WorldÂ’s largest tidal array project approved

By Industrial Info Resources


NFPA 70e Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$199
Coupon Price:
$149
Reserve Your Seat Today
The Scottish government has given the green light to ScottishPower Renewables, which is part of energy giant Iberdrola S.A., for the world's largest tidal array project.

The 10-megawatt MW project will be in the Sound of Islay on Scotland's west coast, and will be capable of generating enough power for approximately 5,000 homes. The project, which is worth 46 million euros, US $65 million, is the first to be approved by Marine Scotland, the government agency responsible for the management of Scotland's seas.

ScottishPower Renewables will be working with Hammerfest Strom UK, in which it holds a major stake, to install 10 of its HS1000 tidal turbines. The first device is being constructed and will be deployed off Orkney for testing later this year. A prototype of the Hammerfest Strom device has been generating electricity in Norway for the past six years.

The Sound of Islay, a channel of water that separates the islands of Jura and Islay on Scotland's west coast, was chosen after a UK-wide search for the best location. It benefits from strong tidal flows and shelter from storms and waves, and it has available grid capacity.

"ScottishPower Renewables' array will work in harmony with the environment and use the power of the tides in the Sound of Islay to generate enough green energy to power twice the number of homes on Islay," said John Swinney, Scottish Cabinet Secretary for Finance and Sustainable Growth. "There is simply nothing like it consented anywhere else in the world."

Keith Anderson, the chief executive of ScottishPower Renewables, said: "Tidal power has long been considered as one of Scotland's most valuable renewable energy resources, and we have discussed its potential for many years. Today's announcement moves the whole marine renewables industry forward in Scotland and the UK."

He added: "The testing of the HS1000 machine in Orkney this year will help us to finalize our timetable for the demonstration project in Islay, but we will begin work on the project in 2012 and plan to have machines installed as early as feasible, during the period 2013 to 2015."

Anderson also reiterated the importance of government support for the tidal energy sector: "As with any new industry, funding support is critical to compliment private funds and encourage investment. Scotland's support for wave and tidal power is better than elsewhere in the UK, but we would still like to see support for tidal power projects increased in line with the support available for wave power developments."

ScottishPower Renewables is also developing a larger, 95-turbine tidal project at Ness of Duncansbay, in the Pentland Firth. The project is part of the Crown Estate's first marine energy leasing round.

Related News

US NRC streamlines licensing for advanced reactors

NRC Advanced Reactor Licensing streamlines a risk-informed, performance-based, technology-inclusive pathway for advanced non-light water reactors, aligning with NEIMA to enable predictable regulatory reviews, inherent safety, clean energy deployment, and industrial heat, hydrogen, and desalination applications.

 

Key Points

A risk-informed, performance-based NRC pathway streamlining licensing for advanced non-light water reactors.

✅ Aligned with NEIMA: risk-informed, performance-based, tech-inclusive

✅ Predictable licensing for advanced non-light water reactor designs

✅ Enables clean heat, hydrogen, desalination beyond electricity

 

The US Nuclear Regulatory Commission (NRC) voted 4-0 to approve the implementation of a more streamlined and predictable licensing pathway for advanced non-light water reactors, aligning with nuclear innovation priorities identified by industry advocates, the Nuclear Energy Institute (NEI) announced, and amid regional reliability measures such as New England emergency fuel stock plans that have drawn cost scrutiny.

This approach is consistent with the Nuclear Energy Innovation and Modernisation Act (NEIMA), a nuclear innovation act passed in 2019 by the US Congress calling for the development of a risk-informed, performance-based and technology inclusive licensing process for advanced reactor developers.

NEI Chief Nuclear Officer Doug True said: “A modernised regulatory framework is a key enabler of next-generation nuclear technologies that, amid ACORE’s challenge to DOE subsidy proposals in energy market proceedings, can help us meet our energy needs while protecting the climate. The Commission’s unanimous approval of a risk-informed and performance-based licensing framework paves the way for regulatory reviews to be aligned with the inherent safety characteristics, smaller reactor cores and simplified designs of advanced reactors.”

Over the last several years the industry’s Licensing Modernisation Project, sponsored by US Department of Energy, led by Southern Nuclear, and supported by NEI’s Advanced Reactor Regulatory Task Force, and influenced by a presidential order to bolster uranium and nuclear energy, developed the guidance for this new framework. Amid shifts in the fuel supply chain, including the U.S. ban on Russian uranium, this approach will inform the development of a new rule for licensing advanced reactors, which NEIMA requires.

“A well-defined licensing path will benefit the next generation of nuclear plants, especially as regions consider New England market overhaul efforts, which could meet a wide range of applications beyond generating electricity such as producing heat for industry, desalinating water, and making hydrogen – all without carbon emissions,” True noted.

 

Related News

View more

TTC Introduces Battery Electric Buses

TTC Battery-Electric Buses lead Toronto transit toward zero-emission mobility, improving air quality and climate goals with sustainable operations, advanced charging infrastructure, lower maintenance, energy efficiency, and reliable public transportation across the Toronto Transit Commission network.

 

Key Points

TTC battery-electric buses are zero-emission vehicles improving quality, lowering costs, and providing efficient service.

✅ Zero tailpipe emissions improve urban air quality

✅ Lower maintenance and energy costs increase savings

✅ Charging infrastructure enables reliable operations

 

The Toronto Transit Commission (TTC) has embarked on an exciting new chapter in its commitment to sustainability with the introduction of battery-electric buses to its fleet. This strategic move not only highlights the TTC's dedication to reducing its environmental impact but also positions Toronto as a leader in the evolution of public transportation. As cities worldwide strive for greener solutions, the TTC’s initiative stands as a significant milestone toward a more sustainable urban future.

Embracing Green Technology

The decision to integrate battery-electric buses into Toronto's transit system aligns with a growing trend among urban centers to adopt cleaner, more efficient technologies, including Metro Vancouver electric buses now in service. With climate change posing urgent challenges, transit authorities are rethinking their operations to foster cleaner air and reduce greenhouse gas emissions. The TTC’s new fleet of battery-electric buses represents a proactive approach to addressing these concerns, aiming to create a cleaner, healthier environment for all Torontonians.

Battery-electric buses operate without producing tailpipe emissions, and deployments like Edmonton's first electric bus illustrate this shift, offering a stark contrast to traditional diesel-powered vehicles. This transition is crucial for improving air quality in urban areas, where transportation is a leading source of air pollution. By choosing electric options, the TTC not only enhances the city’s air quality but also contributes to the global effort to combat climate change.

Economic and Operational Advantages

Beyond environmental benefits, battery-electric buses present significant economic advantages. Although the initial investment for electric buses may be higher than that for conventional diesel buses, and broader adoption challenges persist, the long-term savings are substantial. Electric buses have lower operating costs due to reduced fuel expenses and less frequent maintenance requirements. The electric propulsion system generally involves fewer moving parts than traditional engines, resulting in lower overall maintenance costs and improved service reliability.

Moreover, the increased efficiency of electric buses translates into reduced energy consumption. Electric buses convert a larger proportion of energy from the grid into motion, minimizing waste and optimizing operational effectiveness. This not only benefits the TTC financially but also enhances the overall experience for riders by providing a more reliable and punctual service.

Infrastructure Development

To support the introduction of battery-electric buses, the TTC is also investing in necessary infrastructure upgrades, including the installation of charging stations throughout the city. These charging facilities are essential for ensuring that the electric fleet can operate smoothly and efficiently. By strategically placing charging stations at transit hubs and along bus routes, the TTC aims to create a seamless transition for both operators and riders.

This infrastructure development is critical not just for the operational capacity of the electric buses but also for fostering public confidence in this new technology, and consistent safety measures such as the TTC's winter safety policy on lithium-ion devices reinforce that trust. As the TTC rolls out these vehicles, clear communication regarding their operational logistics, including charging times and routes, will be essential to inform and engage the community.

Engaging the Community

The TTC is committed to engaging with Toronto’s diverse communities throughout the rollout of its battery-electric bus program. Community outreach initiatives will help educate residents about the benefits of electric transit, addressing any concerns and building public support, and will also discuss emerging alternatives like Mississauga fuel cell buses in the region. Informational campaigns, workshops, and public forums will provide opportunities for dialogue, allowing residents to voice their opinions and learn more about the technology.

This engagement is vital for ensuring that the transition is not just a top-down initiative but a collaborative effort that reflects the needs and interests of the community. By fostering a sense of ownership among residents, the TTC can cultivate support for its sustainable transit goals.

A Vision for the Future

The TTC’s introduction of battery-electric buses marks a transformative moment in Toronto’s public transit landscape. This initiative exemplifies the commission's broader vision of creating a more sustainable, efficient, and user-friendly transportation network. As the city continues to grow, the need for innovative solutions to urban mobility challenges becomes increasingly critical.

By embracing electric technology, the TTC is setting an example for other transit agencies across Canada and beyond, and piloting driverless EV shuttles locally underscores that leadership. This initiative is not just about introducing new vehicles; it is about reimagining public transportation in a way that prioritizes environmental responsibility and community engagement. As Toronto moves forward, the integration of battery-electric buses will play a crucial role in shaping a cleaner, greener future for urban transit, ultimately benefitting residents and the planet alike.

 

Related News

View more

Alberta creates fund to help communities hit by coal phase-out

Alberta Coal Community Transition Fund backs renewables, natural gas, and economic diversification, offering grants, workforce retraining, and community development to municipalities and First Nations as Alberta phases out coal-fired power by 2030.

 

Key Points

A provincial grant helping coal-impacted communities diversify, retrain workers, and transition to renewables by 2030.

✅ Grants for municipalities and First Nations

✅ Supports diversification and job retraining

✅ Focus on renewables, natural gas, and new sectors

 

The Coal Community Transition Fund is open to municipalities and First Nations affected as Alberta phases out coal-fired electricity by 2030 under the federal coal plan to focus on renewables and natural gas.

Economic Development Minister Deron Bilous says the government wants to ensure these communities thrive through the transition, aligning with views that fossil-fuel workers support the energy transition across the economy.

“Residents in our communities have concerns about the transition away from coal, even as discussions about phasing out fossil fuels in B.C. unfold nationally,” Rod Shaigec, mayor of Parkland County, said.

“They also have ideas on how we can mitigate the impacts on workers and diversify our economy, including clean energy partnerships to create new employment opportunities for affected workers. We are working to address those concerns and support their ideas. This funding means we can make those ideas a reality in various economic sectors of opportunity.”

The coal-mining town of Hanna, northeast of Calgary, has already received $450,000 through the program to work on economic diversification, exploring options like bridging the Alberta-B.C. electricity gap that could support new industries.

The application deadline for the coal transition fund is the end of November.

A provincial advisory panel is also expected to report back this fall on ways to create new jobs and retrain workers during the coal phase-out.

 

Related News

View more

More red ink at Manitoba Hydro as need for new power generation looms

Manitoba NDP Energy Financing Strategy outlines public ownership of renewables, halts private wind farms, stabilizes hydroelectric rates, and addresses Manitoba Hydro deficits amid drought, export revenue declines, and rising demand for grid reliability.

 

Key Points

A plan to fund public renewables, pause private wind, and stabilize Manitoba Hydro rates, improving utility finances.

✅ Public ownership favored over private wind contracts

✅ Focus on rate freeze and Manitoba Hydro debt management

✅ Addresses drought impacts, export revenue declines, rising demand

 

Manitoba's NDP administration has declared its intention to formulate a strategy for financing new energy ventures, following a decision to halt the development of additional private-sector wind farms and to extend a pause on new cryptocurrency connections amid grid pressures. This plan will accompany efforts to stabilize hydroelectric rates and manage the financial obligations of the province's state-operated energy company.

Finance Minister Adrien Sala, overseeing Manitoba Hydro, shared these insights during a legislative committee meeting on Thursday, emphasizing the government's desire for future energy expansions to remain under public ownership, even as Ontario moves to reintroduce renewable energy projects after prior cancellations, and expressing trust in Manitoba Hydro's governance to realize these goals.

This announcement was concurrent with Manitoba Hydro unveiling increased financial losses in its latest quarterly report. The utility anticipates a $190-million deficit for the fiscal year ending in March, marking a $29 million increase from its previous forecast and a significant deviation from an initial $450 million profit expectation announced last spring. Contributing factors to this financial downturn include reduced hydroelectric power generation due to drought conditions, diminished export revenues, and a mild fall season impacting heating demand.

The recent financial update aligns with a period of significant changes at Manitoba Hydro, initiated by the NDP government's board overhaul following its victory over the former Progressive Conservative administration in the October 3 election, and comes as wind projects are scrapped in Alberta across the broader Canadian energy landscape.

Subsequently, the NDP-aligned board discharged CEO Jay Grewal, who had advocated for integrating wind energy from third-party sources, citing competitive wind power trends, to promptly address the province's escalating energy requirements. Grewal's approach, though not unprecedented, sought to offer a quicker, more cost-efficient alternative to constructing new Manitoba Hydro dams, highlighting an imminent energy production shortfall projected for as early as 2029.

The opposition Progressive Conservatives have criticized the NDP for dismissing the wind power initiative without presenting an alternate solution, warning about costly cancellation fees seen in Ontario when projects are halted, and emphasizing the urgency of addressing the predicted energy gap.

In response, Sala reassured that the government is in the early stages of policy formulation, reflecting broader electricity policy debates in Ontario about how to fix the power system, and criticized the previous administration for its inaction on enhancing generation capacity during its tenure.

Manitoba Hydro has named Hal Turner as the acting CEO while it searches for Grewal's successor, following controversies such as Solar Energy Program mismanagement raised by a private developer. Turner informed the committee that the utility is still deliberating on its approach to new energy production and is exploring ways to curb rising demand.

Expressing optimism about collaborating with the new board, Turner is confident in finding a viable strategy to fulfill Manitoba's energy needs in a safe and affordable manner.

Additionally, the NDP's campaign pledge to freeze consumer rates for a year remains a priority, with Sala committing to implement this freeze before the next provincial election slated for 2027.

 

Related News

View more

RBC agrees to buy electricity from new southern Alberta solar power farm project

RBC Renewable Energy PPA supports a 39 MW Alberta solar project, with Bullfrog Power and BluEarth Renewables, advancing clean energy in a deregulated market through a long-term power purchase agreement in Canada today.

 

Key Points

A long-term power purchase agreement where RBC buys most output from a 39 MW Alberta solar project via Bullfrog Power.

✅ 39 MW solar build in County of Forty Mile, Alberta

✅ Majority of output purchased by RBC via Bullfrog Power

✅ Supports cost-competitive renewables in deregulated market

 

The Royal Bank of Canada says it is the first Canadian bank to sign a long-term renewable energy power purchase agreement, a deal that will support the development of a 39-megawatt, $70-million solar project in southern Alberta, within an energy powerhouse province.

The bank has agreed with green energy retailer Bullfrog Power to buy the majority of the electricity produced by the project, as a recent federal green electricity contract highlights growing demand, to be designed and built by BluEarth Renewables of Calgary.

The project is to provide enough power for over 6,400 homes and the panel installations will cover 120 hectares, amid a provincial renewable energy surge that could create thousands of jobs, the size of 170 soccer fields.

The solar installation is to be built in the County of Forty Mile, a hot spot for renewable power that was also chosen by Suncor Energy Inc. for its $300-million 200-MW wind power project (approved last year and then put on hold during the COVID-19 pandemic), and home to another planned wind power farm in Alberta.

BluEarth says commercial operations at its Burdett and Yellow Lake Solar Project are expected to start up in April 2021, underscoring solar power growth in the province.

READ MORE: Wind power developers upbeat about Alberta despite end of power project auctions

It says the agreement shows that renewable energy can be cost-competitive, with lower-cost solar contracts in a deregulated electricity market like Alberta’s, adding the province has some of the best solar and wind resources in Canada.

“We’re proud to be the first Canadian bank to sign a long-term renewable energy power purchase agreement, demonstrating our commitment to clean, sustainable power, as Alberta explores selling renewable energy at scale,” said Scott Foster, senior vice-president and global head of corporate real estate at RBC.

 

Related News

View more

USA: 3 Ways Fossil Energy Ensures U.S. Energy Security

DOE Office of Fossil Energy safeguards energy security via the Strategic Petroleum Reserve, domestic critical minerals from coal byproducts, and carbon capture to curb CO2, strengthening resiliency amid shocks and supporting U.S. manufacturing and defense.

 

Key Points

A DOE program advancing energy security through SPR stewardship, critical minerals R&D, and carbon capture.

✅ Manages the Strategic Petroleum Reserve for emergency crude supply

✅ Develops domestic critical minerals from coal and mining byproducts

✅ Deploys carbon capture, utilization, and storage to cut CO2

 

The global economy has just experienced a period of unique transformation because of COVID-19. The fact that remains constant in this new economic landscape is that our society relies on energy; it’s an integral part of our day-to-day lives, even as U.S. energy use has evolved over time. According to the U.S. Energy Information Administration, approximately 80 percent of energy consumption in the United States comes from fossil fuels, so having access to a secure and reliable supply of those energy resources is more important than ever for national energy security considerations today. Below are three examples that highlight how our work at the U.S. Department of Energy’s Office of Fossil Energy (FE) helps ensure the Nation’s energy security and resiliency.

(1) Open crude oil reserves to respond to crises

FE has overall program responsibility for carrying out the mission of the Strategic Petroleum Reserve (SPR), the world’s largest supply of emergency crude oil. These federally-owned stocks are stored in massive underground salt caverns along the coastline of the Gulf of Mexico. The SPR is a powerful tool U.S. leaders use to respond to a wide range of crises, including energy crisis impacts on electricity and fuels, involving crude oil disruption or demand loss.  When the COVID-19 pandemic hit, the oil markets crashed and crude oil demand dropped drastically across the world. U.S. oil producers turned to the SPR to store their oil while broader energy dominance constraints were becoming evident in practice. This helped alleviate the pressure on producers to shut in oil production and proved to be a critical asset for American energy and national security.

(2) Use the Nation’s abundant coal reserves to produce valuable materials

Critical materials, including rare earth elements, are a group of chemical elements and materials with unique properties that support manufacturing of most modern technologies. They are essential components for critical defense and homeland security applications, green energy technologies, hybrid and electric vehicles, and high-value electronics. While these materials are not rare, they are hard to separate and expensive to extract. The United States relies heavily on imports from China. To reduce U.S. dependence on foreign sources, FE has a research and development program aimed at producing a domestic supply of critical materials from the Nation’s abundant coal resources and associated byproducts from legacy and current mining operations. Many of the technologies being developed can also be used to separate critical minerals from other mining materials and byproducts. Tapping into these resources has the potential to create new industries and revitalize coal communities and the workforce in coal-producing regions.

(3) Decrease carbon emissions for a cleaner energy future

FE is committed to balancing the Nation’s energy use with the need to protect the environment, and has a comprehensive portfolio of technological solutions that help keep carbon dioxide (CO2) emissions out of the atmosphere. For example, amid high natural gas prices that reinforce the case for clean electricity, the Department has been investing in carbon capture, utilization, and storage technologies for over a decade. These technologies capture CO2 emissions from various sources, including coal-fired power plants and manufacturing plants, before they enter the atmosphere. Several of these cutting-edge technologies have been deployed at major demonstration sites, supported by clean energy funding that aims to benefit millions. Three of these projects—Petra Nova, Archer Daniels Midland, and Air Products & Chemicals—have captured and injected over 10.8 million metric tons of CO2. The success of these projects is paving the way toward a cleaner and more sustainable American energy future.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified