Safety concerns raised over EPRs

By Industrial Info Resources


CSA Z462 Arc Flash Training - Electrical Safety Essentials

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today
The future of the new European Pressurized Reactor (EPR) designed by Areva SA and French national utility Electricite de France (EDF) has been called into question after a leaked letter sent by a Finnish nuclear watchdog raised safety concerns.

The installation of the first EPR reactor, rated at 1,600 megawatts (MW), is currently under way at the Olkiluoto 3 nuclear power plant site, located on an island off the western coast of Finland. However, the project has been dogged by three years of delays, Greenpeace protests and cost overruns that are estimated to have added up to an additional 50% of the original $4 billion construction budget. Now, a condemning letter from STUK, the Finnish Radiation and Nuclear Safety Authority, to Areva is threatening to delay this and future EPR projects.

The letter to Areva's Chairperson of the Management Board, Anne Lauvergeon, criticizes the company's poor response to "evident errors" that STUK pointed out a year ago regarding the EPR safety systems and other issues. Ironically, the EPR system is promoted by its makers as having superior safety systems compared to other nuclear reactors.

"I want to express my great concern on the lack of progress in the design of Olkiluoto 3 NPP [nuclear power plant] automation," he wrote. "Without a proper design that meets the basic principles of nuclear safety... I see no possibility to approve these important systems for installation," said the letter from Jukka Laaksonen, STUK's Director General. "The systems with highest safety importance are to be designed by Areva NP SAS but unfortunately the attitude or lack of professional knowledge of some persons who speak in the expert meetings on behalf of that organisation prevent... progress in resolving the concerns."

The leaked letter was sent in December 2008. Areva has admitted that it has since sent some, but not all, of the requested documentation demanded by STUK and claims that the company will have done so by the end of June.

This is an alarming development for the new third-generation EPR reactor, because EDF is hoping to use at least four of the reactors at new UK nuclear sites located in Sizewell in Suffolk and Hinkley Point, Somerset. Just this week, the UK's Health and Safety Executive said that the government is on course to complete the Generic Design Assessment of the EPR reactor and the AP1000 reactor from Westinghouse by the June 2011 deadline. However, he also admitted that the government has also has experienced "significant delays" in receiving responses to technical queries regarding the reactors, neither of which are fully complete.

EDF announced last December that the cost of installing the second EPR reactor at the Flamanville 3 Nuclear Power Station in France had leapt from the original $4 billion budget to $5.6 billion.

Related News

India’s Kakrapur 3 achieves criticality

Kakrapar Unit 3 700MWe PHWR achieved first criticality, showcasing indigenously designed nuclear power, NPCIL operations, Make in India manufacturing, advanced safety systems, grid integration, and closed-fuel-cycle strategy for India's expansion of pressurised heavy water reactors.

 

Key Points

India's first indigenous 700MWe PHWR at Kakrapar reached criticality, advancing NPCIL's Make in India nuclear power.

✅ First indigenous 700MWe PHWR achieves criticality

✅ NPCIL-built, Make in India components and contractors

✅ Advanced safety: passive decay heat removal, containment spray

 

Unit 3 of India’s Kakrapar nuclear plant in Gujarat achieved criticality on 22 July, as milestones at nuclear projects worldwide continue to be reached. It is India’s first indigenously designed 700MWe pressurised heavy water reactor (PHWR) to achieve this milestone.

Prime Minister Narendra Modi congratulated nuclear scientists, saying the reactor is a shining example of the 'Make in India' campaign and of the government's steps to get nuclear back on track in recent years, and a trailblazer for many such future achievements. 

India developed its own nuclear power generation technology as it faced sanctions from the international community following its first nuclear weapons test in in 1974. It has not signed the Nuclear Non-Proliferation Treaty, while China's nuclear energy development is on a steady track according to experts. India has developed a three-stage nuclear programme based on a closed-fuel cycle, where the used fuel of one stage is reprocessed to produce fuel for the next stage.

Kakrapar 3 was developed and is operated by state-owned Nuclear Power Corporation of India Ltd (NPCIL), while in Europe KHNP considered for a Bulgarian project as countries weigh options. The first two units are 220MWe PHWRs commissioned in 1993 and 1995. NPCIL said in a statement that the components and equipment for Kakrapur 3 were “manufactured by lndian industries and the construction and erection was undertaken by various lndian contractors”.

The 700MWe PHWRs have advanced safety features such as steel lined inner containment, a passive decay heat removal system, a containment spray system, hydrogen management systems etc, the statement added.

Fuel loading was completed by mid-March, a crucial step in Abu Dhabi during its commissioning as well. “Thereafter, many tests and procedures were carried out during the lockdown period following all COVlD-19 guidelines.”

“As a next step, various experiments / tests will be conducted and power will be increased progressively, a path also followed by Barakah Unit 1 reaching 100% power before commercial operations.” Kakrapur 3 will be connected to the western grid and will be India’s 23rd nuclear power reactor.

Kakrapur 3 “is the front runner in a series of 16 indigenous 700MWe PHWRs which have been accorded administrative approval and financial sanction by the government and are at various stages of implementation”. Five similar units are under construction at Kakarapur 4, Rajasthan 7&8 and Gorakhpur1&2.

DAE said in January 2019 that India planned to put 21 new nuclear units with a combined generating capacity of 15,700MWe into operation by 2031, including ten indigenously designed PHWRs, while Bangladesh develops nuclear power with IAEA assistance. 

 

Related News

View more

Tesla (TSLA) Wants to Become an Electricity Retailer

Tesla Energy Ventures Texas enters the deregulated market as a retail electricity provider, leveraging ERCOT, battery storage, solar, and grid software to enable virtual power plants and customer energy trading with Powerwall and Megapack assets.

 

Key Points

Tesla Energy Ventures Texas is Tesla's retail power unit selling grid and battery energy and enabling solar exports.

✅ ERCOT retail provider; sells grid and battery-stored power

✅ Uses Powerwall/Megapack; supports virtual power plants

✅ Targets Tesla owners; enables solar export and trading

 

Last week, Tesla Energy Ventures, a new subsidiary of electric car maker Tesla Inc. (TSLA), filed an application to become a retail electricity provider in the state of Texas. According to reports, the company plans to sell electricity drawn from the grid to customers and from its battery storage products. Its grid transaction software may also enable customers for its solar panels to sell excess electricity back to the smart grid in Texas.1

For those who have been following Tesla's fortunes in the electric car industry, the Palo Alto, California-based company's filing may seem baffling. But the move dovetails with Tesla's overall ambitions for its renewable energy business, as utilities face federal scrutiny of climate goals and electricity rates.

Why Does Tesla Want to Become an Electricity Provider?
The simple answer to that question is that Tesla already manufactures devices that produce and store power. Examples of such devices are its electric cars, which come equipped with lithium ion batteries, and its suite of battery storage products for homes and enterprises. Selling power generated from these devices to consumers or to the grid is a logical next step.


Tesla's move will benefit its operations. The filing states that it plans to build a massive battery storage plant near its manufacturing facility in Austin. The plant will provide the company with a ready and cheap source of power to make its cars.

Tesla's filing should also be analyzed in the context of the Texas grid. The state's electricity market is fully deregulated, unlike regions debating grid privatization approaches, and generated about a quarter of its overall power from wind and solar in 2020.2 The Biden administration's aggressive push toward clean energy is only expected to increase that share.

After a February fiasco in the state grid resulted in a shutdown of renewable energy sources and skyrocketing natural gas prices, Texas committed to boosting the role of battery storage in its grid. The Electricity Reliability Council of Texas (ERCOT), the state's grid operator, has said it plans to install 3,008 MW of battery storage by the end of 2022, a steep increase from the 225 MW generated at the end of 2020.3 ERCOT's proposed increase in installation represents a massive market for Tesla's battery unit.

Tesla already has considerable experience in this arena. It has built battery storage plants in California and Australia and is building a massive battery storage unit in Houston, according to a June Bloomberg report.4 The unit is expected to service wholesale power producers. Besides this, the company plans to "drum up" business among existing customers for its batteries through an app and a website that will allow them to buy and sell power among themselves, a model also being explored by Octopus Energy in international talks.

Tesla Energy Ventures: A Future Profit Center?
Tesla's foray into becoming a retail electricity provider could boost the top line for its energy services business, even as issues like power theft in India highlight retail market challenges. In its last reported quarter, the company stated that its energy generation and storage business brought in $810 million in revenues.

Analysts have forecast a positive future for its battery storage business. Alex Potter from research firm Piper Sandler wrote last year that battery storage could bring in more than $200 billion per year in revenue and grow up to a third of the company's overall business.5

Immediately after the news was released, Morningstar analyst Travis Miller wrote that Tesla does not represent an immediate threat to other major players in Texas's retail market, where providers face strict notice obligations illustrated when NT Power was penalized for delayed disconnection notices, such as NRG Energy, Inc. (NRG) and Vistra Corp. (VST). According to him, the company will initially target its own customers to "complement" its offerings in electric cars, battery, charging, and solar panels.6

Further down the line, however, Tesla's brand name and resources may work to its advantage. "Tesla's brand name recognition gives it an advantage in a hypercompetitive market," Miller wrote, adding that the car company's entry confirmed the firm's view that consumer technology or telecom companies will try to enter retail energy markets, where policy shifts like Ontario rate reductions can shape customer expectations.

 

Related News

View more

Ontario will refurbish Pickering B NGS

Pickering nuclear refurbishment will modernize Ontario's Candu reactors at Pickering B, sustaining 2,000 MW of clean electricity, aiding net-zero goals, and aligning with Ontario Power Generation plans and Canadian Nuclear Safety Commission reviews.

 

Key Points

An 11-year overhaul of Pickering B Candu reactors to extend life, keep 2,000 MW online, and back Ontario net-zero grid.

✅ 11-year project; 11,000 annual jobs; $19.4B GDP impact.

✅ Refurbishes four Pickering B Candu units; maintains 2,000 MW.

✅ Requires Canadian Nuclear Safety Commission license approvals.

 

The Ontario government has announced its intention to pursue a Pickering refurbishment at the venerable nuclear power station, which has been operational for over fifty years. This move could extend the facility's life by another 30 years.

This decision is timely, as Ontario anticipates a significant surge in electricity demand and a growing electricity supply gap in the forthcoming years. Additionally, all provinces are grappling with new federal mandates for clean electricity, necessitating future power plants to achieve net-zero carbon emissions.

Todd Smith, the Energy Minister, is expected to endorse Ontario Power Generation's proposal for the plant's overhaul, as per a preliminary version of a government press release.

The renovation will focus on four Candu reactors, known collectively as Pickering B, which were originally commissioned in the early 1980s. This upgrade is projected to continue delivering 2,000 megawatts of power, equivalent to the current output of these units.

According to the press release, the project will span 11 years, create approximately 11,000 annual jobs, and contribute $19.4 billion to Ontario's GDP. However, the total budget for the project remains unspecified.

The project follows the ongoing refurbishment of four units at the nearby Darlington nuclear station, which is more than halfway completed with a budget of $12.8 billion.

The proposal awaits the Canadian Nuclear Safety Commission's approval, and officials face extension request timing considerations before key deadlines.

The Commission is also reviewing a prior request from OPG to extend the operational license of the existing Pickering B units until 2026. This extension would allow the plant to safely continue operating until the commencement of its renovation, pending approval.

 

Ontario's Ambitious Nuclear Strategy

The announcement regarding Pickering is part of Ontario's broader clean energy plan for an unprecedented expansion of nuclear power in Canada.

Last summer, the province announced its intention to nearly double the output at Bruce Power, currently the world's largest nuclear generating station.

Additionally, Ontario revealed SMR plans to construct three more alongside the existing project at Darlington. These reactors are expected to supply enough electricity to power around 1.2 million homes.

Discussions about revitalizing the Pickering facility began in 2022, after the station had been slated to close as planned amid debate, with Ontario Power Generation submitting a feasibility report to the government last summer.

The Ford government emphasized the necessity of this nuclear expansion to meet the increasing electricity demands anticipated from the auto sector's shift to electric vehicles, the steel industry's move away from coal-fired furnaces, and the growing population in Ontario.

Ontario's capability to attract major international car manufacturers like Volkswagen and Stellantis to produce electric vehicles and batteries is partly attributed to the fact that 90% of the province's electricity comes from non-fossil fuel sources.

 

Related News

View more

Canadian Manufacturers and Exporters Congratulates the Ontario Government for Taking Steps to Reduce Electricity Prices

Ontario Global Adjustment Deferral offers COVID-19 electricity bill relief to industrial and commercial consumers not on the RPP, aligning GA to March levels for Class A and Class B manufacturers to improve cash flow.

 

Key Points

A temporary GA deferral easing electricity costs for Ontario industrial and commercial users not on the RPP.

✅ Sets Class B GA at $115/MWh; Class A gets equal percentage cut.

✅ Applies April-June 2020; automatic bill adjustments and credits.

✅ Deferred charges repaid over 12 months starting January 2021.

 

Manufacturers welcome the Government of Ontario's decision to defer a portion of Global Adjustment (GA) charges as part of support for industrial and commercial electricity consumers that do not participate in the Regulated Price Plan.

"Manufacturers are pleased the government listened to Canadian Manufacturers & Exporters (CME) member recommendations and is taking action to reduce Ontario electricity bills immediately," said Dennis Darby, President & CEO of CME.

"The majority of manufacturers have identified cash flow as their top concern during the crisis, "added Darby. "The GA system would have caused a nearly $2 billion cost surge to Ontario manufacturers this year. This new initiative by the government is on top of the billions in support already provided to help manufacturers weather this unprecedented storm, while other provinces accelerate British Columbia's clean energy shift to drive long-term competitiveness. All these measures are a great start in helping businesses of all sizes stay afloat during the crisis and, keeping Ontarians employed."

"We call on the Ontario government to continue to consider the impact of electricity costs on the manufacturing sector, even after the COVID-19 crisis is resolved," stated Darby. "High prices are putting Ontario manufacturers at a significant competitive disadvantage and, discourages investments." A recent report from London Economics International (LEI) found that when compared to jurisdictions with similar manufacturing industries, Ontario's electricity prices can be up to 75% more expensive, underscoring the importance of planning for Toronto's growing electricity needs to maintain affordability.

To provide companies with temporary immediate relief on their electricity bills, the Ontario government is deferring a portion of Global Adjustment (GA) charges for industrial and commercial electricity consumers that do not participate in the Regulated Price Plan (RPP), starting from April 2020, as some regions saw reduced electricity demand from widespread remote work during the pandemic. The GA rate for smaller industrial and commercial consumers (i.e., Class B) has been set at $115 per megawatt-hour, which is roughly in line with the March 2020 value. Large industrial and commercial consumers (i.e., Class A) will receive the same percentage reduction in GA charges as Class B consumers.

The Ontario government intends to keep this relief in place through the end of June 2020, alongside investments like smart grid technology in Sault Ste. Marie to support reliability, subject to necessary extensions and approvals to implement this initiative.

Industrial and commercial electricity consumers will automatically see this relief reflected on their bills. Consumers who have already received their April bill should see an adjustment on a future bill.

Related initiatives include developing cyber standards for electricity sector IoT devices to strengthen system security.

The government intends to bring forward subsequent amendments that would, if approved, recover the deferred GA charges (excluding interest) from industrial and commercial electricity consumers, as Toronto prepares for a surge in electricity demand amid continued growth, over a 12-month period beginning in January 2021.

 

Related News

View more

BC Hydro: 2021 was a record-breaking year for electricity demand

BC Hydro 2021 Peak Load Records highlight record-breaking electricity demand, peak load spikes, heat dome impacts, extreme cold, and shifting work-from-home patterns managed by a flexible hydroelectric system and climate-driven load trends.

 

Key Points

Record-breaking electricity demand peaks from extreme heat and cold that reshaped daily load patterns across BC in 2021.

✅ Heat dome and deep freeze drove sustained peak electricity demand

✅ Peak load built gradually, reflecting work-from-home behavior

✅ Flexible hydroelectric system adapts quickly to demand spikes

 

From June’s heat dome to December’s extreme cold, 2021 was a record-setting year, according to BC Hydro, and similar spikes were noted as Calgary's electricity use surged in frigid weather.

On Friday, the energy company released a new report on electricity demand, and how extreme temperatures over extended periods of time, along with growing scrutiny of crypto mining electricity use, led to record peak loads.

“We use peak loads to describe the electricity demand in the province during the highest load hour of each day,” Kyle Donaldson, BC Hydro spokesperson, said in a media release.

“With the heat dome in the summer and the sustained cold temperatures in December, we saw more record-breaking hours on more days last year than any other single year.”

According to BC Hydro, during summer, the Crown corporation recorded 19 of its top 25 all-time summer daily peak records — including breaking its all-time summer peak hourly demand record.

In December, which saw extremely cold temperatures and heavy snowfall, BC Hydro said its system experienced the highest and longest sustained load levels ever, as it activated its winter payment plan to assist customers.

Overall, BC Hydro says it has experienced 11 of its top 25 all-time daily peak records this winter, adding that Dec. 27 broke its all-time high peak hourly demand record.

“BC Hydro’s hydroelectric system is directly impacted by variations in weather, including drought conditions that require adaptation, and in 2021 more electricity demand records were broken than any other year prior, largely because of the back-to-back extreme temperatures lasting for days and weeks on end,” reads the report.

The energy company expects this trend to continue, noting that it has broken the peak record five times in the past five years, and other jurisdictions such as Quebec consumption record have also shattered consumption records.

It also noted that peak demand patterns have also changed since the first year of the COVID-19 pandemic, with trends seen during Earth Hour usage offering context.

“When the previous peak hourly load record was broken in January 2020, load displayed sharper increases and decreases throughout the day, suggesting more typical weather and behaviour,” said the report.

“In contrast, the 2021 peak load built up more gradually throughout the day, suggesting more British Columbians were likely working from home, or home for the holidays – waking up later and home earlier in the evening – as well as colder weather than average.”

BC Hydro also said “current climate models suggest a warming trend continuing in years to come which could increase demand year-round,” but noted that its flexible hydroelectric system can meet changes in demand quickly.

 

Related News

View more

Dubai Planning Large-Scale Solar Powered Hydrogen Production

Dubai Green Hydrogen advances electrolysis at the Mohammed Bin Rashid Al Maktoum Solar Park, with DEWA and Siemens enabling clean energy storage, re-electrification, and fuel-cell mobility for Expo 2020 Dubai and public transport.

 

Key Points

Dubai Green Hydrogen is a DEWA-Siemens project making solar hydrogen for storage, mobility, and reelectrification.

✅ Electrolysis at Mohammed Bin Rashid Al Maktoum Solar Park

✅ Partners: DEWA and Siemens; public-private demonstration plant

✅ Hydrogen for buses, re-electrification, and energy storage

 

Something you hear frequently if you are a clean tech aficionado is that excess solar and wind power can be used to split water into oxygen and hydrogen. The Dubai Supreme Council of Energy, the 2020 Dubai Higher Committee and the Dubai Electricity and Water Authority broke ground in early February on a solar power hydrogen electrolysis facility located in the Mohammed Bin Rashid Al Maktoum Solar Park, and related initiatives like the Solar Decathlon Middle East underscore Dubai's clean energy focus. Sheikh Ahmed bin Saeed Al Maktoum, chairman of the Dubai Supreme Council of Energy and chairman of the Expo 2020 Dubai Higher Committee, participated in the groundbreaking ceremony, according to a report by Khaleej Times.

Saeed Mohammed Al Tayer, CEO of DEWA, said at the groundbreaking ceremony the project is important to understanding the limits of green hydrogen technology and how it can contribute to the UAE’s vision of clean energy, and aligns with DEWA's latest renewable initiatives now progressing in the emirate. “This pioneering project is a role model for strategic partnerships between the public and private sectors. It will contribute to developing the green economy concept in the UAE and explore the potential of green hydrogen technology. The hydrogen produced at the facility will be stored and deployed for re-electrification, transportation and other uses.”

Siemens is providing much of the technology that will be used at the demonstration facility, while DEWA expands its China outreach to woo renewable energy firms that can contribute to the ecosystem. Joe Kaeser, president and CEO of Siemens, said the UAE was the perfect location for Siemens to test the technology, building on advances in offshore green hydrogen the company is pursuing. One of the primary uses of the hydrogen produced will be to power Dubai’s public transportation system.

“We are aware of the stress that is placed on vehicles in this region due to the high levels of heat; with hydrogen cells, you are not putting as much strain on the vehicle and that improves its longevity,” Kaeser said. “However, this is only the first step and we are eager to explore more ways in which we can adapt the technology to other sectors. The interest from various companies and partners has been immense and we are eager to work with all interested parties.”

“Dewa, Expo 2020 Dubai and Siemens are working together to help realize His Highness Sheikh Mohammed bin Rashid Al Maktoum, Vice-President and Prime Minister of the UAE and Ruler of Dubai’s, vision to identify new energy resources and provide sustainable power as part of a balanced approach that prioritizes the environment. Our aim is to make Dubai a model of energy efficiency and safety,” said Sheikh Ahmed.

Expo 2020 Dubai intends to use the hydrogen generated at the facility to transport visitors to the Expo 2020 Dubai and the Mohammed bin Rashid Al Maktoum Solar Park, reflecting regional momentum such as Saudi Arabia's clean energy plans over the next decade, in hydrogen fuel cell powered vehicles. Live data of the green hydrogen electrolysis will be displayed at Expo 2020 Dubai to help inform broader efforts like hydrogen hubs in the United States.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.