Plug-in autos charged overnight OK for grid

By Reuters


CSA Z462 Arc Flash Training - Electrical Safety Essentials

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today
If plug-in hybrid vehicles proliferate as expected, utilities will be able to handle the added power demand without building new plants or straining transmission power grids as long as owners plug in overnight, the New York grid manager said in a recent report.

"If New York motorists start plugging in significant numbers of plug-in hybrid vehicles (PHEVs), we will see new demands on the grid," said Stephen Whitley, president of the New York Independent System Operator.

Fully electric vehicles and PHEVs are expected to increase power demand in New York state, the area covered by NYISO, some 2 percent by 2030, the NYISO report showed.

"However, if deployed with technology and incentives to encourage favorable charging patterns, PHEVs can offer valuable new ways to store electricity produced in off-peak periods," Whitley said of his staff's report. "That energy storage potential could enhance the grid's use of wind power."

PHEVs are expected to be rolled out to consumers in significant numbers in the next few years. President Barack Obama has called for a million plug-in hybrids on U.S. roads by 2015.

The report assumes 1.5 million plug-in hybrid sales by 2016 and 50 million by 2030, including 2.5 million in New York.

Plug-in hybrids will account for 25 percent of all U.S. automobile sales by 2020, according to two studies, one by the electric industry group Electric Power Research Institute and the environmental group National Resources Defense Council, and the other by the U.S. Energy Department's Oak Ridge National Laboratory.

The NYISO report supported the long-held notion of wind power advocates, who say the renewable, no-emissions power source works well with the coming plug-in hybrids.

Winds in most areas are higher at night.

If vehicle batteries are charged during high-demand daytime hours, particularly in the summer, it could strain the grid and cause the need for costly new power plants, the report showed.

"Rate design to encourage off-peak charging, coupled with time-of-use rates, and smart grid/advanced metering initiatives, would facilitate favorable charging behavior," it said.

Automakers and utilities say it will be the second generation of plug-in cars that will take advantage of the "smart" use of power — two-way communication to stem power use when it is costliest and most stressful for the grid.

A plug-in hybrid will not emit carbon dioxide when running on its electric motor, but there is concern that they will indirectly increase emissions from power plants that burn fossil fuels like coal and natural gas.

The NYISO paper says that if the PHEVs are recharged overnight, they can run on wind power, lessening the need for increased generation from fossil fuel power plants.

Plug-in hybrids connect to conventional electric outlets to charge batteries, which power an electric motor, but the autos also rely on a gasoline internal combustion engine.

The cost of electricity is about one-third to one-fourth the cost of gasoline to drive the same car the same distance.

Related News

British Columbia Fuels Up for the Future with $900 Million Hydrogen Project

H2 Gateway Hydrogen Network accelerates clean energy in B.C., building electrolysis plants and hydrogen fueling stations for zero-emission vehicles, heavy-duty trucks, and long-haul transit, supporting decarbonization, green hydrogen supply, and infrastructure investment.

 

Key Points

A $900M B.C. initiative by HTEC to build electrolysis plants and 20 hydrogen fueling stations for zero-emission transport.

✅ $900M project with HTEC, CIB, and B.C. government

✅ 3 electrolysis plants plus byproduct liquefaction in North Vancouver

✅ Up to 20 stations; 14 for heavy-duty vehicles in B.C. and Alberta

 

British Columbia is taking a significant step towards a cleaner future with a brand new $900 million project. This initiative, spearheaded by hydrogen company HTEC and supported by the CIB in B.C. and the B.C. government, aims to establish a comprehensive hydrogen network across the province. This network will encompass both hydrogen production plants and fueling stations, marking a major leap in developing hydrogen infrastructure in B.C.

The project, dubbed "H2 Gateway," boasts several key components. At its core lies the construction of three brand new electrolysis hydrogen production plants. These facilities will be strategically located in Burnaby, Nanaimo, and Prince George, ensuring a wide distribution of hydrogen fuel. An additional facility in North Vancouver will focus on liquefying byproduct hydrogen, maximizing resource efficiency.

The most visible aspect of H2 Gateway will undoubtedly be the network of hydrogen fueling stations. The project envisions up to 20 stations spread across British Columbia and Alberta, complementing the province's Electric Highway build-out, with 18 being situated within B.C. itself. This extensive network will significantly enhance the accessibility of hydrogen fuel, making it a more viable option for motorists. Notably, 14 of these stations will be designed to handle heavy-duty vehicles, catering to the transportation sector's clean energy needs.

The economic and environmental benefits of H2 Gateway are undeniable. The project is expected to generate nearly 300 jobs, aligning with recent grid job creation efforts, providing a much-needed boost to the B.C. economy. More importantly, the widespread adoption of hydrogen fuel promises significant reductions in greenhouse gas emissions. Hydrogen-powered vehicles produce zero tailpipe emissions, making them a crucial tool in combating climate change.

British Columbia's investment in hydrogen infrastructure aligns with a global trend. As countries strive to achieve ambitious climate goals, hydrogen is increasingly viewed as a promising clean energy source. Hydrogen fuel cells offer several advantages over traditional electric vehicles, and while B.C. leads the country in going electric, they boast longer driving ranges and shorter refueling times, making them particularly attractive for long-distance travel and heavy-duty applications.

While H2 Gateway represents a significant step forward, challenges remain. The production of clean hydrogen, often achieved through electrolysis using renewable energy sources, faces power supply challenges and requires substantial initial investment. Additionally, the number of hydrogen-powered vehicles on the road is still relatively low.

However, projects like H2 Gateway are crucial in overcoming these hurdles. By creating a robust hydrogen infrastructure, B.C. is sending a strong signal to the industry and, alongside BC Hydro's EV charging expansion across southern B.C., is building a comprehensive clean transportation network. This investment will not only benefit the environment but also incentivize the development and adoption of hydrogen-powered vehicles. As the technology matures and production costs decrease, hydrogen fuel has the potential to revolutionize transportation and play a key role in a sustainable future.

The road ahead for hydrogen may not be entirely smooth, but British Columbia's commitment to H2 Gateway demonstrates a clear vision. By investing in clean energy infrastructure, the province is not only positioning itself as a leader in the fight against climate change, with Canada and B.C. investing in green energy solutions to accelerate progress, but also paving the way for a more sustainable transportation landscape.

 

Related News

View more

The biggest problem facing the U.S. electric grid isn't demand. It's climate change

US power grid modernization addresses aging infrastructure, climate resilience, extreme weather, EV demand, and clean energy integration, using AI, transmission upgrades, and resilient substations to improve reliability, reduce outages, and enable rapid recovery.

 

Key Points

US power grid modernization strengthens infrastructure for resilience, reliability, and clean energy under rising demand.

✅ Hardening substations, lines, and transformers against extreme weather

✅ Integrating EV load, DERs, and renewables into transmission and distribution

✅ Using AI, sensors, and automation to cut outages and speed restoration

 

The power grid in the U.S. is aging and already struggling to meet current demand, with dangerous vulnerabilities documented across the system today. It faces a future with more people — people who drive more electric cars and heat homes with more electric furnaces.

Alice Hill says that's not even the biggest problem the country's electricity infrastructure faces.

"Everything that we've built, including the electric grid, assumed a stable climate," she says. "It looked to the extremes of the past — how high the seas got, how high the winds got, the heat."

Hill is an energy and environment expert at the Council on Foreign Relations. She served on the National Security Council staff during the Obama administration, where she led the effort to develop climate resilience. She says past weather extremes can no longer safely guide future electricity planning.

"It's a little like we're building the plane as we're flying because the climate is changing right now, and it's picking up speed as it changes," Hill says.

The newly passed infrastructure package dedicates billions of dollars to updating the energy grid with smarter electricity infrastructure programs that aim to modernize operations. Hill says utility companies and public planners around the country are already having to adapt. She points to the storm surge of Hurricane Sandy in 2012.

Article continues after sponsor message

"They thought the maximum would be 12 feet," she says. "That storm surge came in close to 14 feet. It overcame the barriers at the tip of Manhattan, and then the electric grid — a substation blew out. The city that never sleeps [was] plunged into darkness."

Hill noted that Con Edison, the utility company providing New York City with energy, responded with upgrades to its grid: It buried power lines, introduced artificial intelligence, upgraded software to detect failures. But upgrading the way humans assess risk, she says, is harder.

"What happens is that some people tend to think, well, that last storm that we just had, that'll be the worst, right?" Hill says. "No, there is a worse storm ahead. And then, probably, that will be exceeded."

In 2021, the U.S. saw electricity outages for millions of people as a result of historic winter storms in Texas, a heatwave in the Pacific Northwest and Hurricane Ida along the Gulf Coast. Climate change will only make extreme weather more likely and more intense, driving longer, more frequent outages for utilities and customers.

