Safety concerns raised over EPRs

By Industrial Info Resources


CSA Z463 Electrical Maintenance

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today
The future of the new European Pressurized Reactor (EPR) designed by Areva SA and French national utility Electricite de France (EDF) has been called into question after a leaked letter sent by a Finnish nuclear watchdog raised safety concerns.

The installation of the first EPR reactor, rated at 1,600 megawatts (MW), is currently under way at the Olkiluoto 3 nuclear power plant site, located on an island off the western coast of Finland. However, the project has been dogged by three years of delays, Greenpeace protests and cost overruns that are estimated to have added up to an additional 50% of the original $4 billion construction budget. Now, a condemning letter from STUK, the Finnish Radiation and Nuclear Safety Authority, to Areva is threatening to delay this and future EPR projects.

The letter to Areva's Chairperson of the Management Board, Anne Lauvergeon, criticizes the company's poor response to "evident errors" that STUK pointed out a year ago regarding the EPR safety systems and other issues. Ironically, the EPR system is promoted by its makers as having superior safety systems compared to other nuclear reactors.

"I want to express my great concern on the lack of progress in the design of Olkiluoto 3 NPP [nuclear power plant] automation," he wrote. "Without a proper design that meets the basic principles of nuclear safety... I see no possibility to approve these important systems for installation," said the letter from Jukka Laaksonen, STUK's Director General. "The systems with highest safety importance are to be designed by Areva NP SAS but unfortunately the attitude or lack of professional knowledge of some persons who speak in the expert meetings on behalf of that organisation prevent... progress in resolving the concerns."

The leaked letter was sent in December 2008. Areva has admitted that it has since sent some, but not all, of the requested documentation demanded by STUK and claims that the company will have done so by the end of June.

This is an alarming development for the new third-generation EPR reactor, because EDF is hoping to use at least four of the reactors at new UK nuclear sites located in Sizewell in Suffolk and Hinkley Point, Somerset. Just this week, the UK's Health and Safety Executive said that the government is on course to complete the Generic Design Assessment of the EPR reactor and the AP1000 reactor from Westinghouse by the June 2011 deadline. However, he also admitted that the government has also has experienced "significant delays" in receiving responses to technical queries regarding the reactors, neither of which are fully complete.

EDF announced last December that the cost of installing the second EPR reactor at the Flamanville 3 Nuclear Power Station in France had leapt from the original $4 billion budget to $5.6 billion.

Related News

Britain breaks record for coal-free power generation - but what does this mean for your energy bills?

UK Coal-Free Electricity Record highlights rapid growth in renewables as National Grid phases out coal; wind, solar, and offshore projects surge, green tariffs expand, and energy comparison helps consumers switch to cheaper, cleaner deals.

 

Key Points

Britain's longest coal-free run, enabled by renewables, lower demand, and grid shifts for cheaper, greener tariffs.

✅ Record set after two months without coal-fired generation

✅ Renewables outpace fossil fuels; wind and solar dominate

✅ Green tariffs expand; prices at three-year lows

 

On Wednesday 10 June, Britain hit a significant landmark: the UK went for two full months without burning coal to generate power – that's the longest period since the 1880s, following earlier milestones such as a full week without coal power in the recent past.

According to the National Grid, Britain has now run its electricity network without burning coal since midnight on the 9 April. This coal-free period has beaten the country’s previous record of 18 days, six hours and 10 minutes, which was set in June 2019, even though low-carbon generation stalled in 2019 according to analyses.

With such a shift in Britain’s drive for renewables and lower electricity demand following the coronavirus lockdown, as Britain recorded its cleanest electricity during lockdown to date, now may be the perfect time to do an online energy comparison and switch to a cheaper, greener deal.

Only a decade ago, around 40 per cent of Britain’s electricity came from coal generation, but since then the country has gradually shifted towards renewable energy, with the coal share at record lows in the system today. When Britain was forced into lockdown in response to the coronavirus pandemic, electricity demand dropped sharply, and the National Grid took the four remaining coal-fired plants off the network.

Over the past 10 years, Britain has invested heavily in renewable energy. Back in 2010, only 3 per cent of the country's electricity came from wind and solar, and many people remained sceptical. However, now, the UK has the biggest offshore wind industry in the world. Plus, last year, construction of the world’s single largest wind farm was completed off the coast of Yorkshire.

At the same time, Drax – Britain’s biggest power plant – has started to switch from burning coal to burning compressed wooden pellets instead, reflecting the UK's progress as it keeps breaking its coal-free energy record again across the grid. By this time next year, the plant hopes to have phased out coal entirely.

So far this year, renewables have generated more power than all fossil fuels put together, the BBC reports, and the energy dashboard shows the current mix in real time. Renewables have been responsible for 37 per cent of electricity supplied to the network, with wind and solar surpassing nuclear for the first time, while fossil fuels have accounted for 35 per cent. During the same period, nuclear accounted for 18 per cent and imports made up the remaining 10 per cent.

What does this mean for consumers?

As the country’s electricity supply moves more towards renewables, customers have more choice than ever before. Most of the ‘Big Six’ energy companies now have tariffs that offer 100 per cent green electricity. On top of this, specialist green energy suppliers such as Bulb, Octopus and Green Energy UK make it easier than ever to find a green energy tariff.

The good news is that our energy comparison research suggests that green energy doesn’t have to cost you more than a traditional fixed-price energy contract would. In fact, some of the cheapest energy suppliers are actually green companies.

At present, energy bills are at three-year lows, which means that now is the perfect time to switch supplier. As prices remain low and renewables begin to dominate the marketplace, more switchers will be drawn to green energy deals than ever before.

However, if you’re interested in choosing a green energy supplier, make sure that you look at the company's fuel mix. This way, you’ll be able to see whether they are guaranteeing the usage of green energy, or whether they’re just offsetting your usage. All suppliers must report how their energy is generated to Ofgem, so you’ll easily be able to compare providers.

You may find that you pay more for a supplier that generates its own energy from renewables, or pay less if the supplier simply matches your usage by buying green energy. You can decide which option is right for you after comparing the prices.

 

Related News

View more

Energy Vault Secures $28M for California Green Hydrogen Microgrid

Calistoga Resiliency Centre Microgrid delivers grid resilience via green hydrogen and BESS, providing island-mode backup during PSPS events, wildfire risk, and outages, with black-start and grid-forming capabilities for reliable community power.

 

Key Points

A hybrid green hydrogen and BESS facility ensuring resilient, islanded power for Calistoga during PSPS and outages.

✅ 293 MWh capacity with 8.5 MW peak for critical backup

✅ Hybrid lithium-ion BESS plus green hydrogen fuel cells

✅ Island mode with black-start and grid-forming support

 

Energy Vault, a prominent energy storage and technology company known for its gravity storage, recently secured US$28 million in project financing for its innovative Calistoga Resiliency Centre (CRC) in California. This funding will enable the development of a microgrid powered by a unique combination of green hydrogen and battery energy storage systems (BESS), marking a significant step forward in enhancing grid resilience in the face of natural disasters such as wildfires.

Located in California's fire-prone regions, the CRC is designed to provide critical backup power during Public Safety Power Shutoff (PSPS) events—periods when utility companies proactively cut power to prevent wildfires. These events can leave communities without electricity for extended periods, making the need for reliable, independent power sources more urgent as many utilities see benefits in energy storage today. The CRC, with a capacity of 293 MWh and a peak output of 8.5 MW, will ensure that the Calistoga community maintains power even when the grid is disconnected.

The CRC features an integrated hybrid system that combines lithium-ion batteries and green hydrogen fuel cells, even as some grid-scale projects adopt vanadium flow batteries for long-duration needs. During a PSPS event or other grid outages, the system will operate in "island mode," using hydrogen to generate electricity. This setup not only guarantees power supply but also contributes to grid stability by supporting black-start and grid-forming functions. Energy Vault's proprietary B-VAULT DC battery technology complements the hydrogen fuel cells, enhancing the overall performance and resilience of the microgrid.

One of the key aspects of the CRC project is the utilization of green hydrogen. Unlike traditional hydrogen, which is often produced using fossil fuels, green hydrogen is generated through renewable energy sources like solar or wind power, with large-scale initiatives such as British Columbia hydrogen project accelerating supply, making it a cleaner and more sustainable alternative. This aligns with California’s ambitious clean energy goals and is expected to reduce the carbon footprint of the region’s energy infrastructure.

The CRC project also sets a precedent for future hybrid microgrid deployments across California and other wildfire-prone areas, with utilities like SDG&E Emerald Storage highlighting growing adoption. Energy Vault has positioned the CRC as a model for scalable, utility-scale microgrids that can be adapted to various locations facing similar challenges. Following the success of this project, Energy Vault is expanding its portfolio with additional projects in Texas, where it anticipates securing up to US$25 million in financing.

The funding for the CRC also includes the sale of an investment tax credit (ITC), a key component of the financing structure that helps make such ambitious projects financially viable. This structure is crucial as it allows companies to leverage government incentives to offset development costs, including CEC long-duration storage funding, thus encouraging further investment in green energy infrastructure.

Despite some skepticism regarding the transportation of hydrogen rather than producing it onsite, the project has garnered strong support. California’s Public Utilities Commission (CPUC) acknowledged the potential risks of transporting green hydrogen but emphasized that it is still preferable to using more harmful fuel sources. This recognition is important as it validates Energy Vault’s approach to using hydrogen as part of a broader strategy to transition to clean, reliable energy solutions.

Energy Vault's shift from its traditional gravity-based energy storage systems to battery energy storage systems, such as BESS in New York, reflects the company's adaptation to the growing demand for versatile, efficient energy solutions. The hybrid approach of combining BESS with green hydrogen represents an innovative way to address the challenges of energy storage, especially in regions vulnerable to natural disasters and power outages.

As the CRC nears mechanical completion and aims for full commercial operations by Q2 2025, it is poised to become a critical part of California’s grid resilience strategy. The microgrid's ability to function autonomously during emergencies will provide invaluable benefits not only to Calistoga but also to other communities that may face similar grid disruptions in the future.

Energy Vault’s US$28 million financing for the Calistoga Resiliency Centre marks a significant milestone in the development of hybrid microgrids that combine the power of green hydrogen and battery energy storage. This project exemplifies the future of energy resilience, showcasing a forward-thinking approach to mitigating the impact of natural disasters and ensuring a reliable, sustainable energy future for communities at risk. With its innovative use of renewable energy sources and cutting-edge technology, the CRC sets a strong example for future energy storage projects worldwide.

 

Related News

View more

Extreme Heat Boosts U.S. Electricity Bills

Extreme Heat and Rising Electricity Bills amplify energy costs as climate change drives air conditioning demand, stressing the power grid and energy affordability, with low income households facing outsized burdens during prolonged heat waves.

 

Key Points

Heat waves from climate change raise AC demand, driving up electricity costs and straining energy affordability.

✅ More AC use spikes electricity demand during heat waves

✅ Low income households face higher energy burden

✅ Grid reliability risks rise with peak cooling loads

 

Extreme heat waves are not only straining public health systems but also having a significant impact on household finances, particularly through rising electricity bills. According to a recent AP-NORC poll, a growing number of Americans are feeling the financial pinch as soaring temperatures drive up the cost of cooling their homes. This development underscores the broader implications of climate change and its effects on everyday life.

The AP-NORC poll highlights that a majority of Americans are experiencing increased electricity costs as a direct result of extreme heat. As temperatures climb, so does the demand for air conditioning and other cooling systems. This increased energy consumption is contributing to higher utility bills, which can put additional strain on household budgets.

Extreme heat waves have become more frequent and intense due to climate change, which has led to a greater reliance on air conditioning to maintain comfortable indoor environments. Air conditioners and fans work harder during heat waves, and wasteful air conditioning can add around $200 to summer bills, consuming more electricity and consequently driving up energy bills. For many households, particularly those with lower incomes, these increased costs can be a significant burden.

The poll reveals that the impact of rising electricity bills is widespread, affecting a diverse range of Americans. Households across different income levels and geographic regions are feeling the heat, though the extent of the financial strain can vary. Lower-income households are particularly vulnerable, as they often have less flexibility in their budgets to absorb higher utility costs. For these families, the choice between cooling their homes and other essential expenses can be a difficult one.

In addition to financial strain, the poll highlights concerns about energy affordability and access. As electricity bills rise, some Americans may face challenges in paying their bills, leading to potential utility shut-offs or the need to make difficult choices between cooling and other necessities. This situation is exacerbated by the fact that many utility companies do not offer sufficient assistance or relief programs to help low-income households manage their energy costs.

The increasing frequency of extreme heat events and the resulting spike in electricity consumption also have broader implications for the energy infrastructure. Higher demand for electricity can strain power grids, as seen when California narrowly avoided blackouts during extreme heat, potentially leading to outages or reduced reliability. Utilities and energy providers may need to invest in infrastructure upgrades and maintenance to ensure that the grid can handle the increased load during heat waves.

Climate change is a key driver of the rising temperatures that contribute to higher electricity bills. As global temperatures continue to rise, extreme heat events are expected to become more common and severe, and experts warn the US electric grid was not designed to withstand these impacts. This trend underscores the need for comprehensive strategies to address both the causes and consequences of climate change. Efforts to reduce greenhouse gas emissions, improve energy efficiency, and invest in renewable energy sources are critical components of a broader climate action plan.

Energy efficiency measures can play a significant role in mitigating the impact of extreme heat on electricity bills. Upgrading to more efficient cooling systems, improving home insulation, and adopting smart thermostats can help reduce energy consumption and lower utility costs. Additionally, utility companies and government programs can offer incentives and rebates, including ways to tap new funding that help encourage energy-saving practices and support households in managing their energy use.

The poll also suggests that there is a growing awareness among Americans about the connection between climate change and rising energy costs. Many people are becoming more informed about the ways in which extreme weather events and rising temperatures impact their daily lives. This increased awareness can drive demand for policy changes and support for initiatives aimed at addressing climate change and improving energy efficiency, with many willing to contribute income to climate efforts, about the connection between climate change and rising energy costs.

In response to the rising costs and the impact of extreme heat, there are calls for policy interventions and support programs to help manage energy affordability. Proposals include expanding assistance programs for low-income households, investing in infrastructure improvements, and promoting energy efficiency initiatives alongside steps to make electricity systems more resilient to climate risks. By addressing these issues, policymakers can help alleviate the financial burden on households and support a more resilient and sustainable energy system.

Debates over policy impacts on electricity prices continue; in Alberta, federal policies are blamed by some for higher rates, illustrating how regulation can affect affordability.

In conclusion, the AP-NORC poll highlights the growing financial impact of extreme heat on American households, with rising electricity bills being a significant concern for many. The increased demand for cooling during heat waves is straining household budgets and raising broader questions about energy affordability and infrastructure resilience. Addressing these challenges requires a multifaceted approach, including efforts to combat climate change, improve energy efficiency, and provide support for those most affected by rising energy costs. As extreme heat events become more common, finding solutions to manage their impact will be crucial for both individual households and the broader energy system.

 

Related News

View more

Iraq plans nuclear power plants to tackle electricity shortage

Iraq Nuclear Power Plan targets eight reactors and 11 GW to ease blackouts, curb emissions, and support desalination, with financing via partners like Rosatom and Kepco amid OPEC-linked demand growth and chronic grid shortages.

 

Key Points

A $40B push to build eight reactors adding 11 GW, easing blackouts, cutting emissions, and supporting desalination.

✅ $40B, 20-year payback via partner financing

✅ Talks with Rosatom, Kepco; U.S. and France consulted

✅ Parallel solar buildout to meet 2030 demand

 

Iraq is working on a plan to build nuclear reactors as the electricity-starved petrostate seeks to end the widespread blackouts that have sparked social unrest.

OPEC’s No. 2 oil producer – already suffering from power shortages and insufficient investment in aging plants – needs to meet an expected 50% jump in demand by the end of the decade. Building atomic plants could help to close the supply gap, though the country will face significant financial and geopolitical challenges in bringing its plan to fruition.

Iraq seeks to build eight reactors capable of producing about 11 gigawatts, said Kamal Hussain Latif, chairman of the Iraqi Radioactive Sources Regulatory Authority. It would seek funding from prospective partners for the $40 billion plan and pay back the costs over 20 years, he said, adding that the authority had discussed cooperation with Russian and South Korean officials, as Iran-Iraq energy cooperation progresses across the sector.

Plunging crude prices last year deprived Iraq of funds to maintain and expand its long-neglected electricity system, though grid rehabilitation deals have been finalized to support upgrades. The resulting outages triggered protests that threatened to topple the government.

“We have several forecasts that show that without nuclear power by 2030, we will be in big trouble,” Latif said in an interview at his office in Baghdad. Not only is there the power shortage and surge in demand to deal with, but Iraq is also trying to cut emissions and produce more water via desalination — “issues that raise the alarm for me.”

Raising financing will be a major task given that Iraq has suffered budgetary crises amid volatile oil prices. Even with crude at about $70 a barrel now, the country is only just balancing its budget, according to data from the International Monetary Fund.

The government will also have to tackle geopolitical concerns around the safety of atomic energy, which have stymied nuclear ambitions elsewhere in the region, even as Europe's nuclear decline underscores broader energy challenges.

Nuclear power, which doesn’t produce carbon dioxide, would help Gulf states’ efforts to cut emissions as governments worldwide, including India's nuclear push to expand capacity, look to become greener. The technology would also allow them to earmark more of their valuable hydrocarbons for export. Saudi Arabia, which is building a test reactor, burns as much as 1 million barrels of crude a day in power plants during its summer months when temperatures soar beyond 50 degrees Celsius (122 Fahrenheit).

The Iraqi cabinet is reviewing an agreement with Russia’s Rosatom Corp. to cooperate in building reactors, Latif said. South Korean officials this year said they wanted to help build the plants and offered the Iraqis a tour of UAE nuclear reactors run by Korea Electric Power Corp. Latif said the nuclear authority has also spoken with French and U.S. officials about the plan.

Kepco, Rosatom
Kepco, as the Korean energy producer is known, is not aware of Iraq’s nuclear plans and hasn’t been in touch with Iraqi officials or been asked to work on any projects there, a company spokesman said Tuesday. Rosatom didn’t immediately comment when asked about an agreement with Iraq.

Even if Iraq builds the planned number of power stations, that still won’t be sufficient to cover future consumption. The country already faces a 10-gigawatt gap between capacity and demand and expects to need an additional 14 gigawatts this decade, Latif said.

With this in mind, Iraq plans to build enough solar plants to generate a similar amount of power to the nuclear program by the end of the decade.
Iraq currently boasts 18.4 gigawatts of electricity, including 1.2 gigawatts imported from Iran into the grid. Capacity additions mean generation will rise to as much as 22 gigawatts by August, but that’s well short of notional demand that stands at almost 28 gigawatts under normal conditions. Peak usage during the hot summer months of July and August exceeds 30 gigawatts, according to the Electricity Ministry. Demand will hit 42 gigawatts by 2030, Latif said.

The nuclear authority has picked 20 potential sites for the reactors and Latif suggested that the first contracts could be signed in the next year.

It won’t be Iraq’s first attempt to go nuclear. Four decades ago, an Israeli air strike destroyed a reactor under construction south of Baghdad. The Israelis alleged the facility, called Osirak, was aimed at producing nuclear weapons for use against them. Iraq suffered more than a decade of violence and upheaval after the 2003 U.S. invasion, which was also motivated by allegations that Iraq wanted to develop weapons.

 

Related News

View more

DBRS Confirms Ontario Power Generation Inc. at A (low)/R-1 (low), Stable Trends

OPG Credit Rating affirmed by DBRS at A (low) issuer and unsecured debt, R-1 (low) CP, Stable trends, backed by a supportive regulatory regime, strong leverage metrics, and provincial support; monitor Darlington Refurbishment costs.

 

Key Points

It is DBRS's confirmation of OPG at A (low) issuer and unsecured, R-1 (low) CP, with Stable outlooks.

✅ Stable trends; strong cash flow-to-debt and capital ratios

✅ Provincial financing via OEFC; Fair Hydro Trust ring-fenced

✅ Darlington Refurbishment on budget; cost overruns remain risk

 

DBRS Limited (DBRS) confirmed the Issuer Rating and the Unsecured Debt rating of Ontario Power Generation Inc. (OPG or the Company) at A (low) and the Commercial Paper (CP) rating at R-1 (low), amid sector developments such as Hydro One leadership efforts to repair government relations and measures like staff lockdowns at critical sites.

All trends are Stable. The ratings of OPG continue to be supported by (1) the reasonable regulatory regime in place for the Company's regulated generation facilities, including stable pricing signals for large users, (2) strong cash flow-to-debt and debt-to-capital ratios and (3) continuing financial support from its shareholder, the Province of Ontario (the Province; rated AA (low) with a Stable trend by DBRS). The Province, through its agent, the Ontario Electricity Financial Corporation (rated AA (low) with a Stable trend by DBRS), provides most of OPG's financing (approximately 43% of consolidated debt). The Company's remaining debt includes project financing (31%), including projects such as a battery energy storage system proposed near Woodstock, non-recourse debt issued by Fair Hydro Trust (Senior Notes rated AAA (sf), Under Review with Negative Implications by DBRS; 11%), CP (2%) and Senior Notes issued under the Medium Term Note Program (12%).

In March 2019, the Province introduced 'Bill 87, Fixing the Hydro Mess Act, 2019' which includes winding down the Fair Hydro Plan, and later introduced electricity relief to mitigate customer bills during the COVID-19 pandemic. OPG will remain as the Financial Services Manager for the outstanding Fair Hydro Trust debt, which will become obligations of the Province. DBRS does not expect this development to have a material impact on the Company as (1) the Fair Hydro Trust debt will continue to be bankruptcy-remote and ring-fenced from OPG (all debt is non-recourse to the Company) and (2) the credit rating on the Company's investment in the Subordinated Notes (rated AA (sf), Under Review with Negative Implications by DBRS) will likely remain investment grade while the Junior Subordinated Notes (rated A (sf), Under Review with Developing Implications by DBRS) will not necessarily be negatively affected by this change (see the DBRS press release, 'DBRS Maintains Fair Hydro Trust, Series 2018-1 and Series 2018-2 Notes Under Review,' dated March 26, 2019, for more details).

OPG's key credit metrics improved in 2018, following the approval of its 2017-2021 rates application by the Ontario Energy Board in December 2017, alongside the Province's energy-efficiency programs that shape demand. The Company's profitability strengthened significantly, with corporate return on equity (ROE) of 7.8% (adjusted for a $205 million gain on sale of property; 5.1% in 2017) closer to the regulatory allowed ROE of 8.78%. However, DBRS continues to view a positive rating action as unlikely in the short term because of the ongoing large capital expenditures program, including the $12.8 billion Darlington Refurbishment project, amid ongoing oversight following the nuclear alert investigation in Ontario. However, a downgrade could occur should there be significant cost overruns with the Darlington Refurbishment project that result in stranded costs. DBRS notes that the Darlington Refurbishment project is currently on budget and on schedule.

 

Related News

View more

Ontario confronts reality of being short of electricity in the coming years

Ontario electricity shortage is looming, RBC and IESO warn, as EV electrification surges, Pickering nuclear faces delays, and gas plants backstop expiring renewables, raising GHG emissions and grid reliability concerns across the province.

 

Key Points

A projected supply shortfall as demand rises from electrification, expiring contracts, and delayed nuclear capacity.

✅ RBC warns shortages as early as 2026, significant by 2030

✅ IESO sees EV-driven demand; 5,000-15,000 MW by 2035

✅ Gas reliance boosts GHGs; Pickering life extension assessed

 

In a fit of ideological pique, Doug Ford’s government spent more than $200 million to scrap more than 700 green energy projects soon after winning the 2018 election, amid calls to make clean, affordable power a central issue, portraying them as “unnecessary and expensive energy schemes.”

A year later, then Associate Energy Minister Bill Walker defended the decision, declaring, “Ontario has an adequate supply of power right now.”

Well, life moves fast. At the time, scrapping the renewable energy projects was criticized as short-sighted and wasteful, raising doubts about whether Ontario was embracing clean power in a meaningful way. It seems especially so now as Ontario confronts the reality of being short of electricity in the coming years.

How short? A recent report by RBC calls the situation “urgent,” saying that Canada’s most populous province could face energy shortages as early as 2026. As contracts for non-hydro renewables and gas plants expire, the shortages could be “significant” by 2030, the bank report said, with grid greening costs adding to the challenge.

The Independent Electricity System Operator (IESO), which manages the electrical supply in Ontario, says demand for electricity could rise at rates not seen in many years, as the government moves to add new gas plants to boost capacity. “Economic growth coming out of the pandemic, along with electrification in many sectors, is driving energy use up,” the agency said in a December assessment.

The good news is that demand is being driven, in part, by the transition to “green” power – carbon-emission-free electricity – by sectors such as transportation and manufacturing. That will help reduce emissions. Yet meeting that demand presents some challenges, prompting the province to outline a plan to address growing needs across the system. The shift to electric vehicles alone is expected to cause a spike in demand starting in 2030. By 2035, the province could need an additional 5,000 to 15,000 megawatts of electricity, the IESO estimates.

It was perhaps no surprise then to see the province announce last week that it wants to delay the long-planned closing of the Pickering nuclear plant by a year to 2026, even as others note the station is slated to close as planned. Operations beyond that would require refurbishing the facility. The province said it’s taking a fresh look at whether that would make sense to extend its life by another 30 years.

In the interim, the province will be forced to dramatically ramp up its reliance on natural gas plants for electricity generation – and, as analysts warn, Ontario’s power mix could get dirtier even before new non-emitting capacity is built, and in the process, increase greenhouse gas emissions from the energy grid by 400 per cent. Broader electrification is expected to produce “significant” GHG emissions reductions in Ontario over the next two decades, according to the IESO. Still, it’s working at cross-purposes if your electric car is charged by electricity generated by fossil fuels.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified