Meat Locker Syndrome – summer thermostat battle begins

By Canada News Wire


CSA Z462 Arc Flash Training - Electrical Safety Essentials

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today
For the fifth year, Toronto Hydro-Electric System went to the polls to probe Torontonians on electricity use. The annual Peak Out Poll continues to shed light on what's irking customers or what they think about conservation.

In the midst of the first Toronto heatwave, men and women will begin to nit-pick on the temperature at home and at work. In fact, 25 per cent of Torontonians feel that the office is too cold, and will still go to lengths to dress differently for inside temperatures. The statistics haven't changed despite the ongoing awareness of the importance of conservation – last year 28 per cent found the temperature too chilly.

"More than 50 per cent of an electricity bill is attributed to heating and cooling. Conservation is simple and it saves money. By just increasing the temperature by one degree, customers use three to five per cent less energy," says David O'Brien, President and CEO, Toronto Hydro Corporation.

The sweater remains the most popular item at 26 per cent, followed by pants (23 per cent), socks and shoes (21 per cent), a jacket (13 per cent) and a shawl or sweatshirt (about 10 per cent each.) Even more alarming is the other coping mechanisms offsetting conservation efforts: two-in-ten Torontonians use a space heater, tape up vents or do other things to block a blast of cold air.

Counter-intuitively, 45 per cent have worn a jacket inside and then taken it off outside; and another 44 per cent have had colleagues do the same. And this year, there is no change in the gender preference: women are more likely to think that it's too cold, versus men who find the temperature is either too hot or just right during the summer months.

Related News

Australia stuck in the middle of the US and China as tensions rise

Manus Island Naval Base strengthens US-Australia-PNG cooperation at Lombrum, near the South China Sea, bolstering sovereignty, maritime rights, and Pacific security amid APEC talks, infrastructure investment, and Belt and Road competition.

 

Key Points

A US-Australia-PNG facility at Lombrum to bolster Pacific security and protect maritime rights across the region.

✅ Shared by US, Australia, and PNG at Lombrum on Manus Island

✅ Near South China Sea, reinforcing maritime security and access

✅ Counters opaque lending, aligns with free trade and infrastructure

 

Scott Morrison has caught himself bang in the middle of escalating tensions between the United States and China.

The US and Australia will share a naval base in the north end of Papua New Guinea on Manus Island, creating another key staging point close to the contested South China Sea.

“The United States will partner with Papua New Guinea and Australia on their joint initiative at Lombrum Naval Base,” US Vice President Mike Pence said.

“We will work with these two nations to protect sovereignty and maritime rights in the Pacific Islands. ”

At an Asia Pacific Economic Cooperation meeting in Port Moresby on Saturday, Mr Morrison urged nations to embrace free trade and avoid “unsustainable debt”, as the Philippines' clean energy commitment also featured in discussions.

He confirmed the US and Australia will share an expanded naval base on Manus Island, as the US ramped up rhetoric against China.

Mr Pence quoted President Donald Trump in his speech following Chinese President Xi Jinping, even as a Biden energy agenda is seen by some as better for Canada.

“We have great respect for President Xi and respect for China. But in the president’s words, China’s taken advantage of the United States for many, many years,” he said.

“And those days are over.”

His speech was met with stony silence from the Chinese delegation, after President Xi had reassured leaders his Belt and Road Initiative was not a debt trap.

China has also been at loggerheads with the United States over its territorial ambitions in the Pacific, encapsulated by Xi’s Belt and Road Initiative.

Unveiled in 2013, the Belt and Road initiative aims to bolster a sprawling network of land and sea links with Southeast Asia, Central Asia, the Middle East, Europe and Africa.

China’s efforts to win friends in the resource-rich Pacific have been watched warily by the traditionally influential powers in the region — Australia and the United States.

“It is not designed to serve any hidden geopolitical agenda,” President Xi said on Saturday.

“Nor is it a trap, as some people have labelled it.”

But Mr Pence said loans to developing countries were too often opaque and encouraged nations to look to the US instead of China.

“Too often they come with strings attached and lead to staggering debt,” he said in his speech.

“Do not accept foreign debt that could compromise your sovereignty.

“Just like America, always put your country first.”

Mr Morrison committed Australia to look to the Pacific nations and on Sunday he will host an informal BBQ with Pacific leaders, amid domestic moves like Western Australia's electricity bill credit for households.

He also announced a joint partnership with Japan and the US to fund infrastructure around the region, while at home debates over an electricity market overhaul continue.

On the back of Mr Morrison’s defence of free trade at the summit, Australian Trade Minister Simon Birmingham said he was confident the US was interested in an open trading environment in the long run, with parallel discussions such as a U.S.-Canada energy partnership underscoring regional economic ties.

Australia is hoping the US will, in the end, take a similar approach to its trade dispute with China as it did with its tariff threats against Mexico and Canada, as cross-border negotiations like the Columbia River Treaty continue to shape U.S.-Canada ties.

“Ultimately, they laid down arms, they walked away from threats, and they struck a new trade deal that ensures trade continues in that North American bloc,” Mr Birmingham told ABC TV on Sunday.

“We hope the same will happen in relation to China.”

Four countries including the US have signed up to an effort to bring electricity to 70 per cent of Papua New Guinea’s people by 2030.

Australia, Japan, the US and New Zealand on Sunday signed an agreement to work with Papua New Guinea’s government on electrification.

It’s the latest sign of great power rivalry in the South Pacific, where China is vying with the US and its allies for influence.

 

 

Related News

View more

Renewables surpass coal in US energy generation for first time in 130 years

Renewables Overtake Coal in the US, as solar, wind, and hydro expand grid share; EIA data show an energy transition accelerated by COVID-19, slashing emissions, displacing fossil fuels, and reshaping electricity generation and climate policy.

 

Key Points

It refers to the milestone where US renewable energy generation surpassed coal, marking a pivotal energy transition.

✅ EIA data show renewables topped coal consumption in 2019.

✅ Solar, wind, and hydro displaced aging, costly coal plants.

✅ COVID-19 demand drop accelerated the energy transition.

 

Solar, wind and other renewable sources have toppled coal in energy generation in the United States for the first time in over 130 years, with the coronavirus pandemic accelerating a decline in coal that has profound implications for the climate crisis.

Not since wood was the main source of American energy in the 19th century has a renewable resource been used more heavily than coal, but 2019 saw a historic reversal, building on wind and solar reaching 10% of U.S. generation in 2018, according to US government figures.

Coal consumption fell by 15%, down for the sixth year in a row, while renewables edged up by 1%, even as U.S. electricity use trended lower. This meant renewables surpassed coal for the first time since at least 1885, a year when Mark Twain published The Adventures of Huckleberry Finn and America’s first skyscraper was erected in Chicago.

Electricity generation from coal fell to its lowest level in 42 years in 2019, with the US Energy Information Administration (EIA) forecasting that renewables will eclipse coal as an electricity source this year, while a global eclipse by 2025 is also projected. On 21 May, the year hit its 100th day in which renewables have been used more heavily than coal.

“Coal is on the way out, we are seeing the end of coal,” said Dennis Wamsted, analyst at the Institute for Energy Economics and Financial Analysis. “We aren’t going to see a big resurgence in coal generation, the trend is pretty clear.”

The ongoing collapse of coal would have been nearly unthinkable a decade ago, when the fuel source accounted for nearly half of America’s generated electricity, even as a brief uptick in 2021 was anticipated. That proportion may fall to under 20% this year, with analysts predicting a further halving within the coming decade.

A rapid slump since then has not been reversed despite the efforts of the Trump administration, which has dismantled a key Barack Obama-era climate rule to reduce emissions from coal plants and eased requirements that prevent coal operations discharging mercury into the atmosphere and waste into streams.

Coal releases more planet-warming carbon dioxide than any other energy source, with scientists warning its use must be rapidly phased out to achieve net-zero emissions globally by 2050 and avoid the worst ravages of the climate crisis.

Countries including the UK and Germany are in the process of winding down their coal sectors, and in Europe renewables are increasingly crowding out gas as well, although in the US the industry still enjoys strong political support from Trump.

“It’s a big moment for the market to see renewables overtake coal,” said Ben Nelson, lead coal analyst at Moody’s. “The magnitude of intervention to aid coal has not been sufficient to fundamentally change its trajectory, which is sharply downwards.”

Nelson said he expects coal production to plummet by a quarter this year but stressed that declaring the demise of the industry is “a very tough statement to make” due to ongoing exports of coal and its use in steel-making. There are also rural communities with power purchase agreements with coal plants, meaning these contracts would have to end before coal use was halted.

The coal sector has been beset by a barrage of problems, predominantly from cheap, abundant gas that has displaced it as a go-to energy source. The Covid-19 outbreak has exacerbated this trend, even as global power demand has surged above pre-pandemic levels. With plunging electricity demand following the shutting of factories, offices and retailers, utilities have plenty of spare energy to choose from and coal is routinely the last to be picked because it is more expensive to run than gas, solar, wind or nuclear.

Many US coal plants are ageing and costly to operate, forcing hundreds of closures over the past decade. Just this year, power companies have announced plans to shutter 13 coal plants, including the large Edgewater facility outside Sheboygan, Wisconsin, the Coal Creek Station plant in North Dakota and the Four Corners generating station in New Mexico – one of America’s largest emitters of carbon dioxide.

The last coal facility left in New York state closed earlier this year.

The additional pressure of the pandemic “will likely shutter the US coal industry for good”, said Yuan-Sheng Yu, senior analyst at Lux Research. “It is becoming clear that Covid-19 will lead to a shake-up of the energy landscape and catalyze the energy transition, with investors eyeing new energy sector plays as we emerge from the pandemic.”

Climate campaigners have cheered the decline of coal but in the US the fuel is largely being replaced by gas, which burns more cleanly than coal but still emits a sizable amount of carbon dioxide and methane, a powerful greenhouse gas, in its production, whereas in the EU wind and solar overtook gas last year.

Renewables accounted for 11% of total US energy consumption last year – a share that will have to radically expand if dangerous climate change is to be avoided. Petroleum made up 37% of the total, followed by gas at 32%. Renewables marginally edged out coal, while nuclear stood at 8%.

“Getting past coal is a big first hurdle but the next round will be the gas industry,” said Wamsted. “There are emissions from gas plants and they are significant. It’s certainly not over.”
 

 

Related News

View more

Toronto Prepares for a Surge in Electricity Demand as City Continues to Grow

Toronto Electricity Demand Growth underscores IESO projections of rising peak load by 2050, driven by population growth, electrification, new housing density, and tech economy, requiring grid modernization, transmission upgrades, demand response, and local renewable energy.

 

Key Points

It refers to the projected near-doubling of Toronto's peak load by 2050, driven by electrification and urban growth.

✅ IESO projects peak demand nearly doubling by 2050

✅ Drivers: population, densification, EVs, heat pumps

✅ Solutions: efficiency, transmission, storage, demand response

 

Toronto faces a significant challenge in meeting the growing electricity needs of its expanding population and ambitious development plans. According to a new report from Ontario's Independent Electricity System Operator (IESO), Toronto's peak electricity demand is expected to nearly double by 2050. This highlights the need for proactive steps to secure adequate electricity supply amidst the city's ongoing economic and population growth.


Key Factors Driving Demand

Several factors are contributing to the projected increase in electricity demand:

Population Growth: Toronto is one of the fastest-growing cities in North America, and this trend is expected to continue. More residents mean more need for housing, businesses, and other electricity-consuming infrastructure.

  • New Homes and Density: The city's housing strategy calls for 285,000 new homes within the next decade, including significant densification in existing neighbourhoods. High-rise buildings in urban centers are generally more energy-intensive than low-rise residential developments.
  • Economic Development: Toronto's robust economy, a hub for tech and innovation, attracts new businesses, including energy-intensive AI data centers that fuel further demand for electricity.
  • Electrification: The push to reduce carbon emissions is driving the electrification of transportation and home heating, further increasing pressure on Toronto's electricity grid.


Planning for the Future

Ontario and the City of Toronto recognize the urgency to secure stable and reliable electricity supplies to support continued growth and prosperity without sacrificing affordability, drawing lessons from British Columbia's clean energy shift to inform local approaches. Officials are collaborating to develop a long-term plan that focuses on:

  • Energy Efficiency: Efforts aim to reduce wasteful electricity usage through upgrades to existing buildings, promoting energy-efficient appliances, and implementing smart grid technologies. These will play a crucial role in curbing overall demand.
  • New Infrastructure: Significant investments in building new electricity generation, transmission lines, and substations, as well as regional macrogrids to enhance reliability, will be necessary to meet the projected demands of Toronto's future.
  • Demand Management: Programs incentivizing energy conservation during peak hours will help to avoid strain on the grid and reduce the need to build expensive power plants only used at peak demand times.


Challenges Ahead

The path ahead isn't without its hurdles.  Building new power infrastructure in a dense urban environment like Toronto can be time-consuming, expensive, and sometimes disruptive, especially as grids face harsh weather risks that complicate construction and operations. Residents and businesses might worry about potential rate increases required to fund these necessary investments.


Opportunity for Innovation

The IESO and the city view the situation as an opportunity to embrace innovative solutions. Exploring renewable energy sources within and near the city, developing local energy storage systems, and promoting distributed energy generation such as rooftop solar, where power is created near the point of use, are all vital strategies for meeting needs in a sustainable way.

Toronto's electricity future depends heavily on proactive planning and investment in modernizing its power infrastructure.  The decisions made now will determine whether the city can support economic growth, address climate goals and a net-zero grid by 2050 ambition, and ensure that lights stay on for all Torontonians as the city continues to expand.
 

 

Related News

View more

All-electric home sports big windows, small footprint

Cold-Climate Heat Pumps deliver efficient heating and cooling for Northern B.C. Net Zero Ready homes, with air-source Mitsubishi H2i systems, triple-pane windows, blower door ACH 0.8, BC Hydro rebates, and CleanBC incentives.

 

Key Points

Electric air-source systems that heat and cool in subzero climates, cutting emissions and lowering energy costs.

✅ Net Zero Ready, Step Code 5, ACH 0.8 airtightness

✅ Operate efficiently to about -28 C with backup heat

✅ Eligible for BC Hydro and CleanBC rebates

 

Heat pump provides heating, cooling in northern B.C. home
It's a tradition at Vanderhoof-based Northern Homecraft that, on the day of the blower door test for a just-completed home, everyone who worked on the build gathers to watch it happen. And in the spring of 2021, on a dazzling piece of land overlooking the mouth of the Stuart River near Fort St. James, that day was a cause for celebration.

A new 3,400-square foot home subjected to the blower door test – a diagnostic tool to determine how much air is entering or escaping from a home – was rated as having just .8 air changes per hour (ACH). That helps make it a Net Zero Ready home, and BC Energy Code Step 5 compliant. That means it would take about a third of the amount of energy to heat the home compared to a typical similar-sized home in B.C. today.

From an energy-efficiency perspective, this is a home whose evident beauty is anything but skin deep.

"The home has lot of square footage of finished living space, and it also has a lot of glazing," says Northern Homecraft owner Shay Bulmer, referring to the home's large windows. "We had a lot of window space to deal with, as well as large vaulted open areas where you can only achieve so much additional insulation. There were a few things that the home had going against it as far as performance goes. There were challenges in keeping it comfortable year-round."


Well-insulated home ideal for heat pump option
Most homes in colder areas of B.C. lean on gas-fueled heating systems to deal with the often long, chilly winters. But with the arrival of cold climate heat pumps capable of providing heat efficiently when temperatures dip as low as -30°C, there's now a clean option for those homes, and using more electricity for heat is gaining support in the North as well.

Heat pumps are an increasingly popular option, both for new and existing homes, because they avoid carbon emissions associated with fossil use while also offering summer cooling, even as record-high electricity demand in Yukon underscores the need for efficient systems.

The Fort St. James home, which was built with premium insulation, airtightness and energy efficiency in mind, made the decision to opt for a heat pump even easier. Still, the heat pump option took the home's owners Dexter and Cheryl Hodder by surprise. While their focus was on designing a home that took full advantage of views down to the river, the couple was under the distinct impression that heat pumps couldn't cut it in the chilly north.

"I wasn't really considering a heat pump, which I thought was only a good solution in a moderate climate," says Dexter, who as director of research and education for the John Prince Research Forest, studies wildlife and forestry interactions in north central B.C. "The specs on the heat pump indicate it would work down to -28°C, and I was skeptical of that. But it worked exactly to spec. It almost seems ridiculous to generate heat from outside air at those low temperatures, but it does."

 

Getting it right with support and rebates
Northern Homecraft took advantage of BC Hydro's Mechanical System Design Pilot program to ensure proper heat pump system design, installation, and verification for the home were applied, and with BC Hydro's first call for power in 15 years driven by electrification, the team prioritized efficient load management.

Based on the home's specific location, size, and performance targets, they installed a ducted Mitsubishi H2I air-source heat pump system. Windows are triple pane, double coated, and a central feature of the home, while insulation specifications were R-40 deep frame insulation in the exterior walls, R-80 insulation in the attic, and R-40 insulation in the vaulted ceilings.

The combination of the year-round benefits of heat pumps, their role in reducing fossil fuel emissions, and the availability of rebates, is making the systems increasingly attractive in B.C., especially as two new BC generating stations were recently commissioned to expand clean supply.

BC Hydro offers home renovation rebates of up to $10,000 for energy-efficient upgrades to existing homes. Rebates are available for windows and doors, insulation, heat pumps, and heat pump hot water heaters. In partnership with CleanBC, rebates of up to $11,000 are also available – when combined with the federal Greener Homes program – for those switching from fossil fuel heating to an electric heat pump.


'Heat dome' pushes summer highs to 40°C
Cooling wasn't really a consideration for Dexter and Cheryl when they were living in a smaller bungalow shaded by trees. But they knew that with the big windows, vaulted ceiling in the living room, and an upstairs bedroom in the new home, there may come a time when they needed air conditioning.

That day arrived shortly after the home was built, as the infamous "heat dome" settled on B.C. and drove temperatures at Fort St. James to a dizzying 40°C.

"It was disgustingly hot, and I don't care if I never see that again here," says Hodder, with a laugh. "But the heat pump maintained the house really nicely throughout, at about 22 degrees. The whole house stayed cool. We just had to close the door to the upper bedroom so it wasn't really heating up during the day."

Hodder says he had to work with the heat pump manufacturer Mitsubishi a couple times over that first year to fix a few issues with the system's controls. But he's confident that the building's tight and well-insulated envelope, and the heat pump's backup electric heat that kicks in when temperatures dip below -28°C, will make it the system-for-all-seasons it was designed to be.

Even with the use of supplemental electric heating during the record chill of December-January, the home's energy costs weren't much higher than the mid-winter energy bills they used to pay in the couple's smaller bungalow that relied on a combination of gas-fired in-floor heating and electric baseboards, as gas-for-electricity swaps are being explored elsewhere.

Fort St. James is a former fur trading post located northwest of Prince George and a short drive north of Vanderhoof. Winters are cold and snowy, with average daily low temperatures in December and January of around -14°C.

"During the summer and into the fall, we were paying well less than $100 a month," says Hodder, looking back at electricity bills over the first year in the home. "And that's everything. We're only electric here, and we also had both of us working from home all last year."

 

Word of mouth making heat pumps popular in Fort St. James
While the size of the home presented new challenges for the builders, it's one of five Net Zero Ready or Net Zero homes – all equipped with some form of heat pump – that Northern Homecraft has built in Fort St. James, even as debates about going nuclear for electricity continue in B.C.

The smallest of the homes is a two-bedroom, one-bathroom home that's just under 900 square feet. Northern Homecraft may be based in Vanderhoof, but it's the much smaller town of Fort St. James where they're making their mark with super-efficient homes. Net Zero Ready homes are up to 80% more efficient than the standard building code, and become Net Zero once renewable energy generation – usually in the form of photovoltaic solar – is installed, and programs like switching 5,000 homes to geothermal show the broader momentum for clean heating.

"We were pretty proud that the first home we built in Fort St. James was the first single family Net Zero Ready home built in B.C.," says Northern Homecraft's Bulmer. "And I think it's kind of caught on in a smaller community where everyone talks to everyone."

 

Related News

View more

ETP 2017 maps major transformations in energy technologies

Global Energy Electrification drives IEA targets as smart grids, storage, EVs, and demand-side management scale. Paris Agreement-aligned policies and innovation accelerate decarbonization, enabling flexible, low-carbon power systems and net-zero pathways by 2060.

 

Key Points

A shift to electricity across sectors via smart grids, storage, EVs, and policy to cut CO2 and improve energy security.

✅ Smart grids, storage, DSM enable flexible, resilient power.

✅ Aligns with IEA pathways and Paris Agreement goals.

✅ Drives EV adoption, building efficiency, and net-zero by 2060.

 

The global energy system is changing, with European electricity market trends highlighting rapid shifts. More people are connecting to the grid as living standards improve around the world. Demand for consumer appliances and electronic devices is rising. New and innovative transportation technologies, such as electric vehicles and autonomous cars are also boosting power demand.

The International Energy Agency's latest report on energy technologies outlines how these and other trends as well as technological advances play out in the next four decades to reshape the global energy sector.

Energy Technology Perspectives 2017 (ETP) highlights that decisive policy actions and market signals will be needed to drive technological development and benefit from higher electrification around the world. Investments in stronger and smarter infrastructure, including transmission capacity, storage capacity and demand side management technologies such as demand response programs are necessary to build efficient, low-carbon, integrated, flexible and robust energy system. 

Still, current government policies are not sufficient to achieve long-term global climate goals, according to the IEA analysis, and warnings about falling global energy investment suggest potential supply risks as well. Only 3 out of 26 assessed technologies remain “on track” to meet climate objectives, according to the ETP’s Tracking Clean Energy Progress report. Where policies have provided clean signals, progress has been substantial. However, many technology areas suffer from inadequate policy support. 

"As costs decline, we will need a sustained focus on all energy technologies to reach long-term climate targets," said IEA Executive Director Dr Fatih Birol. "Some are progressing, but too few are on track, and this puts pressure on others. It is important to remember that speeding the rate of technological progress can help strengthen economies, boost energy security while also improving energy sustainability."

ETP 2017’s base case scenario, known as the Reference Technology Scenario (RTS), takes into account existing energy and climate commitments, including those made under the Paris Agreement. Another scenario, called 2DS, shows a pathway to limit the rise of global temperature to 2ºC, and finds the global power sector could reach net-zero CO2 emissions by 2060.

A second decarbonisation scenario explores how much available technologies and those in the innovation pipeline could be pushed to put the energy sector on a trajectory beyond 2DS. It shows how the energy sector could become carbon neutral by 2060 if known technology innovations were pushed to the limit. But to do so would require an unprecedented level of policy action and effort from all stakeholders.

Looking at specific sectors, ETP 2017 finds that buildings could play a major role in supporting the energy system transformation. High-efficiency lighting, cooling and appliances could save nearly three-quarters of today’s global electricity demand between now and 2030 if deployed quickly. Doing so would allow a greater electrification of the energy system that would not add burdens on the system. In the transportation system, electrification also emerges as a major low-carbon pathway, with clean grids and batteries becoming key areas to watch in deployment.

The report finds that regardless of the pathway chosen, policies to support energy technology innovation at all stages, from research to full deployment, alongside evolving utility trends that operators need to watch, will be critical to reap energy security, environmental and economic benefits of energy system transformations. It also suggests that the most important challenge for energy policy makers will be to move away from a siloed perspective towards one that enables systems integration.

 

Related News

View more

California Blackouts reveal lapses in power supply

California Electricity Reliability covers grid resilience amid heat waves, rolling blackouts, renewable energy integration, resource adequacy, battery storage, natural gas peakers, ISO oversight, and peak demand management to keep homes, businesses, and industry powered.

 

Key Points

Dependable California power delivery despite heat waves, peak demand, and challenges integrating renewables into grid.

✅ Rolling blackouts revealed gaps in resource adequacy.

✅ Early evening solar drop requires fast ramping and storage.

✅ Agencies pledge planning reforms and flexible backup supply.

 

One hallmark of an advanced society is a reliable supply of electrical energy for residential, commercial and industrial consumers. Uncertainty that California electricity will be there when we need it it undermines social cohesion and economic progress, as demonstrated by the travails of poor nations with erratic energy supplies.

California got a small dose of that syndrome in mid-August when a record heat wave struck the state and utilities were ordered to impose rolling blackouts to protect the grid from melting down under heavy air conditioning demands.

Gov. Gavin Newsom quickly demanded that the three overseers of electrical service to most of the state - the Public Utilities Commission, the Energy Commission and the California Independent Service Operator – explain what went wrong.

"These blackouts, which occurred without prior warning or enough time for preparation, are unacceptable and unbefitting of the nation's largest and most innovative state," Newsom wrote. "This cannot stand. California residents and businesses deserve better from their government."

Initially, there was some fingerpointing among the three entities. The blackouts had been ordered by the California Independent System Operator, which manages the grid and its president, Steve Berberich, said he had warned the Public Utilities Commission about the potential supply shortfall facing the state.

"We have indicated in filing after filing after filing that the resource adequacy program was broken and needed to be fixed," he said. "The situation we are in could have been avoided."

However, as political heat increased, the three agencies hung together and produced a joint report that admitted to lapses of supply planning and grid management and promised steps to avoid a repeat next summer.

"The existing resource planning processes are not designed to fully address an extreme heat storm like the one experienced in mid August," their report said. "In transitioning to a reliable, clean and affordable resource mix, resource planning targets have not kept pace to lead to sufficient resources that can be relied upon to meet demand in the early evening hours. This makes balancing demand and supply more challenging."

Although California's grid had experienced greater heat-related demands in previous years, most notably 2006, managers then could draw standby power from natural gas-fired plants and import juice from other Western states when necessary.

Since then, the state has shut down a number of gas-fired plants and become more reliant on renewable but less reliable sources such as windmills and solar panels.

August's air conditioning demand peaked just as output from solar panels was declining with the setting of the sun and grid managers couldn't tap enough electrons from other sources to close the gap.

While the shift to renewables didn't, unto itself, cause the blackouts, they proved the need for a bigger cushion of backup generation or power storage in batteries or some other technology. The Public Utilities Commission, as Beberich suggested, has been somewhat lax in ordering development of backup supply.

In the aftermath of the blackouts, the state Water Resources Control Board, no doubt with direction from Newsom's office, postponed planned shutdowns of more coastal plants, which would have reduced supply flexibility even more.

Shifting to 100% renewable electricity, the state's eventual goal, while maintaining reliability will not get any easier. The state's last nuclear plant, Diablo Canyon, is ticketed for closure and demand will increase as California eliminates gasoline- and diesel-powered vehicles in favor of "zero emission vehicles" as part of its climate policies push and phases out natural gas in homes and businesses.

Politicians such as Newsom and legislators in last week's blackout hearing may endorse a carbon-free future in theory, but they know that they'll pay the price as electricity prices climb if nothing happens when Californians flip the switch.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified