “to determine the next areas where harvesting may be deferred,” according to Forests Minister Katrine Conroy. The Canadian Press has more.

Separately, LNG powered with electricity could be a boon for B.C.'s independent power producers, analysts say.

Finally, Pickering Developments Inc. has come forward saying it will not “alter or remove the wetland” that was meant to house an Amazon facility, according to CBC News.

The announcement comes after CBC News’s previously reported that the Toronto and Region Conservation Authority (TRCA) was pressured to issue a construction permit to Pickering Developments Inc. by Doug Ford’s provincial government. However, on March 12, an official with Amazon Canada told CBC News that the company no longer wished to build a warehouse on the site.

“In light of a recent announcement that a new fulfilment centre will no longer be located on this property, this voluntary undertaking ensures that no work, legally authorized by that permit, will occur,” Pickering Development Inc. said in a statement provided to CBC Toronto.

 

Related News

Related News

France's new EV incentive rules toughen market for Chinese cars

France EV Incentive Rules prioritize EU-made electric vehicles, tying subsidies to manufacturing emissions and carbon footprint, making Stellantis, Renault, and Tesla Model Y eligible while excluding many China-built models under a new eligibility list.

 

Key Points

Links EV subsidies to manufacturing emissions, favoring EU-made models and restricting many China-built cars.

✅ Subsidies tied to lifecycle manufacturing emissions.

✅ EU production favored; many China-built EVs excluded.

✅ Eligible: Stellantis, Renault, Tesla Model Y; not Model 3.

 

France's revamped new EV rules on consumer cash incentives for electric car purchases favour vehicles made in France and Europe over models manufactured in China, a government list of eligible car types published recently has showed.

Some 65% of electric cars sold in France will be eligible for the scheme, which from Friday will include new criteria covering the amount of carbon emitted in the manufacturing of an electric vehicle (EV).

The list of eligible models includes 24 produced by Franco-Italian group Stellantis (STLAM.MI) and five by French carmaker Renault (RENA.PA). Elon Musk's Tesla (TSLA.O) Model Y will be eligible but not its Model 3.

Electric vehicle brand MG Motors, owned by China's SAIC, said it expects the new rules to weigh on the French EV market, despite the global surge in EV sales seen in recent years.

"There are cars that will entirely lose their competitiveness", an MG spokesperson told Reuters, adding that the brand had decided not to apply for the bonus scheme for its MG4 model because it was "designed to exclude us".

French Finance Minister Bruno Le Maire hailed what he called the new rules' incentive for automakers to reduce their carbon footprint.

"We will no longer be subsidising car production that emits too much CO2," he said in a statement.

President Emmanuel Macron's government has wanted to make French and European-made EVs more affordable for domestic consumers relative to cheaper vehicles produced in China, amid a record EV market share in the country.

The average retail price of an EV in Europe, even as the EU EV share grew during lockdown months, was more than 65,000 euros ($71,000) in the first half of 2023, compared with just over 31,000 euros in China, according to research by Jato Dynamics.

The French government already offered buyers a cash incentive of between 5,000 and 7,000 euros to get more electric cars on the road, at a total cost of 1 billion euros ($1.1 billion) per year.

However, in the absence of cheap European-made EVs, a third of all incentives are going to consumers buying EVs made in China, French finance ministry officials say. The trend has helped spur a surge in imports and a growing competitive gap with domestic producers.

China's auto industry relies heavily on coal-generated electricity, meaning many Chinese-made EVs will henceforth not qualify.

The Ademe agency overseeing the process studied the eligibility of almost 500 EV models and their variants to include in the scheme.

Dacia, the low-cost Renault brand, saw its Spring model imported from China excluded from the list.

Tesla's Model 3 is made in China. The Model Y, which is larger and more expensive, is made mainly in Berlin and was the top selling EV in France over the first 11 months of the year, amid forecasts that EVs could dominate within a decade in many markets.

 

Related News

View more

Renewable Electricity Is Coming on Strong

Cascadia electrification accelerates renewable energy with wind and solar, EVs, heat pumps, and grid upgrades across British Columbia, Washington, and Oregon to decarbonize power, buildings, and transport at lower cost while creating jobs.

 

Key Points

Cascadia electrification is the shift to renewable grids, EVs, and heat pumps replacing fossil fuels.

✅ Wind and solar scale fast; gas and coal phase down

✅ EVs and heat pumps cut fuel costs and emissions

✅ Requires grid upgrades, policy, and social acceptance

 

Fifty years ago, a gasoline company’s TV ads showed an aging wooden windmill. As the wind died, it slowed to stillness. The ad asked: “But what do you do when the wind stops?” For the next several decades, fossil fuel providers and big utilities continued to denigrate renewable energy. Even the U.S. Energy Department deemed renewables “too rare, too diffuse, too distant, too uncertain and too ill-timed” to meaningfully contribute, as a top agency analyst put it in 2005.

Today we know that’s not true, especially in British Columbia, Washington and Oregon.

New research shows we could be collectively poised to pioneer a climate-friendly energy future for the globe — that renewable electricity can not only move Cascadia off of fossil fuels, but do so at an affordable price while creating some jobs along the way.

After decades of disinformation, this may sound like a wishful vision. But building a cleaner and more equitable economy — and doing so in just a few decades to head off the worst effects of climate change — is backed by a growing body of regional and international research.

Getting off fossil fuels is “feasible, necessary… and not very expensive” when compared to the earnings of the overall economy, said Jeffrey Sachs, an economist and global development expert at Columbia University.

Much of the confidence about the price tag comes down to this: Innovation and mass production have made wind and solar power installations cheaper than most fossil-fuelled power plants and today’s fastest-growing source of energy worldwide. The key to moving Cascadia’s economies away from fossil fuels, according to the latest research, is building more, prompting power companies to invest in carbon-free electricity as our go-to “fuel.”

However, doing that in time to help head off a cascading climatic crisis by mid-century means the region must take major steps in the next decade to speed the transition, researchers say. And that will require social buy-in.

The new research highlights three mutually supporting strategies that squeeze out fossil fuels:

Chefs and foodies are well-known fans of natural gas. Why, “Cooking with gas” is an expression for a reason. But one trendy Seattle restaurant-bar is getting by just fine with a climate-friendly alternative: electric induction cooktops.

Induction “burners” are just as controllable as gas burners and even faster to heat and cool, but produce less excess heat and zero air pollution. That made a huge difference to chef Stuart Lane’s predecessors when they launched Seattle cocktail bar Artusi 10 years ago.

Using induction meant they could squeeze more tables into the tight space available next door to Cascina Spinasse — their popular Italian restaurant in Seattle’s vibrant Capitol Hill neighborhood — and lowered the cost of expanding.

Rather than igniting a fossil fuel to roast the surface of pots and pans, induction burners generate a magnetic field that heats metal cookware from inside. For people at home, forgoing gas eliminates combustion by-products, which means fewer asthma attacks and other health impacts.

For Artusi, it eliminated the need for a pricey hood and fans to continuously pump fumes and heat out and pull fresh air in. That made induction the cheaper way to go, even though induction cooktops cost more than conventional gas ranges.

Over the years, they’ve expanded the menu because even guests who come for the signature Amari cocktails often stay for the handmade pasta, meatballs and seasonal sauces. So the initial pair of induction burners has multiplied to nine. Yet Artusi retains a cleaner, quieter and more intimate atmosphere. Yet thanks largely to the smaller fans, “it’s not as chaotic,” said Lane.

And Lane adds, it feels good to be cooking on electricity — which in Seattle proper is about 90 per cent renewable — rather than on a fossil fuel that produces climate-warming greenhouse gases. “You feel like you’re doing something right,” he said.

Lane says he wouldn’t be surprised if induction is the new normal for chefs entering the trade 10 years from now. “They probably would cook with gas and say, ‘Damn it’s hot in here!’” — Peter Fairley

This story is supported in part by a grant from the Fund for Investigative Journalism.

increasing energy efficiency to trim the amount of power we need,

boosting renewable energy to make it possible to turn off climate-wrecking fossil-fuel plants, and

plugging as much stuff as possible into the electrical grid.
Recent studies in B.C. and Washington state, and underway for Oregon, point to efficiency and electrification as the most cost-effective route to slashing emissions while maintaining lifestyles and maximizing jobs. A recent National Academies of Science study reached the same conclusion, calling electrification the core strategy for an equitable and economically advantageous energy transition, while abroad New Zealand's electrification push is asking whether electricity can replace fossil fuels in time.

However, technologies don’t emerge in a vacuum. The social and economic adjustments required by the wholesale shift from fossil fuels that belch climate-warming carbon emissions to renewable power can still make or break decarbonization, according to Jim Williams, a University of San Francisco energy expert whose simulation software tools have guided many national and regional energy plans, including two new U.S.-wide studies, a December 2020 analysis for Washington state and another in process for Oregon.

Williams points to vital actions that are liable to rile up those who lose money in the deal. Steps like letting trees grow many decades older before they are cut down, so they can suck up more carbon dioxide — which means forgoing quicker profits from selling timber. Or convincing rural communities and conservationists that they should accept power-transmission lines crossing farms and forests.

“It’s those kinds of policy questions and social acceptance questions that are the big challenges,” said Williams.

Washington, Oregon and B.C. already mandate growing supplies of renewable power and help cover the added cost of some electric equipment, and across the border efforts at cleaning up Canada's electricity are critical to meeting climate pledges. These include battery-powered cars, SUVs and pickups on the road. Heat pumps — air conditioners that run in reverse to push heat into a building — can replace furnaces. And, at industrial sites, electric machines can take the place of older mechanical systems, cutting costs and boosting reliability.

As these options drop in price they are weakening reliance on fossil fuels — even among professional chefs who’ve long sworn by cooking with gas (see sidebar: Cooking quick, clean and carbon-free).

“For each of the things that we enjoy and we need, there’s a pathway to do that without producing any greenhouse gas emissions,” said Jotham Peters, managing partner for Vancouver-based energy analysis firm Navius Research, whose clients include the B.C. government.


What the modelling tells us

Key to decarbonization planning for Cascadia are computer simulations of future conditions known as models. These projections take electrification and other options and run with them. Researchers run dozens of simulated potential future energy scenarios for a given region, tinkering with different variables: How much will energy demand grow? What happens if we can get 80 per cent of people into electric cars? What if it’s only 50 per cent? And so on.

Accelerating the transition requires large investments, this modelling shows. Plugging in millions of vehicles and heat pumps demands both brawnier and more flexible power systems, including more power lines and other infrastructure such as bridging the Alberta-B.C. electricity gap that communities often oppose. That demands both stronger policies and public acceptance. It means training and apprenticeships for the trades that must retrofit homes, and ensuring that all communities benefit — especially those disproportionately suffering from energy-related pollution in the fossil fuel era.

Consensus is imperative, but the new studies are bound to spark controversy. Because, while affordable, decarbonization is not free.

The Meikle Wind Project in BC’s Peace River region, the province’s largest, with 61 turbines producing 184.6 MW of electricity, went online in 2017. Photo: Pattern Development.
Projections for British Columbia and Washington suggest that decarbonizing Cascadia will spur extra job-stimulating growth. But the benefits and relatively low net cost mask a large swing in spending that will create winners and losers, and without policies to protect disadvantaged communities from potential energy cost increases, could leave some behind.

By 2030, the path to decarbonization shows Washingtonians buying about $5 billion less worth of natural gas, coal and petroleum products, while putting even more dollars toward cleaner vehicles and homes. No surprise then that oil and gas interests are attacking the new research.

And the research shows a likely economic speed bump around 2030. Economic growth would slow due to increased energy costs as economies race to make a sharp turn toward pollution reductions after nearly a decade of rising greenhouse gas emissions.

“Meeting that 2030 target is tough and I think it took everybody a little bit by surprise,” said Nancy Hirsh, executive director of the Seattle-based NW Energy Coalition, and co-chair of a state panel that shaped Washington’s recent energy supply planning.

But that’s not cause to ease up. Wait longer, says Hirsh, and the price will only rise.


Charging up

What most drives Cascadia’s energy models toward electrification is the dropping cost of renewable electricity.

Take solar energy. In 2010, no large power system in the world got more than three per cent of its electricity from solar. But over the past decade, solar energy’s cost fell more than 80 per cent, and by last year it was delivering over nine per cent of Germany’s electricity and over 19 per cent of California’s.

Government mandates and incentives helped get the trend started, and Canada's electricity progress underscores how costs continue to fall. Once prohibitively expensive, solar’s price now beats nuclear, coal and gas-fired power, and it’s expected to keep getting cheaper. The same goes for wind power, whose jumbo jet-sized composite blades bear no resemblance to the rickety machines once mocked by Big Oil.

In contrast, cleaning up gas- or coal-fired power plants by equipping them to capture their carbon pollution remains expensive even after decades of research and development and government incentives. Cost overruns and mechanical failures recently shuttered the world’s largest “low-carbon” coal-fired power plant in Texas after less than four years of operation.

Retrofits enabled this coal-fired plant in Texas to capture some of its carbon dioxide pollution, which was then injected into aging oil wells to revive production. But problems made the plant’s coal-fired power — which is being priced out by renewable energy — even less competitive and it was shut down after three years in 2020. Photo by NRG Energy.
Innovation and incentives are also making equipment that plugs into the grid cheaper. Electric options are good and getting better with a push from governments and a self-reinforcing cycle of performance improvement, mass production and increased demand.

Battery advances and cost cuts over the past decade have made owning an electric car cheaper, fuel included, than conventional cars. Electric heat pumps may be the next electric wave. They’re three to four times more efficient than electric baseboard heaters, save money over natural gas in most new homes, and work in Cascadia’s coldest zones.

Merran Smith, executive director of the Vancouver-based non-profit Clean Energy Canada, says that — as with electric cars five years ago — people don’t realize how much heat pumps have improved. “Heat pumps used to be big huge noisy things,” said Smith. “Now they’re a fraction of the size, they’re quiet and efficient.”

Electrifying certain industrial processes can also cut greenhouse gases at low cost. Surprisingly, even oil and gas drilling rigs and pipeline compressors can be converted to electric. Provincial utility BC Hydro is building new transmission lines to meet anticipated power demand from electrification of the fracking fields in northeastern British Columbia that supply much of Cascadia’s natural gas.


Simulating low-carbon living

The computer simulation tools guiding energy and climate strategies, unlike previous models that looked at individual sectors, take an economy-wide view. Planners can repeatedly run scenarios through sophisticated software, tinkering with their assumptions each time to answer cross-cutting questions such as: Should the limited supply of waste wood from forestry that can be sustainably removed from forests be burned in power plants? Or is it more valuable converted to biofuel for airplanes that can’t plug into the grid?

Evolved Energy Research, a San Francisco-based firm, analyzed the situation in Washington. Its algorithms are tuned using data about energy production and use today — down to the number and types of furnaces, stovetops or vehicles. It has expert assessments of future costs for equipment and fuels. And it knows the state’s mandated emissions targets.

Researchers run the model myriad times, simulating decisions about equipment and fuel purchases — such as whether restaurants stick with gas or switch to electric induction “burners” as their gas stoves wear out. The model finds the most cost-effective choices by homes and businesses that meet the state’s climate goals.

For Seattle wine bar Artusi, going with electric induction cooktops meant they could squeeze more tables into a tight, comfortable space. Standard burners cost less but would have required noisy, pricey fume hoods and fans to suck out the pollutants. For more, see sidebar. Photo: InvestigateWest.
Rather than accepting that optimal scenario and calling it a day, modellers account for uncertainty in their estimates of future costs by throwing in various additional constraints and rerunning the model.

That probing shows that longer reliance on climate-warming natural gas and petroleum fuels increases costs. In fact, all of the climate-protecting scenarios achieve Washington’s goals at relatively low cost, compared to the state’s historic spending on energy.

The end result of these scenarios are net-zero carbon emissions in 2050, echoing Canada's race to net-zero and the growing role of renewable energy, in which a small amount of emissions remaining are offset by rebounding forests or equipment that scrubs CO2 from the air.

But the seeds of that transformation must be sown by 2030. The scenarios identify common strategies that the state can pursue with low risk of future regrets.

One no brainer is to rapidly add wind and solar power to wring out CO2 emissions from Washington’s power sector. The projections end coal-fired power by 2025, as required by law, but also show that, with grid upgrades, gas-fired power plants that produce greenhouse gas emissions can stay turned off most of the time. That delivers about 16.2 million of the 44.8 million metric tons of CO2 emissions cut required by 2030 under state law.

All of the Washington scenarios also jack up electricity consumption to power cars and heating. By 2050, Washington homes and businesses would draw more than twice as much power from the grid as they did last year, meaning climate-friendly electricity is displacing climate-unfriendly gasoline, diesel fuel and natural gas. In the optimal case, electricity meets 98 per cent of transport energy in 2050, and over 80 per cent of building energy use.

By 2050, the high-electrification scenarios would create over 60,000 extra jobs across the state, as replacing old and inefficient equipment and construction of renewable power plants stimulates economic growth, according to projections from Washington, D.C.-based FTI Consulting. Scenarios with less electrification require more low-carbon fuels that cut emissions at higher cost, and thus create 15,000 to 35,000 fewer jobs.

Much of the new employment comes in middle-class positions — including about half of the total in construction — leading to big boosts in employment income. Washingtonians earn over $7 billion more in 2050 under the high-electrification scenarios, compared to a little over $5 billion if buildings stick with gas heating through 2050 and less than $2 billion with extra transportation fuels.


Rocketing to 2030

Evolved Energy’s electrification-heavy decarbonization pathways for Washington dovetail with a growing body of international research, such as that National Academy of Sciences report and a major U.S. decarbonization study led by Princeton University, and in Canada debates like Elizabeth May's 2030 renewable grid goal are testing feasibility. (See Grist’s 100 per cent Clean Energy video for a popularized view of similar pathways to slash U.S. carbon emissions, informed by Princeton modeller Jesse Jenkins.)

 

Related News

View more

Nevada to Power Clean Vehicles with Clean Electricity

Nevada EV Charging Plan will invest $100 million in highway, urban, and public charging, bus depots, and Lake Tahoe sites, advancing NV Energy's SB 448 goals for clean energy, air quality, equity, and tourism recovery.

 

Key Points

Program invests $100M in EV infrastructure under SB 448, led by NV Energy, expanding clean charging across Nevada.

✅ $100M for statewide charging over 3 years

✅ 50% invested in overburdened communities

✅ Supports SB 448, climate and air quality goals

 

The Public Utilities Commission of Nevada approved a $100 million program that will deploy charging stations for electric vehicles (EVs) along highways, in urban areas, at public buildings, in school and transit bus depots, and at Red Rocks and Lake Tahoe, as charging networks compete to expand access. Combined with the state's clean vehicle standards and its aggressive renewable energy requirements, this means cars, trucks, buses, and boats in Nevada will be powered by increasingly clean electricity, reflecting how electricity is changing across the country.

The “Economic Recovery Transportation Electrification Plan” proposed by NV Energy, aligning with utilities' bullish plans for EV charging, was required by Senate Bill (SB) 448 (Brooks). Nevada’s tourism-centric economy was hit hard by the pandemic, and, as an American EV boom accelerates nationwide, the $100 million investment in charging infrastructure for light, medium, and heavy-duty EVs over the next three years was designed to provide much needed economic stimulus without straining the state’s budget.

Half of those investments will be made in communities that have borne a disproportionate share of transportation pollution and have suffered most from COVID-19—a disease that is made more deadly by exposure to local air pollution—and, amid evolving state grid challenges that planners are addressing, ensuring equitable deployment will help protect reliability and health.

SB 448 also requires NV Energy to propose subsequent “Transportation Electrification Plans” to keep the state on track to meet its climate, air quality, and equity goals, recognizing that a much bigger grid may be needed as adoption grows. A  report from MJ Bradley & Associates commissioned by NRDC, Southwest Energy Efficiency Project, and Western Resource Advocates demonstrates Nevada could realize $21 billion in avoided expenditures on gasoline and maintenance, reduced utility bills, and environmental benefits, with parallels to New Mexico's projected benefits highlighted in recent analyses, by 2050 if more drivers make the switch to EVs.

 

Related News

View more

Intersolar Europe restart 2021: solar power is becoming increasingly popular in Poland

Poland Solar PV Boom drives record installations, rooftop and utility-scale growth, EU-aligned incentives, net metering, PPAs, and auctions, pushing capacity toward 8.3 GW by 2024 while prosumers, grid upgrades, and energy management expand.

 

Key Points

A rapid expansion of Poland's PV market, driven by incentives, PPAs, and prosumers across rooftop and utility-scale.

✅ 2.2 GW added in 2020, triple 2019, led by small-scale prosumers

✅ Incentives: My Current, Clean Air, Agroenergia, net metering

✅ Growth toward 8.3 GW by 2024; PPAs and auctions scale utility

 

Photovoltaics (PV) is booming in Poland. According to SolarPower Europe, 2.2 gigawatts (GW) of solar power was installed in the country in 2020 - nearly three times as much as the 823 megawatts (MW) installed in 2019. This places Poland fourth across Europe, behind Germany, where a solar power boost has been underway (4.8 GW added in 2020), the Netherlands (2.8 GW) and Spain (2.6 GW). So all eyes in the industry are on the up-and-coming Polish market. The solar industry will come together at Intersolar Europe Restart 2021, taking place from October 6 to 8 at Messe München. As part of The smarter E Europe Restart 2021, manufacturers, suppliers, distributors and service providers will all present their products and innovations at the world's leading exhibition for the solar industry.

All signs point to continued strong growth, with renewables on course to set records across markets. An intermediate, more conservative EU Market Outlook forecast from SolarPower Europe expects the Polish solar market to grow by 35 percent annually, meaning that it will have achieved a PV capacity of 8.3 GW by 2024 as solar reshapes Northern Europe's power prices over the medium term. "PV in Poland is booming at every level - from private and commercial PV rooftop systems to large free-standing installations," says Dr. Stanislaw Pietruszko, President of the Polish Society for Photovoltaics (PV Poland). According to the PV Poland, the number of registered small-scale systems - those under 50 kilowatts (kW) - with an average capacity of 6.5 kilowatts (kW) grew from 155,000 (992 MW) at the end of 2019 to 457,400 (3 GW) by the end of 2020. These small-scale systems account for 75 percent of all PV capacity installed in Poland. Larger PV projects with a capacity of 4 GW have already been approved for grid connection, further attesting to the forecast growth.

8,000 people employed in the PV industry
Andrzej Kazmierski, Deputy Director of the Department for Low-emission Economy within the Polish Ministry of Economic Development, Labour and Technology, explained in the Intersolar Europe webinar "A Rising Star: PV Market Poland" at the end of March 2021 that the PV market volume in Poland currently amounts to 2.2 billion euros, with 8,000 people employed in the industry. According to Kazmierski, the implementation of the Renewable Energy Directive (RED II) in the EU, intended to promote energy communities and collective prosumers as well as long-term power purchase agreements (PPAs), will be a critical challenge, and ongoing Berlin PV barriers debates highlight the importance of regulatory coordination. Renewable energy must be integrated with greater focus into the energy system, and energy management and the grids themselves must be significantly expanded as researchers work to improve solar and wind integration. The government seeks to create a framework for stable market growth as well as to strengthen local value creation.


Government incentive programs in Poland
In addition to drastically reduced PV costs, reinforced by China's rapid PV expansion, and growing environmental consciousness, the Polish PV market is being advanced by an array of government-funded incentive programs such as My Current (230 million euros) and Clean Air as well as thermo-modernization. The incentive program Agroenergia (50 million euros) is specifically geared toward farmers and offers low-interest loans or direct subsidies for the construction of solar installations with capacities between 50 kW and 1 MW. Incentive programs for net metering have been extended to small and medium enterprises to provide stronger support for prosumers. Solar installations producing less than 50 kW benefit from a lower value-added tax of just eight percent (compared to the typical 23 percent). The acquisition and installation costs can be offset against income, in turn reducing income tax.
Government-funded auctions are also used to finance large-scale facilities, where the government selects operators of systems running on renewable energy who offer the lowest electricity price and funds the construction of their facilities. The winner of an auction back in December was an investment project for the construction of a 200 MW solar park in the Pomeranian Voivodeship.


Companies turn to solar power for self-consumption
Furthermore, Poland is now playing host to larger solar projects that do not rely on subsidies, as Europe's demand lifts US equipment makers amid supply shifts, such as a 64 MW solar farm in Witnica being built on the border to Germany whose electricity will be sold to a cement factory via a multi-year power purchase agreement. A new factory in Konin (Wielkopolska Voivodeship) for battery cathode materials to be used in electric cars will be powered with 100-percent renewable electricity. Plus, large companies are increasingly turning to solar power for self-consumption. For example, a leading manufacturer of metal furniture in Suwalki (Podlaskie Voivodeship) in northeastern Poland has recently started meeting its demand using a 2 MW roof-mounted and free-standing installation on the company premises.

 

Related News

View more

Requests for Proposal launched for purchase of clean electricity in Alberta

Canada Clean Electricity Procurement advances federal operations with renewable energy in Alberta, leveraging RECs, competitive sourcing, Indigenous participation, and grid decarbonization to cut greenhouse gas emissions and stimulate new clean power infrastructure.

 

Key Points

A plan to procure clean power and RECs, cutting emissions in Alberta and attributing use where renewables are absent.

✅ RFPs to source new clean electricity in Alberta

✅ RECs from net new Canadian renewable generation

✅ Mandatory Indigenous participation via equity or set-asides

 

Public Services and Procurement Canada (PSPC) is taking concrete steps to meet the Government of Canada's commitment in the Greening Government Strategy to reduce greenhouse gas emissions from federal government buildings, vehicle fleets and other operations, aligning with broader vehicle electrification trends across Canada.

The Honourable Anita Anand, Minister of Public Services and Procurement, announced the Government of Canada has launched Requests for Proposal to buy new clean electricity in the province of Alberta, which is moving ahead with the retirement of coal power to clean its grid, to power federal operations there.

As well, Canada will purchase Renewable Energy Certificates (REC) from new clean energy generation in Canada. This will enable Canada to attribute its energy consumption as clean in regions where new clean renewable sources are not yet available. The Government of Canada is excited about this opportunity to stimulate net new Canadian clean electricity generation through the procurement of RECs and complementary power purchase agreements that secure long-term supply for federal demand.

Together, these contracts will help to ensure Canada is reducing its greenhouse gas footprint by approximately 133 kilotonnes or 56% of total real property emissions in Alberta. Additionally, the contracts will displace approximately 41 kilotonnes of greenhouse gas emissions from electricity use in the rest of Canada, supporting progress toward 2035 clean electricity goals even as challenges remain.

Through these open, fair and transparent competitive procurement processes, PSPC will be a key purchaser of clean electricity and will support the growth of new clean electricity and renewable power infrastructure, such as recent turbine investments in Manitoba that expand capacity.

The Government of Canada's Clean Electricity Initiative plans to use 100% clean electricity by 2022, where available, in alignment with evolving net-zero electricity regulations that shape supply choices, to reduce greenhouse gas emissions and stimulate growth in clean renewable power infrastructure. PSPC has applied the goals of the Government of Canada's Clean Electricity Initiative to its specific requirement for net new clean electricity generation to power federal operations in Alberta.  

These procurements will support economic opportunities for Indigenous businesses by encouraging participation in the move towards clean energy, seen in provincial shifts toward clean power in Ontario that broaden markets. Each Request for Proposal incorporates mandatory requirements for Indigenous participation through equity holdings or set-asides under the Procurement Strategy for Aboriginal Business.

 

Related News

View more

Solar Power Becomes EU’s Top Electricity Source

Solar has become the EU’s main source of electricity, marking a historic turning point in Europe’s energy mix as solar power surpasses nuclear and wind, accelerates renewable expansion, lowers carbon emissions, and strengthens the EU’s clean energy transition.

 

Why has Solar Become the EU’s Main Source of Electricity?

Solar has become the EU’s primary source of electricity due to rapid solar expansion, lower installation costs, and robust clean energy policies, which have boosted generation, reduced fossil fuel dependence, and accelerated Europe’s transition toward sustainability.

✅ Surging solar capacity and falling costs

✅ Policy support for renewable energy growth

✅ Reduced reliance on oil, gas, and coal

 

For the first time in history, solar energy became the leading source of electricity generation in the European Union in June 2025, marking a major milestone in the continent’s transition toward renewable energy, as renewables surpassed fossil fuels across the bloc this year. According to new data from Eurostat, more than half of the EU's net electricity production in the second quarter of the year came from renewable sources, with solar power leading the way.

Between April and June 2025, renewables accounted for 54 percent of the EU’s electricity generation, a 1.3 percent increase compared to the same period in 2024. The rise was driven primarily by solar energy, with countries like Germany seeing a solar boost amid the energy crisis, which generated 122,317 gigawatt-hours (GWh) in the second quarter—enough, in theory, to power around three million homes.

Rob Stait, a spokesperson for Alight, one of Europe’s leading solar developers, described the achievement as “heartening.” He said, “Solar’s boom is because it can generate huge energy cost savings, and it's easy and quick to install and scale. A solar farm can be developed in a year, compared to at least five years for wind and at least ten for nuclear. But most importantly, it provides clean, renewable power, and its increased adoption drastically reduces the reliance of Europe on Russian oil and gas supplies.”

Eurostat’s data shows that June 2025 was the first month ever when solar overtook all other energy sources, accounting for 22 percent of the EU’s energy mix, reflecting a broader renewables surge across the region. Nuclear power followed closely at 21.6 percent, wind at 15.8 percent, hydro at 14.1 percent, and natural gas at 13.8 percent.

The shift comes at a critical time as Europe continues to navigate the economic and energy challenges brought on by Russia’s ongoing war in Ukraine. With fossil fuel markets remaining volatile, countries have increasingly viewed investment in renewables as both an environmental and strategic imperative. As Stait noted, energy resilience and renewable infrastructure have now become a “strategic necessity.”

Denmark led the EU in renewable energy generation during the second quarter, producing 94.7% of its electricity from renewable sources. It was followed by Latvia (93.4%), Austria (91.8%), Croatia (89.5%), and Portugal (85.6%). Luxembourg recorded the largest year-on-year increase, up 13.5 percent, largely due to a surge in solar production. Belgium also saw strong growth, with a 9.1 percent rise in renewable generation compared to 2024, while Ireland targets over one-third green electricity within four years.

At the other end of the spectrum, Slovakia, Malta, and the Czech Republic lagged behind, producing just 19.9%, 21.2%, and 22.1% of their electricity from renewable sources, respectively.

Stait believes the continued expansion of renewables will help stabilize and eventually lower electricity prices across Europe. “The accelerated buildout of renewables will ultimately lower bills for both businesses and other users—but slower buildouts mean sky-high prices may linger,” he said.

He added a call for decisive action: “My advice to European nations would be to keep going further and faster. There needs to be political action to solve grid congestion, and to create opportunities for innovation and manufacturing in Europe will be critical to keep momentum.”

With solar energy now taking the lead for the first time, Europe’s clean energy transformation appears to be entering a new phase, as global renewables set new records and momentum builds—one that combines environmental sustainability with energy security and economic opportunity.

 

Related Articles

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.