WorldÂ’s largest tidal array project approved

By Industrial Info Resources


CSA Z462 Arc Flash Training - Electrical Safety Essentials

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today
The Scottish government has given the green light to ScottishPower Renewables, which is part of energy giant Iberdrola S.A., for the world's largest tidal array project.

The 10-megawatt MW project will be in the Sound of Islay on Scotland's west coast, and will be capable of generating enough power for approximately 5,000 homes. The project, which is worth 46 million euros, US $65 million, is the first to be approved by Marine Scotland, the government agency responsible for the management of Scotland's seas.

ScottishPower Renewables will be working with Hammerfest Strom UK, in which it holds a major stake, to install 10 of its HS1000 tidal turbines. The first device is being constructed and will be deployed off Orkney for testing later this year. A prototype of the Hammerfest Strom device has been generating electricity in Norway for the past six years.

The Sound of Islay, a channel of water that separates the islands of Jura and Islay on Scotland's west coast, was chosen after a UK-wide search for the best location. It benefits from strong tidal flows and shelter from storms and waves, and it has available grid capacity.

"ScottishPower Renewables' array will work in harmony with the environment and use the power of the tides in the Sound of Islay to generate enough green energy to power twice the number of homes on Islay," said John Swinney, Scottish Cabinet Secretary for Finance and Sustainable Growth. "There is simply nothing like it consented anywhere else in the world."

Keith Anderson, the chief executive of ScottishPower Renewables, said: "Tidal power has long been considered as one of Scotland's most valuable renewable energy resources, and we have discussed its potential for many years. Today's announcement moves the whole marine renewables industry forward in Scotland and the UK."

He added: "The testing of the HS1000 machine in Orkney this year will help us to finalize our timetable for the demonstration project in Islay, but we will begin work on the project in 2012 and plan to have machines installed as early as feasible, during the period 2013 to 2015."

Anderson also reiterated the importance of government support for the tidal energy sector: "As with any new industry, funding support is critical to compliment private funds and encourage investment. Scotland's support for wave and tidal power is better than elsewhere in the UK, but we would still like to see support for tidal power projects increased in line with the support available for wave power developments."

ScottishPower Renewables is also developing a larger, 95-turbine tidal project at Ness of Duncansbay, in the Pentland Firth. The project is part of the Crown Estate's first marine energy leasing round.

Related News

Setbacks at Hinkley Point C Challenge UK's Energy Blueprint

Hinkley Point C delays highlight EDF cost overruns, energy security risks, and wholesale power prices, complicating UK net zero plans, Sizewell C financing, and small modular reactor adoption across the grid.

 

Key Points

Delays at EDF's 3.2GW Hinkley Point C push operations to 2031, lift costs to £46bn, and risk pricier UK electricity.

✅ First unit may slip to 2031; second unit date unclear.

✅ LSEG sees 6% wholesale price impact in 2029-2032.

✅ Sizewell C replicates design; SMR contracts expected soon.

 

Vincent de Rivaz, former CEO of EDF, confidently announced in 2016 the commencement of the UK's first nuclear power station since the 1990s, Hinkley Point C. However, despite milestones such as the reactor roof installation, recent developments have belied this optimism. The French state-owned utility EDF recently disclosed further delays and cost overruns for the 3.2 gigawatt plant in Somerset.

These complications at Hinkley Point C, which is expected to power 6 million homes, have sparked new concerns about the UK's energy strategy and its ambition to decarbonize the grid by 2050.

The UK government's plan to achieve net zero by 2050 includes a significant role for nuclear energy, reflecting analyses that net-zero may not be possible without nuclear and aiming to increase capacity from the current 5.88GW to 24GW by mid-century.

Simon Virley, head of energy at KPMG in the UK, stressed the importance of nuclear energy in transitioning to a net zero power system, echoing industry calls for multiple new stations to meet climate goals. He pointed out that failing to build the necessary capacity could lead to increased reliance on gas.

Hinkley Point C is envisioned as the pioneer in a new wave of nuclear plants intended to augment and replace Britain's existing nuclear fleet, jointly managed by EDF and Centrica. Nuclear power contributed about 14 percent of the UK's electricity in 2022, even as Europe is losing nuclear power across the continent. However, with the planned closure of four out of five plants by March 2028 and rising electricity demand, there is concern about potential power price increases.

Rob Gross, director of the UK Energy Research Centre, emphasized the link between energy security and affordability, highlighting the risk of high electricity prices if reliance on expensive gas increases.

The first 1.6GW reactor at Hinkley Point C, initially set for operation in 2027, may now face delays until 2031, even after first reactor installation milestones were reported. The in-service date for the second unit remains uncertain, with project costs possibly reaching £46bn.

LSEG analysts predict that these delays could increase wholesale power prices by up to 6 percent between 2029 and 2032, assuming the second unit becomes operational in 2033.

Martin Young, an analyst at Investec, warned of the price implications of removing a large power station from the supply side.

In response to these delays, EDF is exploring the extension of its four oldest plants. Jerry Haller, EDF’s former decommissioning director, had previously expressed skepticism about extending the life of the advanced gas-cooled reactor fleet, but EDF has since indicated more positive inspection results. The company had already decided to keep the Heysham 1 and Hartlepool plants operational until at least 2026.

Nevertheless, the issues at Hinkley Point C raise doubts about the UK's ability to meet its 2050 nuclear build target of 24GW.

Previous delays at Hinkley were attributed to the COVID-19 pandemic, but EDF now cites engineering problems, similar to those experienced at other European power stations using the same technology.

The next major UK nuclear project, Sizewell C in Suffolk, will replicate Hinkley Point C's design, aligning with the UK's green industrial revolution agenda. EDF and the UK government are currently seeking external investment for the £20bn project.

Compared with Hinkley Point C, Sizewell C's financing model involves exposing billpayers to some risk of cost overruns. This, coupled with EDF's track record, could affect investor confidence.

Additionally, the UK government is supporting the development of small modular reactors, while China's nuclear program continues on a steady track, with contracts expected to be awarded later this year.

 

Related News

View more

Renewables surpass coal in US energy generation for first time in 130 years

Renewables Overtake Coal in the US, as solar, wind, and hydro expand grid share; EIA data show an energy transition accelerated by COVID-19, slashing emissions, displacing fossil fuels, and reshaping electricity generation and climate policy.

 

Key Points

It refers to the milestone where US renewable energy generation surpassed coal, marking a pivotal energy transition.

✅ EIA data show renewables topped coal consumption in 2019.

✅ Solar, wind, and hydro displaced aging, costly coal plants.

✅ COVID-19 demand drop accelerated the energy transition.

 

Solar, wind and other renewable sources have toppled coal in energy generation in the United States for the first time in over 130 years, with the coronavirus pandemic accelerating a decline in coal that has profound implications for the climate crisis.

Not since wood was the main source of American energy in the 19th century has a renewable resource been used more heavily than coal, but 2019 saw a historic reversal, building on wind and solar reaching 10% of U.S. generation in 2018, according to US government figures.

Coal consumption fell by 15%, down for the sixth year in a row, while renewables edged up by 1%, even as U.S. electricity use trended lower. This meant renewables surpassed coal for the first time since at least 1885, a year when Mark Twain published The Adventures of Huckleberry Finn and America’s first skyscraper was erected in Chicago.

Electricity generation from coal fell to its lowest level in 42 years in 2019, with the US Energy Information Administration (EIA) forecasting that renewables will eclipse coal as an electricity source this year, while a global eclipse by 2025 is also projected. On 21 May, the year hit its 100th day in which renewables have been used more heavily than coal.

“Coal is on the way out, we are seeing the end of coal,” said Dennis Wamsted, analyst at the Institute for Energy Economics and Financial Analysis. “We aren’t going to see a big resurgence in coal generation, the trend is pretty clear.”

The ongoing collapse of coal would have been nearly unthinkable a decade ago, when the fuel source accounted for nearly half of America’s generated electricity, even as a brief uptick in 2021 was anticipated. That proportion may fall to under 20% this year, with analysts predicting a further halving within the coming decade.

A rapid slump since then has not been reversed despite the efforts of the Trump administration, which has dismantled a key Barack Obama-era climate rule to reduce emissions from coal plants and eased requirements that prevent coal operations discharging mercury into the atmosphere and waste into streams.

Coal releases more planet-warming carbon dioxide than any other energy source, with scientists warning its use must be rapidly phased out to achieve net-zero emissions globally by 2050 and avoid the worst ravages of the climate crisis.

Countries including the UK and Germany are in the process of winding down their coal sectors, and in Europe renewables are increasingly crowding out gas as well, although in the US the industry still enjoys strong political support from Trump.

“It’s a big moment for the market to see renewables overtake coal,” said Ben Nelson, lead coal analyst at Moody’s. “The magnitude of intervention to aid coal has not been sufficient to fundamentally change its trajectory, which is sharply downwards.”

Nelson said he expects coal production to plummet by a quarter this year but stressed that declaring the demise of the industry is “a very tough statement to make” due to ongoing exports of coal and its use in steel-making. There are also rural communities with power purchase agreements with coal plants, meaning these contracts would have to end before coal use was halted.

The coal sector has been beset by a barrage of problems, predominantly from cheap, abundant gas that has displaced it as a go-to energy source. The Covid-19 outbreak has exacerbated this trend, even as global power demand has surged above pre-pandemic levels. With plunging electricity demand following the shutting of factories, offices and retailers, utilities have plenty of spare energy to choose from and coal is routinely the last to be picked because it is more expensive to run than gas, solar, wind or nuclear.

Many US coal plants are ageing and costly to operate, forcing hundreds of closures over the past decade. Just this year, power companies have announced plans to shutter 13 coal plants, including the large Edgewater facility outside Sheboygan, Wisconsin, the Coal Creek Station plant in North Dakota and the Four Corners generating station in New Mexico – one of America’s largest emitters of carbon dioxide.

The last coal facility left in New York state closed earlier this year.

The additional pressure of the pandemic “will likely shutter the US coal industry for good”, said Yuan-Sheng Yu, senior analyst at Lux Research. “It is becoming clear that Covid-19 will lead to a shake-up of the energy landscape and catalyze the energy transition, with investors eyeing new energy sector plays as we emerge from the pandemic.”

Climate campaigners have cheered the decline of coal but in the US the fuel is largely being replaced by gas, which burns more cleanly than coal but still emits a sizable amount of carbon dioxide and methane, a powerful greenhouse gas, in its production, whereas in the EU wind and solar overtook gas last year.

Renewables accounted for 11% of total US energy consumption last year – a share that will have to radically expand if dangerous climate change is to be avoided. Petroleum made up 37% of the total, followed by gas at 32%. Renewables marginally edged out coal, while nuclear stood at 8%.

“Getting past coal is a big first hurdle but the next round will be the gas industry,” said Wamsted. “There are emissions from gas plants and they are significant. It’s certainly not over.”
 

 

Related News

View more

US NRC streamlines licensing for advanced reactors

NRC Advanced Reactor Licensing streamlines a risk-informed, performance-based, technology-inclusive pathway for advanced non-light water reactors, aligning with NEIMA to enable predictable regulatory reviews, inherent safety, clean energy deployment, and industrial heat, hydrogen, and desalination applications.

 

Key Points

A risk-informed, performance-based NRC pathway streamlining licensing for advanced non-light water reactors.

✅ Aligned with NEIMA: risk-informed, performance-based, tech-inclusive

✅ Predictable licensing for advanced non-light water reactor designs

✅ Enables clean heat, hydrogen, desalination beyond electricity

 

The US Nuclear Regulatory Commission (NRC) voted 4-0 to approve the implementation of a more streamlined and predictable licensing pathway for advanced non-light water reactors, aligning with nuclear innovation priorities identified by industry advocates, the Nuclear Energy Institute (NEI) announced, and amid regional reliability measures such as New England emergency fuel stock plans that have drawn cost scrutiny.

This approach is consistent with the Nuclear Energy Innovation and Modernisation Act (NEIMA), a nuclear innovation act passed in 2019 by the US Congress calling for the development of a risk-informed, performance-based and technology inclusive licensing process for advanced reactor developers.

NEI Chief Nuclear Officer Doug True said: “A modernised regulatory framework is a key enabler of next-generation nuclear technologies that, amid ACORE’s challenge to DOE subsidy proposals in energy market proceedings, can help us meet our energy needs while protecting the climate. The Commission’s unanimous approval of a risk-informed and performance-based licensing framework paves the way for regulatory reviews to be aligned with the inherent safety characteristics, smaller reactor cores and simplified designs of advanced reactors.”

Over the last several years the industry’s Licensing Modernisation Project, sponsored by US Department of Energy, led by Southern Nuclear, and supported by NEI’s Advanced Reactor Regulatory Task Force, and influenced by a presidential order to bolster uranium and nuclear energy, developed the guidance for this new framework. Amid shifts in the fuel supply chain, including the U.S. ban on Russian uranium, this approach will inform the development of a new rule for licensing advanced reactors, which NEIMA requires.

“A well-defined licensing path will benefit the next generation of nuclear plants, especially as regions consider New England market overhaul efforts, which could meet a wide range of applications beyond generating electricity such as producing heat for industry, desalinating water, and making hydrogen – all without carbon emissions,” True noted.

 

Related News

View more

Crossrail will generate electricity using the wind created by trains

Urban Piezoelectric Energy Textiles capture wind-driven motion on tunnels, bridges, and facades, enabling renewable microgeneration for smart cities with decentralized power, resilient infrastructure, and flexible lamellae sheets that harvest airflow vibrations.

 

Key Points

Flexible piezoelectric sheets that convert urban wind and vibration into electricity on tunnels, bridges, and facades.

✅ Installed on London Crossrail to test airflow energy capture

✅ Flexible lamellae panels retrofit tunnels, bridges, facades

✅ Supports decentralized, resilient urban microgrids

 

Charlotte Slingsby and her startup Moya Power are researching piezo-electric textiles that gain energy from movement, similar to advances like a carbon nanotube energy harvester being explored by materials researchers. It seems logical that Slingsby originally came from a city with a reputation for being windy: “In Cape Town, wind is an energy source that you cannot ignore,” says the 27-year-old, who now lives in London.

Thanks to her home city, she also knows about power failures. That’s why she came up with the idea of not only harnessing wind as an alternative energy source by setting up wind farms in the countryside or at sea, but also for capturing it in cities using existing infrastructure.

 

The problem

The United Nations estimates that by 2050, two thirds of the world’s population will live in cities. As a result, the demand for energy in urban areas will increase dramatically, spurring interest in nighttime renewable technology that can operate when solar and wind are variable. Can the old infrastructure grow fast enough to meet demand? How might we decentralise power generation, moving it closer to the residents who need it?

For a pilot project, she has already installed grids of lamellae-covered plastic sheets in tunnels on London Crossrail routes; the draft in the tube causes the protrusions to flutter, which then generates electricity.

“If we all live in cities that need electricity, we need to look for new, creative ways to generate it, including nighttime solar cells that harvest radiative cooling,” says Slingsby, who studied design and engineering at Imperial College and the Royal College of Art. “I wanted to create something that works in different situations and that can be flexibly adapted, whether you live in an urban hut or a high-rise.”

The yield is low compared to traditional wind power plants and is not able to power whole cities, but Slingsby sees Moya Power as just a single element in a mixture of urban energy sources, alongside approaches like gravity power that aid grid decarbonization.

In the future, Slingsby’s invention could hang on skyscrapers, in tunnels or on bridges – capturing power in the windiest parts of the city, alongside emerging air-powered generators that draw energy from humidity. The grey concrete of tunnels and urban railway cuttings could become our cities’ most visually appealing surfaces...

 

Related News

View more

Hydropower Plants to Support Solar and Wind Energy

Solar-Wind-Water West Africa integrates hydropower with solar and wind to boost grid flexibility, clean electricity, and decarbonization, leveraging the West African Power Pool and climate data modeling reported in Nature Sustainability.

 

Key Points

A strategy using hydropower to balance solar and wind, enabling reliable, low-carbon electricity across West Africa.

✅ Hydropower dispatch covers solar and wind shortfalls.

✅ Regional interconnection via West African Power Pool.

✅ Cuts CO2 versus gas while limiting new dam projects.

 

Hydropower plants can support solar and wind power, rather unpredictable by nature, in a climate-friendly manner. A new study in the scientific journal Nature Sustainability has now mapped the potential for such "solar-wind-water" strategies for West Africa: an important region where the power sector is still under development, amid IEA investment needs for universal access, and where generation capacity and power grids will be greatly expanded in the coming years. "Countries in West Africa therefore now have the opportunity to plan this expansion according to strategies that rely on modern, climate-friendly energy generation," says Sebastian Sterl, energy and climate scientist at Vrije Universiteit Brussel and KU Leuven and lead author of the study. "A completely different situation from Europe, where power supply has been dependent on polluting power plants for many decades - which many countries now want to rid themselves of."

Solar and wind power generation is increasing worldwide and becoming cheaper and cheaper. This helps to keep climate targets in sight, but also poses challenges. For instance, critics often argue that these energy sources are too unpredictable and variable to be part of a reliable electricity mix on a large scale, though combining multiple resources can enhance project performance.

"Indeed, our electricity systems will have to become much more flexible if we are to feed large amounts of solar and wind power into the grid. Flexibility is currently mostly provided by gas power plants. Unfortunately, these cause a lot of CO2 emissions," says Sebastian Sterl, energy and climate expert at Vrije Universiteit Brussel (VUB) and KU Leuven. "But in many countries, hydropower plants can be a fossil fuel-free alternative to support solar and wind energy. After all, hydropower plants can be dispatched at times when insufficient solar and wind power is available."

The research team, composed of experts from VUB, KU Leuven, the International Renewable Energy Agency (IRENA), and Climate Analytics, designed a new computer model for their study, running on detailed water, weather and climate data. They used this model to investigate how renewable power sources in West Africa could be exploited as effectively as possible for a reliable power supply, even without large-scale storage, in line with World Bank support for wind in developing countries. All this without losing sight of the environmental impact of large hydropower plants.

"This is far from trivial to calculate," says Prof. Wim Thiery, climate scientist at the VUB, who was also involved in the study. "Hydroelectric power stations in West Africa depend on the monsoon; in the dry season they run on their reserves. Both sun and wind, as well as power requirements, have their own typical hourly, daily and seasonal patterns. Solar, wind and hydropower all vary from year to year and may be impacted by climate change, including projections that wind resources shift southward in coming years. In addition, their potential is spatially very unevenly distributed."

West African Power Pool

The study demonstrates that it will be particularly important to create a "West African Power Pool", a regional interconnection of national power grids to serve as a path to universal electricity access across the region. Countries with a tropical climate, such as Ghana and the Ivory Coast, typically have a lot of potential for hydropower and quite high solar radiation, but hardly any wind. The drier and more desert-like countries, such as Senegal and Niger, hardly have any opportunities for hydropower, but receive more sunlight and more wind. The potential for reliable, clean power generation based on solar and wind power, supported by flexibly dispatched hydropower, increases by more than 30% when countries can share their potential regionally, the researchers discovered.

All measures taken together would allow roughly 60% of the current electricity demand in West Africa to be met with complementary renewable sources, despite concerns about slow greening of Africa's electricity, of which roughly half would be solar and wind power and the other half hydropower - without the need for large-scale battery or other storage plants. According to the study, within a few years, the cost of solar and wind power generation in West Africa is also expected to drop to such an extent that the proposed solar-wind-water strategies will provide cheaper electricity than gas-fired power plants, which currently still account for more than half of all electricity supply in West Africa.

Better ecological footprint

Hydropower plants can have a considerable negative impact on local ecology. In many developing countries, piles of controversial plans for new hydropower plants have been proposed. The study can help to make future investments in hydropower more sustainable. "By using existing and planned hydropower plants as optimally as possible to massively support solar and wind energy, one can at the same time make certain new dams superfluous," says Sterl. "This way two birds can be caught with one stone. Simultaneously, one avoids CO2 emissions from gas-fired power stations and the environmental impact of hydropower overexploitation."

Global relevance

The methods developed for the study are easily transferable to other regions, and the research has worldwide relevance, as shown by a US 80% study on high variable renewable shares. Sterl: "Nearly all regions with a lot of hydropower, or hydropower potential, could use it to compensate shortfalls in solar and wind power." Various European countries, with Norway at the front, have shown increased interest in recent years to deploy their hydropower to support solar and wind power in EU countries. Exporting Norwegian hydropower during times when other countries undergo solar and wind power shortfalls, the European energy transition can be advanced.

 

Related News

View more

Is nuclear power really in decline?

Nuclear Energy Growth accelerates as nations pursue decarbonization, complement renewables, displace coal, and ensure grid reliability with firm, low-carbon baseload, benefiting from standardized builds, lower cost of capital, and learning-curve cost reductions.

 

Key Points

Expansion of nuclear capacity to cut CO2, complement renewables, replace coal, and stabilize grids at low-carbon cost.

✅ Complements renewables; displaces coal for faster decarbonization

✅ Cuts system costs via standardization and lower cost of capital

✅ Provides firm, low-carbon baseload and grid reliability

 

By Kirill Komarov, Chairman, World Nuclear Association.

As Europe and the wider world begins to wake up to the need to cut emissions, Dr Kirill Komarov argues that tackling climate change will see the use of nuclear energy grow in the coming years, not as a competitor to renewables but as a competitor to coal.

The nuclear industry keeps making headlines and spurring debates on energy policy, including the green industrial revolution agenda in several countries. With each new build project, the detractors of nuclear power crowd the bandwagon to portray renewables as an easy and cheap alternative to ‘increasingly costly’ nuclear: if solar and wind are virtually free why bother splitting atoms?

Yet, paradoxically as it may seem, if we are serious about policy response to climate change, nuclear energy is seeing an atomic energy resurgence in the coming decade or two.

Growth has already started to pick up with about 3.1 GW new capacity added in the first half of 2018 in Russia and China while, at the very least, 4GW more to be completed by the end of the year – more than doubling the capacity additions in 2017.

In 2019 new connections to the grid would exceed 10GW by a significant margin.

If nuclear is in decline, why then do China, India, Russia and other countries keep building nuclear power plants?

To begin with, the issue of cost, argued by those opposed to nuclear, is in fact largely a bogus one, which does not make a fully rounded like for like comparison.

It is true that the latest generation reactors, especially those under construction in the US and Western Europe, have encountered significant construction delays and cost overruns.

But the main, and often the only, reason for that is the ‘first-of-a-kind’ nature of those projects.

If you build something for the first time, be it nuclear, wind or solar, it is expensive. Experience shows that with series build, standardised construction economies of scale and the learning curve from multiple projects, costs come down by around one-third; and this is exactly what is already happening in some parts of the world.

Furthermore, those first-of-a-kind projects were forced to be financed 100% privately and investors had to bear all political risks. It sent the cost of capital soaring, increasing at one stroke the final electricity price by about one third.

While, according to the International Energy Agency, at 3% cost of capital rate, nuclear is the cheapest source of energy: on average 1% increase adds about US$6-7 per MWh to the final price.

When it comes to solar and wind, the truth, inconvenient for those cherishing the fantasy of a world relying 100% on renewables, is that the ‘plummeting prices’ (which, by the way, haven’t changed much over the last three years, reaching a plateau) do not factor in so-called system and balancing costs associated with the need to smooth the intermittency of renewables.

Put simply, the fact the sun doesn’t shine at night and wind doesn’t blow all the time means wind and solar generation needs to be backed up.

According to a study by the Potsdam Institute for Climate Impact Research, integration of intermittent renewables into the grid is estimated in some cases to be as expensive as power generation itself.

Delivering the highest possible renewable content means customers’ bills will have to cover: renewable generation costs, energy storage solutions, major grid updates and interconnections investment, as well as gas or coal peaking power plants or ‘peakers’, which work only from time to time when needed to back up wind and solar.

The expected cost for kWh for peakers, according to investment bank Lazard is about twice that of conventional power plants due to much lower capacity factors.

Despite exceptionally low fossil fuel prices, peaking natural gas generation had an eye-watering cost of $156-210 per MWh in 2017 while electricity storage, replacing ‘peakers’, would imply an extra cost of $186-413 per MWh.

Burning fossil fuels is cheaper but comes with a great deal of environmental concern and extensive use of coal would make net-zero emissions targets all but unattainable.

So, contrary to some claims, nuclear does not compete with renewables. Moreover, a recent study by the MIT Energy Initiative showed, most convincingly, that renewables and load following advanced nuclear are complementary.

Nuclear competes with coal. Phasing out coal is crucial to fighting climate change. Putting off decisions to build new nuclear capacities while increasing the share of intermittent renewables makes coal indispensable and extends its life.

Scientists at the Brattle group, a consultancy, argue that “since CO2 emissions persist for many years in the atmosphere, near-term emission reductions are more helpful for climate protection than later ones”.

The longer we hesitate with new nuclear build the more difficult it becomes to save the Earth.

Nuclear power accounta for about one-tenth of global electricity production, but as much as one-third of generation from low-carbon sources. 1GWe of installed nuclear capacity prevents emissions of 4-7 million metric tons of CO2 emissions per year, depending on the region.

The International Energy Agency (IEA) estimates that in order to limit the average global temperature increase to 2°C and still meet global power demand, we need to connect to the grid at least 20GW of new nuclear energy each year.

The World Nuclear Association (WNA) sets the target even higher with the total of 1,000 GWe by 2050, or about 10 GWe per year before 2020; 25 GWe per year from 2021 to 2025; and on average 33 GWe from 2026 to 2050.

Regulatory and political challenges in the West have made life for nuclear businesses in the US and in Europe's nuclear sector very difficult, driving many of them to the edge of insolvency; but in the rest of the world nuclear energy is thriving.

Nuclear vendors and utilities post healthy profits and invest heavily in next-gen nuclear innovation and expansion. The BRICS countries are leading the way, taking over the initiative in the global climate agenda. From their perspective, it’s the opposite of decline.

Dr Kirill Komarov is first deputy CEO of Russian state nuclear energy operator Rosatom and chairman of the World Nuclear Association.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.