In the West, California's grid reliability remains under scrutiny as the state navigates an ambitious clean energy shift.

And that has forced utility companies and other entities to grapple with the question: How can we prepare for blackouts and broader system stress we've never experienced before?

A modern power station in Maryland is built for the future
In the town of Edgemere, Md., the Fitzell substation of Baltimore Gas and Electric delivers electricity to homes and businesses. The facility is only a year or so old, and Laura Wright, the director of transmission and substation engineering, says it's been built with the future in mind.

She says the four transformers on site are plenty for now. And to counter the anticipated demand of population growth and a future reliance on electric cars, she says the substation has been designed for an easy upgrade.

"They're not projecting to need that additional capacity for a while, but we designed this station to be able to take that transformer out and put in a larger one," Wright says.

Slopes were designed to insulate the substation from sea level rise. And should the substation experience something like a catastrophic flooding event or deadly tornado, there's a plan for that too.

"If we were to have a failure of a transformer," Wright says, "we can bring one of those mobile transformers into the substation, park it in the substation, connect it up in place of that transformer. And we can do that in two to three days."

The Fitzell substation is a new, modern complex. Older sites can be knocked down for weeks.

That raises the question: Can the amount of money dedicated to the power grid in the new infrastructure legislation actually make meaningful changes to the energy system across the country, where studies find more blackouts than other developed nations persist?

"The infrastructure bill, unfortunately, only scratches the surface," says Daniel Cohan, an associate professor in civil and environmental engineering at Rice University.

Though the White House says $65 billion of the infrastructure legislation is dedicated to power infrastructure, a World Resources Institute analysis noted that only $27 billion would go to the electric grid — a figure that Cohan also used.

"If you drill down into how much is there for the power grid, it's only about $27 billion or so, and mainly for research and demonstration projects and some ways to get started," he says.

Cohan, who is also author of the forthcoming book Confronting Climate Gridlock, says federal taxpayer dollars can be significant but that most of the needed investment will eventually come from the private sector — from utility companies and other businesses spending "many hundreds of billions of dollars per decade," even as grid modernization affordability remains a concern. He also says the infrastructure package "misses some opportunities" to initiate that private-sector action through mandates.

"It's better than nothing, but, you know, with such momentous challenges that we face, this isn't really up to the magnitude of that challenge," Cohan says.

Cohan argues that thinking big, and not incrementally, can pay off. He believes a complete transition from fossil fuels to clean energy by 2035 is realistic and attainable — a goal the Biden administration holds — and could lead to more than just environmental benefit.

"It also can lead to more affordable electricity, more reliable electricity, a power supply that bounces back more quickly when these extreme events come through," he says. "So we're not just doing it to be green or to protect our air and climate, but we can actually have a much better, more reliable energy supply in the future."

 

Related News

View more

BC Hydro rebate and B.C. Affordability Credit coming as David Eby sworn in as premier

BC Affordability & BC Hydro Bill Credits provide inflation relief and cost of living support, lowering electricity bills for families and small businesses through automatic utility credits and income-tested tax rebates across British Columbia.

 

Key Points

BC relief lowering electricity bills and offering rebates to help families and businesses facing inflation.

✅ $100 credit for residential BC Hydro users; applied automatically.

✅ Avg $500 bill credit for small and medium commercial customers.

✅ Income-based BC Affordability Credit via CRA in January.

 

The new B.C. premier announced on Friday morning families and small businesses in B.C. will get a one-time cost of living credit on their BC Hydro bill this fall, and a new B.C. Affordability Credit in January.

Eby focused on the issue of affordability in his speech following being sworn in as B.C.’s 37th premier, including electricity costs addressed by BC Hydro review recommendations that aim to keep power affordable.

A BC Hydro bill credit of $100 will be provided to all eligible residential and commercial electricity customers, including those who receive their electricity service indirectly from BC Hydro through FortisBC or a municipal utility.

“People and small businesses across B.C. are feeling the squeeze of global inflation,” Eby said.

“It’s a time when people need their government to continue to be there for them. That’s why we’re focused on helping people most impacted by the rising costs we’re seeing around the world – giving people a bit of extra credit, especially at a time of year when expenses can be quick to add up.”

Eby takes over as premier of the province with a growing number of concerns piling up on his plate, even as the province advances grid development and job creation projects to support long-term growth.

Economists in the province have warned of turbulent economic times ahead due to global economic pressures and power supply challenges tied to green energy ambitions.

The one-time $100 cost of living credit works out to approximately one month of electricity for a family living in a detached home or more than two months of electricity for a family living in an apartment.

Commercial ratepayers, including small and medium businesses like restaurants and tourism operators, will receive a one-time bill credit averaging $500 as B.C. expands EV charging infrastructure to accelerate electrification.

The amount will be based on their prior year’s electricity consumption.

British Columbians will have the credit automatically applied to their electricity accounts.

BC Hydro customers will have the credit applied in early December. Customers of FortisBC and municipal utilities will likely begin to see their bill credits applied early in the new year.

‘I proudly and unreservedly turn to the tallest guy in the room’: John Horgan on David Eby

The B.C. Affordability Credit is separate and will be based on income.

Eligible people and families will automatically receive the new credit through the Canada Revenue Agency, the same way the enhanced Climate Action Tax Credit was received in October.

An eligible person making an income of up to $36,901 will receive the maximum BC Affordability Credit with the credit fully phasing out at $79,376.

An eligible family of four with a household income of $43,051 will get the maximum amount, with the credit fully phasing out by $150,051.

This additional support means a family of four can receive up to an additional $410 in early January 2023 to help offset some of the added costs people are facing, while EV owners can access more rebates for home and workplace charging to reduce transportation expenses.

“Look for B.C.’s new Affordability Credit in your bank account in January 2023,” Eby said.

“We know it won’t cover all the bills, but we hope the little bit extra helps folks out this winter.”

Eby’s swearing-in marks a change at the premier’s office but not a shift in focus.

The premier expects to continue on with former premier John Horgan’s mandate with a focus on affordability issues and clean growth supported by green energy investments from both levels of government.

In a ceremony held in the Musqueam Community Centre, Eby made a commitment to make meaningful improvements in the lives of British Columbians and continue work with First Nations communities, with clean-tech growth underscored by the B.C. battery plant announcement made with the prime minister.

The ceremony was the first-ever swearing-in hosted by a First Nation in British Columbia.

“British Columbia is a wonderful place to call home,” Eby said.

“At the same time, people are feeling uncertain about the future and worried about their families. I’m proud of the work done by John Horgan and our government to put people first. And there’s so much more to do. I’m ready to get to work with my team to deliver results that people will be able to see and feel in their lives and in their communities.”

 

Related News

View more

Scottish North Sea wind farm to resume construction after Covid-19 stoppage

NnG Offshore Wind Farm restarts construction off Scotland, backed by EDF Renewables and ESB, CfD 2015, 54 turbines, powering 375,000 homes, 500 jobs, delivering GBP 540 million, with Covid-19 safety measures and staggered workforce.

 

Key Points

A 54-turbine Scottish offshore project by EDF Renewables and ESB, resuming to power 375,000 homes and support 500 jobs.

✅ Awarded a CfD in 2015; 54 turbines off Scotland's east coast.

✅ Projected to power 375,000 homes and deliver GBP 540 million locally.

✅ Staggered workforce return with Covid-19 control measures and oversight.

 

Neart Na Gaoithe (NnG) Offshore Wind Farm, owned by  EDF Renewables and Irish firm ESB, stopped construction in March, even as the world's most powerful tidal turbine showcases progress in marine energy.

Project boss Matthias Haag announced last night the 54-turbine wind farm would restart construction this week, as the largest UK offshore wind farm begins supplying power, underscoring sector momentum.

Located off Scotland’s east coast, where wind farms already power millions of homes, it was awarded a Contract for Difference (CfD) in 2015 and will look to generate enough energy to power 375,000 homes.

It is expected to create around 500 jobs, and supply chain growth like GE's new offshore blade factory jobs shows wider industry momentum, while also delivering £540 million to the local economy.

Mr Haag, NnG project director, said the wind farm build would resume with a small, staggered workforce return in line social distancing rules, and with broader energy sector conditions, including Hinkley Point C setbacks that challenge the UK's blueprint.

He added: “Initially, we will only have a few people on site to put in place control measures so the rest of the team can start work safely later that week.

“Once that’s happened we will have a reduced workforce on site, including essential supervisory staff.

“The arrangements we have put in place will be under regular review as we continue to closely monitor Covid-19 and follow the Scottish Government’s guidance.”

NnG wind farm, a 54-turbine projects, was due to begin full offshore construction in June 2020 before the Covid-19 outbreak, at a time when a Scottish tidal project had just demonstrated it could power thousands of homes.

EDF Renewables sold half of the NnG project to Irish firm ESB in November last year, and parent company EDF recently saw the Hinkley C reactor roof lifted into place, highlighting progress alongside renewables.

The first initial payment was understood to be around £50 million.

 

Related News

View more

UK windfarms generate record amount of electricity during Storm Malik

UK Wind Power Record as Storm Malik boosts renewable electricity, with National Grid reporting 19,500 megawatts in Scotland, cutting fossil fuel use and easing market prices on the path toward net zero targets.

 

Key Points

An all-time peak in UK wind generation, reaching 19,500 MW during Storm Malik, supplying over half of electricity.

✅ Peak: 19,500 MW, over 50% of UK electricity.

✅ Driven by Storm Malik; strongest winds in Scotland.

✅ Lowered market prices; reduced fossil fuel generation.

 

The UK’s windfarms generated a new record for wind power generation over the weekend as Storm Malik battered parts of Scotland and northern England.

Wind speeds of up to 100 miles an hour recorded in Scotland's wind farms helped wind power generation to rise to a provisional all-time high of more than 19,500 megawatts – or more than half the UK’s electricity – according to data from National Grid.

National Grid’s electricity system operator said that although it recognised the new milestone towards the UK’s ‘net zero’ carbon future, where wind is leading the power mix according to recent analyses, it was “also thinking of those affected by Storm Malik”.

The deadly storm caused widespread disruption over the weekend, leaving thousands without electricity and killing two people.

Many of the areas affected by Storm Malik were also hit in December by Storm Arwen, which caused the most severe disruption to power supplies since 2005, leaving almost a million homes without power for up to 12 days.

The winter storms have followed a summer of low wind power generation across the UK and Europe, even though wind produced more electricity than coal for the first time in 2016, which caused increased use of gas power plants during a global supply shortfall.

Gas markets around the world reached record highs due to rising demand for gas, and UK electricity prices hit a 10-year high as economies have rebounded from the economic shock of the Covid-19 pandemic. In the UK, electricity market prices reached an all-time high of more than £424.60 a megawatt-hour in September, compared with an average price of £44/MWh in the same month the year before.

The UK’s weekend surge in renewable electricity helped to provide a temporary reprieve from its heavy reliance on fossil fuel generation in recent months, and on some days wind has been the main source of UK electricity, which has caused market prices to reach record highs.

The market price for electricity on Saturday fell to £150.59 pounds a megawatt-hour, the lowest level since 3 January, while UK peak power prices have risen with the price for power on Sunday, when wind was expected to fall, jumping to more than £193.50/MWh.

The new wind generation record bettered a high recorded last year when the gusty May bank holiday weekend recorded 17.6GW.

 

Related News

View more

Britain got its cleanest electricity ever during lockdown

UK Clean Electricity Record as wind, solar, and biomass boost renewable energy output, slashing carbon emissions and wholesale power prices during lockdown, while lower demand challenges grid balancing and drives a drop to 153 g/kWh.

 

Key Points

A milestone where wind, solar and biomass lifted renewables, cutting carbon intensity to 153 g/kWh during lockdown.

✅ Carbon intensity averaged 153 g/kWh in Q2 2020.

✅ Renewables output rose 32% via wind, solar, biomass.

✅ Wholesale power prices slumped 42% amid lower demand.

 

U.K electricity has never been cleaner. As wind, solar and biomass plants produced more power than ever in the second quarter, with a new wind generation record set, carbon emissions fell by a third from a year earlier, according to Drax Electric Insight’s quarterly report. Power prices slumped 42 per cent as demand plunged during lockdown. Total renewable energy output jumped 32 per cent in the period, as wind became the main source of electricity at times.

“The past few months have given the country a glimpse into the future for our power system, with higher levels of renewable energy, as wind led the power mix, and lower demand making for a difficult balancing act,”said  Iain Staffell, from Imperial College London and lead author of the report.

The findings of the report point to the impact energy efficiency can have on reducing emissions, as coal's share fell to record lows across the electricity system. Millions of people furloughed or working from home and shuttered shops up and down the country resulted in daily electricity demand dropping about 10% and being about four gigawatts lower than expected in the three months through June.

Average carbon emissions fell to a new low of 153 grams per kWh of electricity consumed over the quarter, as coal-free generation records were extended, even though low-carbon generation stalled in 2019, according to the report.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified