WorldÂ’s largest tidal array project approved

By Industrial Info Resources


High Voltage Maintenance Training Online

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today
The Scottish government has given the green light to ScottishPower Renewables, which is part of energy giant Iberdrola S.A., for the world's largest tidal array project.

The 10-megawatt MW project will be in the Sound of Islay on Scotland's west coast, and will be capable of generating enough power for approximately 5,000 homes. The project, which is worth 46 million euros, US $65 million, is the first to be approved by Marine Scotland, the government agency responsible for the management of Scotland's seas.

ScottishPower Renewables will be working with Hammerfest Strom UK, in which it holds a major stake, to install 10 of its HS1000 tidal turbines. The first device is being constructed and will be deployed off Orkney for testing later this year. A prototype of the Hammerfest Strom device has been generating electricity in Norway for the past six years.

The Sound of Islay, a channel of water that separates the islands of Jura and Islay on Scotland's west coast, was chosen after a UK-wide search for the best location. It benefits from strong tidal flows and shelter from storms and waves, and it has available grid capacity.

"ScottishPower Renewables' array will work in harmony with the environment and use the power of the tides in the Sound of Islay to generate enough green energy to power twice the number of homes on Islay," said John Swinney, Scottish Cabinet Secretary for Finance and Sustainable Growth. "There is simply nothing like it consented anywhere else in the world."

Keith Anderson, the chief executive of ScottishPower Renewables, said: "Tidal power has long been considered as one of Scotland's most valuable renewable energy resources, and we have discussed its potential for many years. Today's announcement moves the whole marine renewables industry forward in Scotland and the UK."

He added: "The testing of the HS1000 machine in Orkney this year will help us to finalize our timetable for the demonstration project in Islay, but we will begin work on the project in 2012 and plan to have machines installed as early as feasible, during the period 2013 to 2015."

Anderson also reiterated the importance of government support for the tidal energy sector: "As with any new industry, funding support is critical to compliment private funds and encourage investment. Scotland's support for wave and tidal power is better than elsewhere in the UK, but we would still like to see support for tidal power projects increased in line with the support available for wave power developments."

ScottishPower Renewables is also developing a larger, 95-turbine tidal project at Ness of Duncansbay, in the Pentland Firth. The project is part of the Crown Estate's first marine energy leasing round.

Related News

B.C. Hydro misled regulator: report

BC Hydro SAP Oversight Report assesses B.C. Utilities Commission findings on misleading testimony, governance failures, public funds oversight, IT project risk, compliance gaps, audit controls, ratepayer impacts, and regulatory accountability in major enterprise software decisions.

 

Key Points

A summary of BCUC findings on BC Hydro's SAP IT project oversight, governance lapses, and regulatory compliance.

✅ BCUC probed testimony, cost overruns, and governance failures

✅ Project split to avoid scrutiny; incomplete records and late corrections

✅ Reforms pledged: stronger business cases, compliance, audit controls

 

B.C. Hydro misled the province’s independent regulator about an expensive technology program, thereby avoiding scrutiny on how it spent millions of dollars in public money, according to a report by the B.C. Utilities Commission.

The Crown power corporation gave inaccurate testimony to regulators about the software it had chosen, called SAP, for an information technology project that has cost $197 million, said the report.

“The way the SAP decision was made prevented its appropriate scrutiny by B.C. Hydro’s board of directors and the BCUC, reflecting governance risks seen in Manitoba Hydro board changes in other jurisdictions,” the commission found.

“B.C. Hydro’s CEO and CFO and its (audit and risk management board committee) members did not exhibit good business judgment when reviewing and approving the SAP decision without an expenditure approval or business case, highlighting how board upheaval at Hydro One can carry market consequences.”

The report was the result of a complaint made in 2016 by then-opposition NDP MLA Adrian Dix, who alleged B.C. Hydro lied to the regulatory commission to try to get approval for a risky IT project in 2008 that then went over budget and resulted in the firing of Hydro’s chief information officer.

The commission spent two years investigating. Its report outlined how B.C. Hydro split the IT project into smaller components to avoid scrutiny, failed to produce the proper planning document when asked, didn’t disclose cost increases of up to $38 million, reflecting pressures seen at Manitoba Hydro's debt across the sector, gave incomplete testimony and did not quickly correct the record when it realized the mistakes.

“Essentially all of the things I asserted were substantiated, and so I’m pleased,” Dix, who is now minister of health, said on Monday. “I think ratepayers can be pleased with it, because even though it was an elaborate process, it involves hundreds of millions of spending by a public utility and it clearly required oversight.”

The BCUC stopped short of agreeing with Dix’s allegation that the errors were deliberate. Instead it pointed toward a culture at B.C. Hydro of confusion, misunderstanding and fear of dealing with the independent regulatory process.

“Therefore, the panel finds that there was a culture of reticence to inform the BCUC when there was doubt about something, even among individuals that understood or should have understood the role of the BCUC, a pattern that can fuel Hydro One investor concerns in comparable markets,” read the report.

“Because of this doubt and uncertainty among B.C. Hydro staff, the panel finds no evidence to support a finding that the BCUC was intentionally misled. The panel finds B.C. Hydro’s culture of reticence to be inappropriate.”

By law, B.C. Hydro is supposed to get approval by the commission for rate changes and major expenditures. Its officials are often put under oath when providing information.

B.C. Hydro apologized for its conduct in 2016. The Crown corporation said Monday it supports the commission’s findings and has made improvements to management of IT projects, including more rigorous business case analyses.

“We participated fully in the commission’s process and acknowledged throughout the inquiry that we could have performed better during the regulatory hearings in 2008,” said spokesperson Tanya Fish.

“Since then, we have taken steps to ensure we meet the highest standards of openness and transparency during regulatory proceedings, including implementing a (thorough) awareness program to support staff in providing transparent and accurate testimony at all times during a regulatory process.”

The Ministry of Energy, which is responsible for B.C. Hydro, said in a statement it accepts all of the BCUC recommendations and will include the findings as part of a review it is conducting into Hydro’s operations and finances, including its deferred operating costs for context, and regulatory oversight.

Dix, who is now grappling with complex IT project management in his Health Ministry, said the lessons learned by B.C. Hydro and outlined in the report are important.

“I think the report is useful reading on all those scores,” he said. “It’s a case study in what shouldn’t happen in a major IT project.”

 

 

Related News

View more

Hydro One and Alectra announce major investments to strengthen electricity infrastructure and improve local reliability in the Hamilton area

Hydro One and Alectra Hamilton Grid Upgrades will modernize electricity infrastructure with new transformers, protection devices, transmission and distribution improvements, tree trimming, pole replacements, and line refurbishments to boost reliability and reduce outages across region.

 

Key Points

A $250M plan to modernize Hamilton transmission and distribution, reducing outages and improving reliability by 2022.

✅ New transformers and protection devices to cut outages

✅ Refurbished 1915 line powering Hamilton West Mountain

✅ Tree trimming and pole replacements across 1,260 km

 

Hydro One Networks Inc. (Hydro One), Ontario's largest electricity transmission and distribution company whose delivery rates recently increased, and Alectra Utilities have announced they expect to complete approximately $250 million of work in the Hamilton area by 2022 to upgrade local electricity infrastructure and improve service reliability.

As part of these plans to strengthen the electricity grid in the Hamilton region, where utilities must adapt to climate change pressures, investments are expected to include:

installing quieter, more efficient transformers in four stations across Hamilton to assist in reducing the number of outages;
replacing protection and switching devices across the city to shorten outage restoration times, reflecting how transmission line work underpins reliability;
refurbishing a power line originally installed in 1915 that is critical to powering the Hamilton West Mountain area; and,
trimming hazardous trees across more than 1,260 km of overhead powerlines and replacing more than 270 poles.
Hydro One will be working with Alectra Utilities to replace aging infrastructure at Elgin transmission station.

"A loss of power grinds life to a halt, impacting businesses, families and productivity. That's why Hydro One is partnering with Alectra Utilities to support a growing local economy in Hamilton, while improving power reliability for its residents," said Jason Fitzsimmons, Chief Corporate Affairs and Customer Care Officer. "Replacing aging infrastructure and modernizing equipment is part of our plan to build a stronger, safer and more reliable electricity system for Ontario now and into the future." 

"Partnering with Hydro One to invest in our local community will create a safer, more resilient and reliable system for the future," said Max Cananzi, President, Alectra Utilities.  "In addition to investments in the transmission system, Alectra Utilities also plans to invest $235 million over the next five years to renew, upgrade and connect customers to the electrical distribution and supporting systems in Hamilton. Investments in the transmission and distribution systems in Hamilton will contribute to the long-term sustainability of our communities."

"I am pleased to see Hydro One and Alectra investing in modernizing local electricity infrastructure and improving reliability," said Member of Provincial Parliament, Donna Skelly.  "Safe and reliable power is essential to supporting local families, businesses and our community."

Across Ontario, First Nations call for action on urgently needed transmission lines highlight the importance of timely grid investments.

Hydro One's investments included in this announcement are captured in its previously disclosed future capital expenditures, amid proposed projects like the Meaford hydro project across Ontario.

Much of Hydro One's electricity system was built in the 1950s, and replacing aging assets is critical as delays affecting a cross-border transmission line elsewhere have shown. Its three-year, $5 billion investment plan supports safe and reliable power to communities across Ontario, and strong regulatory oversight illustrated by the ATCO Electric penalty helps maintain public trust.


 

 

Related News

View more

Tesla reduces Solar + home battery pricing following California blackouts

Tesla Solar and Powerwall Discount offers a ~10% installation price cut amid PG&E blackouts, helping California homeowners with solar panels, battery storage, and backup power, while supporting renewable energy and resilient Supercharger infrastructure.

 

Key Points

A ~10% installation discount on Tesla solar panels and Powerwall batteries to boost backup power during PG&E blackouts.

✅ ~10% off installation for solar plus Powerwall

✅ Helps during PG&E shutoffs and wildfire mitigation

✅ Supports resilience, backup power, and EV charging

 

Pacific Gas & Electric’s (PG&E) shutoff of electric supply to residents in California’s Bay Area has caught the attention of Tesla and SpaceX CEO Elon Musk, who, while highlighting a huge future for Tesla Energy in coming years, has announced that he would be offering a price reduction of approximately 10% for a solar panel and Tesla Powerwall battery installation. The discount will be available to anyone interested in powering their homes with solar energy, not just the 800,000 affected homes in the Bay Area.

After initially tweeting a link to Tesla’s Solar page on Tesla.com, Musk added that he would be offering a “~10% price reduction” in installation price for solar panels and Powerwall batteries for anyone, as California explores EVs for grid stability during emergencies, including those who have lost power in response to PG&E’s power shutoff. The blackout induced by the California-based power company is a part of an effort to reduce the possibility of wildfires. PG&E lines were the cause of multiple fires in the past, so the company is taking every necessary precaution to reduce the probability of its lines causing another fire in the future.

Tesla Solar recently offered a subscription program that would allow homeowners to lease panels for a fraction of the cost. The service is available to both residential and commercial customers, and costs as little as $45 a month in some states, particularly appealing in California where EV sales top 20% recently. The option to lease solar panels carries no long-term contracts that would tie down customers to a lengthy commitment.

Wildfires have always been an issue in California. Currently, fires are ripping through Los Angeles county, presumably caused by the winds of the Autumn season. The effort to reduce the environmental impact of forest fires in the state has been increasingly more prevalent over the years. But 2019 is a different story, underscoring that California may need a much bigger grid to support electrification, considering the previous year was noted as the deadliest wildfire season in California’s history. Over 8,500 fires destroyed over 1.89 million acres of land burned due to fires, causing the California Department of Forestry and Fire Protection to spend $432 million through the end of August 2018, according to the Associated Press.

In reaction to the news of the power shutoffs, Tesla added words of advice to vehicle affected owners on its app. The company posted a message encouraging drivers to keep their vehicles charged to 100% and highlighted that EVs can power homes for up to three days during outages, in order to prevent interruptions in driving. Those who are driving ICE vehicles are feeling the effects of the blackout too, as gas stations in California’s affected region have begun to shut down. Musk also tweeted that he would be installing Tesla Powerpacks at all Supercharger stations in the affected region, a move that can help ease strain on state power grids during outages, in order to allow owners to charge their vehicles.

In addition to the efforts that Tesla has already put into place, Musk plans to transition all Supercharger stations to solar power as soon as possible. But the sunny climate of California offers residents a great opportunity to move from gas and electric, even as some warn of a looming green car wreck in the state, to a more eco-friendly, sun-powered option. Tesla solar will completely eliminate power blackouts that are used to control wildfires in California.

 

Related News

View more

Carbon emissions fall as electricity producers move away from coal

Global Electricity Emissions Decline highlights a 2% drop as coal power falls, while wind and solar surge. EU and US decarbonize faster; China expands coal and gas, challenging Paris Agreement climate targets.

 

Key Points

A 2% annual fall in power-sector CO2, led by less coal and rising wind and solar in the EU and US.

✅ Coal generation fell 3% globally despite China growth

✅ EU and US cut coal; wind and solar up 15% worldwide

✅ Gas gains in US; rapid renewables rollout needed for targets

 

Carbon emissions from the global electricity system fell by 2% last year, the biggest drop in almost 30 years, as countries began to turn their backs on coal-fired power plants.

A new report on the world’s electricity generation revealed the steepest cut in carbon emissions since 1990, with IEA data indicating global totals flatlined in 2019 as the US and the EU turned to cleaner energy sources.

Overall, power from coal plants fell by 3% last year, even as China’s reliance on coal plants climbed for another year to make up half the world’s coal generation for the first time.

Coal generation in the US and Europe has halved since 2007, and last year collapsed by almost a quarter in the EU and by 16% in the US.

The report from climate thinktank Ember, formerly Sandbag, warned that the dent in the world’s coal-fired electricity generation relied on many one-off factors, including milder winters across many countries.

“Progress is being made on reducing coal generation, but nothing like with the urgency needed to limit climate change,” the report said.

Dave Jones, the lead author of the report, said governments must dramatically accelerate the global energy transition so that global coal generation collapses throughout the 2020s.

“To switch from coal into gas is just swapping one fossil fuel for another. The cheapest and quickest way to end coal generation is through a rapid rollout of carbon-free electricity such as wind and solar,” he said.

“But without concerted policymaker efforts to boost wind and solar, we will fail to meet climate targets. China’s growth in coal, and to some extent gas, is alarming but the answers are all there.”

The EU has made the fastest progress towards replacing coal with wind and solar power, while the US has increased its reliance on gas as Wall Street’s energy strategy shifted following its shale boom in recent years.

The report revealed that renewable wind and solar power rose by 15% in 2019 to make up 8% of the world’s electricity.

In the EU, wind and solar power made up almost a fifth of the electricity generated last year, and Europe’s oil majors are turning electric as the bloc stayed ahead of the US which relied on these renewable sources for 11% of its electricity. In China and India, renewable energy made up 8% and 9% of the electricity system, respectively.

To meet the Paris climate goals, the world needs to record a compound growth rate of 15% for wind and solar generation every year – which will require “a colossal effort”, the report warned.

The electricity generation report was published as a separate piece of research claimed that 38 out of 75 of the world’s largest asset managers are stalling on taking action on environmental, social and governance (ESG) issues, and amid investor pressure on utilities to release climate reports.

The latest ranking by Asset Owners Disclosure Project, a scheme managed by the investment campaign group ShareAction, found that the 38 asset managers have weak or nonexistent policy commitments and fail to account for their real-world impacts across their mainstream assets.

The survey also claimed that the investment managers often lack appropriate engagement and escalation processes on climate change, human rights and biodiversity.

Scores were based on a survey of activities in responsible investment governance, climate change, human rights, and biodiversity and ranged between AAA to E. Not a single asset manager was granted an AAA or AA rating, the top two scores available.

Felix Nagrawala, ShareAction analyst, said: “While many in the industry are eager to promote their ESG credentials, our analysis clearly indicates that few of the world’s largest asset managers can lay claim to having a truly sustainable approach across all their investments.”

ShareAction said the world’s six largest asset managers – including BlackRock (rated D), State Street (D) and Vanguard (E) – were among the worst performers.

Vanguard said it was committed to companies making “appropriate disclosures on governance, strategy and performance on relevant ESG risks”. BlackRock and State Street did not respond to a request for comment.

 

Related News

View more

Canada's nationwide climate success — electricity

Canada Clean Electricity leads decarbonization, slashing power-sector emissions through coal phase-out, renewables like hydro, wind, and solar, and nuclear. Provinces cut carbon intensity, enabling electrification of transport and buildings toward net-zero goals.

 

Key Points

Canada Clean Electricity is the shift to low-emission power by phasing out coal and scaling renewables and nuclear.

✅ 38% cut in electricity emissions since 2005; 84% fossil-free power.

✅ Provinces lead coal phase-out; carbon intensity plummets.

✅ Enables EVs, heat pumps, and building electrification.

 

It's our country’s one big climate success so far.

"All across Canada, electricity generation has been getting much cleaner. It's our country’s one big climate success so far,"

To illustrate how quickly electric power is being cleaned up, what's still left to do, and the benefits it brings, I've dug into Canada's latest emissions inventory and created a series of charts below.

 

The sector that could

Climate pollution by Canadian economic sector, 2005 to 2017My first chart shows how Canada's economic sectors have changed their climate pollution since 2005.

While most sectors have increased their pollution or made little progress in the climate fight, our electricity sector has shined.

As the green line shows, Canadians have eliminated an impressive 38 per cent of the climate pollution from electricity generation in just over a decade.

To put these shifts into context, I've shown Canada's 2020 climate target on the chart as a gray star. This target was set by the Harper government as part of the global Copenhagen Accord. Specifically, Canada pledged to cut our climate pollution 17 per cent below 2005 levels under evolving Canadian climate policy frameworks of the time.

As you can see, the electricity sector is the only one to have done that so far. And it didn’t just hit the target — it cut more than twice as much.

Change in Canada's electricity generation, 2005 to 2017My next chart shows how the electricity mix changed. The big climate pollution cuts came primarily from reductions in coal burning, highlighting the broader implications of decarbonizing Canada's electricity grid for fuel choices.

The decline in coal-fired power was replaced (and then some) by increases in renewable electricity and other zero-emissions sources — hydro, wind, solar and nuclear.

As a result, Canada's overall electricity generation is now 84 per cent fossil free.

 

Every province making progress

A primary reason why electricity emissions fell so quickly is because every province worked to clean up Canada's electricity together.

Change in Canadian provincial electricity carbon intensity, 2005 to 2017

My next chart illustrates this rare example of Canada-wide climate progress. It shows how quickly the carbon-intensity of electricity generation has declined in different provinces.

(Note: carbon-intensity is the amount of climate pollution emitted per kilowatt-hour of electricity generated: gCO2e/kWh).

Ontario clearly led the way with an amazing 92 per cent reduction in climate pollution per kWh in just twelve years. Most of that came from ending the burning of coal in their power plants. But a big chunk also came from cutting in half the amount of natural gas they burn for electricity.

Manitoba, Quebec and B.C. also made huge improvements.

Even Alberta and Saskatchewan, which were otherwise busy increasing their overall climate pollution, made progress in cleaning up their electricity.

These real-world examples show that rapid and substantial climate progress can happen in Canada when a broad-spectrum of political parties and provinces decide to act.

Most Canadians now have superclean electricity

As a result of this rapid cleanup, most Canadians now have access to superclean energy.

Canadian provincial electricity carbon intensity in 2017

 

Who has it? And how clean is it?

The biggest climate story here is the superclean electricity generated by the four provinces shown on the left side — Quebec, Manitoba, B.C. and Ontario. Eighty per cent of Canadians live in these provinces and have access to this climate-safe energy source.

Those living in Alberta and Saskatchewan, however, still have fairly dirty electricity — as shown in orange on the right — and options like bridging the electricity gap between Alberta and B.C. could accelerate progress in the West.

A lot more cleanup must happen here before the families and businesses in these provinces have a climate-safe energy supply.

 

What's left to do?

Canada's electricity sector has two big climate tasks remaining: finishing the cleanup of existing power and generating even more clean energy to replace fossil fuels like the gasoline and natural gas used by vehicles, factories and other buildings.

 

Finishing the clean up

Climate pollution from Canadian provincial electricity 2005 and 2017

As we saw above, more than a third of the climate pollution from electricity has already been eliminated. That leaves nearly two-thirds still to clean up.

Back in 2005, Canada's total electricity emissions were 125 million tonnes (MtCO2).

Over the next twelve years, emissions fell by more than a third (-46 MtCO2). Ontario did most of the work by cutting 33 MtCO2. Alberta, New Brunswick and Nova Scotia made the next biggest cuts of around 4 MtCO2 each.

Now nearly eighty million tonnes of climate pollution remain.

As you can see, nearly all of that now comes from Alberta and Saskatchewan. As a result, continuing Canada's climate progress in the power sector now requires big cuts in the electricity emissions from these two provinces.

 

Generating more clean electricity

The second big climate task remaining for Canada's electricity is to generate more clean electricity to replace the fossil fuels burned in other sectors. My next chart lets you see how big a task this is.

 

Clean electricity generation by Canadian province, 2017

It shows how much climate-safe electricity is currently generated in major provinces. This includes zero-emissions renewables (blue bars) and nuclear power (pale blue).

Quebec tops the list with 191 terawatt-hours (TWh) per year. While impressive, it only accounts for around half of the energy Quebecers use. The other half still comes from climate-damaging fossil fuels and to replace those, Quebec will need to build out more clean energy.

The good news here is that electricity is more efficient for most tasks, so fossil fuels can be replaced with significantly less electric energy. In addition, other efficiency and reduction measures can further reduce the amount of new electricity needed.

Newfoundland and Labrador is in the best situation. They are the only province that already generates more climate-safe electricity than they would need to replace all the fossil fuels they burn. They currently export most of that clean electricity.

At the other extreme are Alberta and Saskatchewan. These provinces currently produce very little climate-safe energy. For example, Alberta's 7 TWh of climate-safe electricity is only enough to cover 1 per cent of the energy used in the province.

All told, Canadians currently burn fossil fuels for three-quarters of the energy we use. To preserve a safe-and-sane climate, most provinces will soon need lots more clean electricity in the race to net-zero to replace the fossil fuels we burn.

How soon will they need it?

According to the most recent report from the International Panel on Climate Change (IPCC), avoiding a full-blown climate crisis will require humanity to cut emissions by 45 per cent over the next decade.

 

Using electricity to clean up other sectors

Finally, let's look at how electricity can help clean up two of Canada’s other high-emission sectors — transportation and buildings.

 

Cleaning up transportation

Transportation is now the second biggest climate polluting sector in Canada (after the oil and gas industry). So, it’s a top priority to reduce the amount of gasoline we use.

Canadian provincial electricity carbon intensity in 2017, plus gasoline equivalent

Switching to electric vehicles (EVs) can reduce transportation emissions by a little, or a lot. It depends on how clean the electricity supply is.

To make it easy to compare gasoline to each province's electricity I've added a new grey-striped zone at the top of the carbon-intensity chart.

This new zone shows that burning gasoline in cars and trucks has a carbon-intensity equivalent to more than 1,000 gCO2e/kWh. (If you are interested in the details of this and other data points, see the geeky endnotes.)

The good news is that every province's electricity is now much cleaner than gasoline as a transportation fuel.

In fact, most Canadians have electricity that is at least 95 per cent less climate polluting than gasoline. Electrifying vehicles in these provinces virtually eliminates those transportation emissions.

Even in Alberta, which has the dirtiest electricity, it is 20 per cent cleaner than gasoline. That's a help, for sure. But it also means that Albertans must electrify many more vehicles to achieve the same emissions reductions as regions with cleaner electricity.

In addition to reducing climate pollution, switching transportation to electricity brings other big benefits:

It reduces air pollution in cities — a major health hazard.

It cuts the energy required for transportation by 75 per cent — because electric motors are so much more efficient.

It reduces fuel costs up to 80 per cent — saving tens of thousands of dollars.

And for gasoline-importing provinces, using local electricity keeps billions of fuel dollars inside their provincial economy.

As an extra bonus, it makes it hard for companies to manipulate the price or for outsiders to "turn off the taps.”

 

Cleaning up buildings

Canada's third biggest source of climate pollution is the buildings sector.

Burning natural gas for heating is the primary cause. So, reducing the amount of fossil gas burned in buildings is another top climate requirement.

Canadian provincial electricity carbon intensity in 2017, plus gasoline and nat gas heating equivalent

Heating with electricity is a common alternative. However, it's not always less climate polluting. It depends on how clean the electricity is.

To compare these two heating sources, look at the lower grey-striped zone I've added to the chart.

It shows that heating with natural gas has a carbon-intensity of 200 to 300 gCO2 per kWh of heat delivered. High-efficiency gas furnaces are at the lower end of this range.

As you can see, for most Canadians, electric heat is now the much cleaner choice — nearly eliminating emissions from buildings. But in Alberta and Saskatchewan, electricity is still too dirty to replace natural gas heat.

The climate benefits of electric heat can be improved further by using the newer high-efficiency air-source heat pump technologies like mini-splits. These can heat using one half to one third of the electricity of standard electric baseboard heaters. That means it is possible to use electricity that is a bit dirtier than natural gas and still deliver cleaner heating. As a bonus, heat pumps can free up a lot of existing electricity supply when used to replace existing electric baseboards.

 

Electrify everything

You’ve probably heard people say that to fight climate breakdown, we need to “electrify everything.” Of course, the electricity itself needs to be clean and what we’ve seen is that Canada is making important progress on that front. The electricity industry, and the politicians that prodded them, all deserve kudos for slashing emissions at more than twice the rate of any other sector.

We still need to finish the cleanup job, but we also need to turn our sights to the even bigger task ahead: requiring that everything fossil fuelled — every building, every factory, every vehicle — switches to clean Canadian power.

 

Related News

View more

ABO to build 10MW Tunisian solar park

ABO Wind Tunisia 10MW Solar Project will build a photovoltaic park in Gabes with a STEG PPA, fixed tariff, 2,500 m grid connection, producing 18 million kWh annually, targeted for 2020 commissioning with local partners.

 

Key Points

A 10MW photovoltaic park in Gabes with a 20-year STEG PPA and fixed tariff, slated for 2020 commissioning.

✅ 18 million kWh/year; 2,500 m grid tie, 20-year fixed tariff

✅ Electricity supplied to STEG under PPA; 2020 commissioning

✅ Located in Gabes; built with local partners, 10MW capacity

 

ABO Wind has received a permit and a tariff for a 10MW photovoltaic project in Tunisia, amid global activity such as Spain's 90MW wind project now underway, which it plans to build and commission in 2020.

The solar park, in the governorate of Gabes, is 400km south of the country’s capital Tunis and aligns with renewable funding initiatives seen across developing markets.

The developer said it plans to build the project next year in close cooperation with local partners, as regional markets from North Africa to the Gulf expand, with Saudi Arabia boosting wind capacity as well.

ABO Wind department head Nicolas Konig said: “The solar park will produce more than 18 million kilowatt hours of electricity per year and will feed it into the grid at a distance of 2500 metres.”

The developer will conclude an electricity supply contract with the state-owned energy supplier (Societe tunisienne de l’electricite et du gaz (STEG), which will provide a fixed remuneration over 20 years, a model echoed by Germany's wind-solar tender for the electricity fed into the grid.

Earlier this year, ABO Wind had already secured a tariff for a wind farm with a capacity of 30MW in a tender, 35km south-east of Tunis, underscoring Tunisia's wind investments under its long-term plan.

The company is working on half a dozen Tunisian wind and solar projects, as institutions like the World Bank support wind growth in developing countries.

“We are making good progress on our way to assemble a portfolio of several ready-to-build wind and solar projects attractive to investors, as Saudi clean energy targets continue to expand globally,” said ABO Wind general manager responsible for international business development Patrik Fischer.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified