Refrigerator roundup ropes its 100,000th fridge

By Electricity Forum


CSA Z462 Arc Flash Training - Electrical Safety Essentials

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today
The Great Refrigerator Roundup, a provincewide free program to rid homes of old, inefficient and electricity-guzzling appliances, has corralled its 100,000th refrigerator.

“This is a great example of how conservation adds up for Ontarians,” said George Smitherman, Deputy Premier and Minister of Energy and Infrastructure. “With the removal of these fridges, enough energy has been saved to power about 3,000 homes, nearly 100 new green collar jobs have been created and consumers collectively have saved about $3.5 million in energy costs in just one year.”

“Ontario has set some of the most aggressive conservation targets in the world,” added Colin Andersen, president of the Ontario Power Authority, the province’s energy planner. “We’re confident they can be achieved through smart initiatives like this one, and by working in partnership with local electricity distribution companies and consumers.”

The Great Refrigerator Roundup is led by the OPA and managed by 73 local electricity distribution companies, also known as LDCs. The appliances are collected and recycled in an environmentally sound manner by ARCA Canada at its state-of-the art decommissioning facility in Oakville.

Removing older, inefficient refrigerators can help Ontarians save $120-150 a year off their electricity bills – about 10 per cent of their annual electricity costs – if the old fridge is not replaced. Old appliances are decommissioned in a process that sees more than 95 per cent of the material from each unit recycled.

Chemicals such as Freon and compressor oil are safely disposed of and all reusable metal and plastic is incorporated into a variety of new products including rebar used to build bridges as well as engine castings, copper tubing and plant pots.

Related News

Renewable energy now cheapest option for new electricity in most of the world: Report

Renewable Energy Cost Trends highlight IRENA data showing solar and wind undercut coal, as utility-scale projects drive lower levelized electricity costs worldwide, with the Middle East and UAE advancing mega solar parks.

 

Key Points

They track how solar and wind undercut new fossil fuels as utility-scale costs drop and investment accelerates.

✅ IRENA reports renewables cheapest for new installations

✅ Solar and wind LCOE fell sharply since 2010

✅ Middle East and UAE scale mega utility projects

 

Renewable energy is now the cheapest option for new electricity installation in most of the world, a report from the International Renewable Energy Agency (IRENA) on Tuesday said.

Renewable power projects have undercut traditional coal fuel plants, with solar and wind power costs in particular falling as record-breaking growth continues worldwide.

“Installing new renewables increasingly costs less than the cheapest fossil fuels. With or without the health and economic crisis, dirty coal plants were overdue to be consigned to the past, said Francesco La Camera, director-general of IRENA said in the report.

In 2019, renewables accounted for around 72 percent of all new capacity added worldwide, IRENA said, following a 2016 record year that highlighted the momentum, with lowering costs and technological improvements in solar and wind power helping this dynamic. For solar energy, IRENA notes that the cost for electricity from utility-scale plants fell by 82 percent in the decade between 2010 and 2019, as China's solar PV growth underscored in 2016.

“More than half of the renewable capacity added in 2019 achieved lower electricity costs than new coal, while new solar and wind projects are also undercutting the cheapest and least sustainable of existing coal-fired plants,” Camera added.

Costs for solar and wind power also fell year-on-year by 13 and 9 percent, respectively, with offshore wind costs showing steep declines as well. In 2019, more than half of all newly commissioned utility-scale renewable power plants provided electricity cheaper than the lowest cost of a new fossil fuel plant.

The Middle East

In mid-May, a report by UK-based law firm Ashurst suggested the Middle East is the second most popular region for renewable energy investment after North America, at a time when clean energy investment is outpacing fossil fuels.

The region is home to some of the largest renewable energy bets in the world, with Saudi wind expansion gathering pace. The UAE, for instance, is currently developing the Mohammed Bin Rashid Solar Park, the world’s largest concentrated solar power project in the world.

Around 26 percent of Middle East respondents in Ashurst’s survey said that they were presently investing in energy transition, marking the region as the most popular for current investment in renewables, while 11 percent added that they were considering investing.

In North America, the most popular region, 28 percent said that they were currently investing, with 11 percent stating they are considering investing.

 

Related News

View more

Biggest offshore windfarm to start UK supply this week

Hornsea One Offshore Wind Farm delivers first power to the UK grid, scaling renewable energy with 1.2GW capacity, giant offshore turbines, and Yorkshire coast infrastructure to replace delayed nuclear and cut fossil fuel emissions.

 

Key Points

Hornsea One Offshore Wind Farm is a 1.2GW UK project delivering offshore renewable power to about 1 million homes.

✅ 174 turbines over 407 km2; Siemens Gamesa supply chain in the UK

✅ 1.2GW capacity can power ~1m homes; phases scale with 10MW+ turbines

✅ Supports UK grid, replaces delayed nuclear, cuts fossil generation

 

An offshore windfarm on the Yorkshire coast that will dwarf the world’s largest when completed is to supply its first power to the UK electricity grid this week, mirroring advances in tidal electricity projects delivering to the grid as well.

The Danish developer Ørsted, which has installed the first of 174 turbines at Hornsea One, said it was ready to step up its plans and fill the gap left by failed nuclear power schemes.

The size of the project takes the burgeoning offshore wind power sector to a new scale, on a par with conventional fossil fuel-fired power stations.

Hornsea One will cover 407 square kilometres, five times the size of the nearby city of Hull. At 1.2GW of capacity it will power 1m homes, making it about twice as powerful as today’s biggest offshore windfarm once it is completed in the second half of this year.

“The ability to generate clean electricity offshore at this scale is a globally significant milestone at a time when urgent action needs to be taken to tackle climate change,” said Matthew Wright, UK managing director of Ørsted, the world’s biggest offshore windfarm builder.

The power station is only the first of four planned in the area, with a green light and subsidies already awarded to a second stage due for completion in the early 2020s, and interest from Japanese utilities underscoring growing investor appetite.

The first two phases will use 7MW turbines, which are taller than London’s Gherkin building.

But the latter stages of the Hornsea development could use even more powerful, 10MW-plus turbines. Bigger turbines will capture more of the energy from the wind and should lower costs by reducing the number of foundations and amount of cabling firms need to put into the water, with developers noting that offshore wind can compete with gas in the U.S. as costs fall.

Henrik Poulsen, Ørsted’s chief executive, said he was in close dialogue with major manufacturers to use the new generation of turbines, some of which are expected to approach the height of the Shard in London, the tallest building in the EU.

The UK has a great wind resource and shallow enough seabed to exploit it, and could even “power most of Europe if it [the UK] went to the extreme with offshore”, he said.

Offshore windfarms could help ministers fill the low carbon power gap created by Hitachi and Toshiba scrapping nuclear plants, the executive suggested. “If nuclear should play less of a role than expected, I believe offshore wind can step up,” he said.

New nuclear projects in Europe had been “dramatically delayed and over budget”, he added, in comparison to “the strong track record for delivering offshore [wind]”.

The UK and Germany installed 85% of new offshore wind power capacity in the EU last year, according to industry data, with wind leading power across several markets. The average power rating of the turbines is getting bigger too, up 15% in 2018.

The turbines for Hornsea One are built and shipped from Siemens Gamesa’s factory in Hull, part of a web of UK-based suppliers that has sprung up around the growing sector, such as Prysmian UK's land cables supporting grid connections.

Around half of the project’s transition pieces, the yellow part of the structure that connects the foundation to the tower, are made in Teeside. Many of the towers themselves are made by a firm in Campbeltown in the Scottish highlands. Altogether, about half of the components for the project are made in the UK.

Ørsted is not yet ready to bid for a share of a £60m pot of further offshore windfarm subsidies, to be auctioned by the government this summer, but expects the price to reach even more competitive levels than those seen in 2017.

Like other international energy companies, Ørsted has put in place contingency planning in event of a no-deal Brexit – but the hope is that will not come to pass. “We want a Brexit deal that will facilitate an orderly transition out of the union,” said Poulsen.

 

Related News

View more

USDA Grants $4.37 Billion for Rural Energy Upgrades

USDA Rural Energy Infrastructure Funding boosts renewable energy, BESS, and transmission upgrades, delivering grid modernization, resilience, and clean power to rural cooperatives through loans and grants aligned with climate goals, decarbonization, and energy independence.

 

Key Points

USDA Rural Energy Infrastructure Funding is a $4.37B program advancing renewables, BESS, and grid upgrades for rural power.

✅ Loans and grants for cooperatives modernizing rural grids.

✅ Prioritizes BESS to integrate wind and solar reliably.

✅ Upgrades transmission to cut losses and boost grid stability.

 

The U.S. Department of Agriculture (USDA) has announced a major investment of $4.37 billion aimed at upgrading rural electric cooperatives across the nation. This funding will focus on advancing renewable energy projects, enhancing battery energy storage systems (BESS), and upgrading transmission infrastructure to support a grid overhaul for renewables nationwide.

The USDA’s Rural Development initiative will provide loans and grants to cooperatives, supporting efforts to transition to cleaner energy sources that help rural America thrive, improve energy resilience, and modernize electrical grids in rural areas. These upgrades are expected to bolster the reliability and efficiency of energy systems, making rural communities more resilient to extreme weather events and fostering the expansion of renewable energy.

The funding will primarily support energy storage technologies, such as BESS, which allow excess energy from renewable sources like wind energy, solar, and hydropower technology to be stored and used during periods of high demand or when renewable generation is low. These systems are critical for integrating more renewable energy into the grid, ensuring a stable and sustainable power supply.

In addition to energy storage, the USDA’s investment will go toward enhancing the transmission networks that carry electricity across rural regions, aligning with a recent rule to boost renewable transmission across the U.S. By upgrading these systems, the USDA aims to reduce energy losses, improve grid stability, and ensure that rural communities have reliable access to power, particularly in remote and underserved areas.

This investment aligns with the Biden administration’s broader climate and clean energy goals, focusing on reducing greenhouse gas emissions and fostering sustainable energy practices, including next-generation building upgrades that lower demand. The USDA's support will also promote energy independence in rural areas, enabling local cooperatives to meet the energy demands of their communities while decreasing reliance on fossil fuels.

The funding is expected to have a far-reaching impact, not only reducing carbon footprints but also creating jobs in the renewable energy and construction sectors. By modernizing energy infrastructure, rural electric cooperatives can expand access to clean, affordable energy while contributing to the nationwide shift toward a more sustainable energy future.

The USDA’s commitment to supporting rural electric cooperatives marks a significant step in the transition to a more resilient and sustainable energy grid, mirroring grid modernization projects in Canada seen in recent years. By investing in renewables and modernizing transmission and storage systems, the government aims to improve energy access and reliability in rural communities, ultimately driving the growth of a cleaner, more energy-efficient economy.

As part of the initiative, the USDA has also highlighted its commitment to helping rural cooperatives navigate the challenges of implementing new technologies and infrastructure. The agency has pledged to provide technical assistance, ensuring that cooperatives have the resources and expertise needed to successfully complete these projects.

In conclusion, the USDA’s $4.37 billion investment represents a significant effort to improve the energy landscape of rural America. By supporting the development of renewable energy, energy storage, and transmission upgrades, the USDA is not only fostering a cleaner energy future but also enhancing the resilience of rural communities. This initiative will contribute to the nationwide transition toward a sustainable, low-carbon economy, ensuring that rural areas are not left behind in the global push for renewable energy.

 

Related News

View more

'That can keep you up at night': Lessons for Canada from Europe's power crisis

Canada Net-Zero Grid Lessons highlight Europe's energy transition risks: Germany's power prices, wind and solar variability, nuclear phaseout, grid reliability, storage, market design, policy reforms, and distributed energy resources for resilient decarbonization.

 

Key Points

Lessons stress an all-of-the-above mix, robust market design, storage, and nuclear to ensure reliability, affordability.

✅ Diversify: nuclear, hydro, wind, solar, storage for reliability.

✅ Reform markets and grid planning for integration and flexibility.

✅ Build fast: streamline permitting, invest in transmission and DERs.

 

Europe is currently suffering the consequences of an uncoordinated rush to carbon-free electricity that experts warn could hit Canada as well unless urgent action is taken.

Power prices in Germany, for example, hit a record 91 euros ($135 CAD) per megawatt-hour earlier this month. That is more than triple what electricity costs in Ontario, where greening the grid could require massive investment, even during periods of peak demand.

Experts blame the price spikes in large part on a chaotic transition to a specific set of renewable electricity sources - wind and solar - at the expense of other carbon-free supplies such as nuclear power. Germany, Europe’s largest economy, plans to close its last remaining nuclear power plant next year despite warnings that renewables are not being added to the German grid quickly enough to replace that lost supply.

As Canada prepares to transition its own electricity grid to 100 per cent net-zero supplies by 2035, with provinces like Ontario planning new wind and solar procurement, experts say the European power crisis offers lessons this country must heed in order to avoid a similar fate.

'A CAUTIONARY TALE'
“Some countries have rushed their transition without thinking about what people need and when they need it,” said Chris Bentley, managing director of Ryerson University’s Legal Innovation Zone who also served as Ontario’s Minister of Energy from 2011 to 2013, in an interview. “Germany has experienced a little bit of this issue recently when the wind wasn’t blowing.”

Wind power usually provides between 20 and 30 per cent of Germany’s electricity needs, but the below-average breeze across much of continental Europe in recent months has pushed that figure down.

“There is a cautionary tale from the experience in Europe,” said Francis Bradley, chief executive officer of the Canadian Electricity Association, in an interview. “There was also a cautionary tale from what took place this past winter in Texas,” he added, referring to widespread power failures in Texas spawned by a lack of backup power supplies during an unusually cold winter that led to many deaths.

The first lesson Canada must learn from those cautionary tales, Bradley said, “is the need to pursue an all-of-the-above approach.”

“It is absolutely essential that every opportunity and every potential technology for low-carbon or no-carbon electricity needs to be pursued and needs to be pursued to the fullest,” he said.

The more important lesson for Canada, according to Binnu Jeyakumar, is about the need for a more holistic, nuanced approach to our own net-zero transition.

“It is very easy to have runaway narratives that just pinpoint the blame on one or two issues, but the lesson here isn’t really about the reliability of renewables as there are failures that occur across all sources of electricity supply,” said Jeyakumar, director of clean energy for the Pembina Institute, in an interview. 

“The takeaway for us is that we need to get better at learning how to integrate an increasingly diverse electricity grid,” she said. “It is not necessarily the technologies themselves, it is about how we do grid planning, how are our markets structured and are we adapting them to the trends that are evolving in the electricity and energy sectors.”
 

'ABSOLUTELY ENORMOUS' CHALLENGE IS 'ALMOST MIND-BENDING'
Canada already gets the vast majority of its electricity from emission-free sources. Hydro provides roughly 60 per cent of our power, nuclear contributes another 15 per cent and renewables such as wind and solar contribute roughly seven per cent more, according to federal government data.

Tempting as it might be to view the remaining 18 per cent of Canadian electricity that is supplied by oil, natural gas and coal as a small enough proportion that it should be relatively easy to replace, with some analyses warning that scrapping coal abruptly can be costly for consumers, the reality is much more difficult.

“It is the law of diminishing returns or the 80-20 rule where the first 80 per cent is easy but the last 20 per cent is hard,” Bradley explained. “We already have an electricity sector that is 80 per cent GHG-free, so getting rid of that last 20 per cent is the really difficult part because the low-hanging fruit has already been picked.”

Key to successfully decarbonizing Canada’s power grid will be the recognition that electricity demand is constantly growing, a point reinforced by a recent power challenges report that underscores the scale. That means Canada needs to build out enough emission-free power sources to replace existing fossil fuel-based supplies while also ensuring adequate supplies for future demand.


“It is one thing to say that by 2035 we are going to have a decarbonized electricity system, but the challenge really is the amount of additional electricity that we are going to need between now and 2035,” said John Gorman, chief executive officer of the Canadian Nuclear Association, which has argued that nuclear is key to climate goals in Canada, and former CEO of the Canadian Solar Industries Association, in an interview. “It is absolutely enormous, I mean, it is almost mind-bending.”

Canada will need to triple the amount of electricity produced nationwide by 2050, according to a report from SNC-Lavalin published earlier this year, and provinces such as Ontario face a shortfall over the next few years, Gorman said. Gorman said that will require adding between five and seven gigawatts of new installed capacity to Canada’s electricity grid every year from 2021 through 2050 or more than twice the amount of new power supply Canada brings online annually right now.

For perspective, consider Ontario’s Bruce Power nuclear facility. It took 27 years to bring that plant to its current 6.4 gigawatt (GW) capacity, but meeting Canada’s decarbonization goals will require adding roughly the equivalent capacity of Bruce Power every year for the next three decades.

“The task of creating enough electricity in the coming years is truly enormous and governments have not really wrapped their heads around that yet,” Gorman said. “For those of us in the energy sector, it is the type of thing that can keep you up at night.”

GOVERNMENT POLICY 'HELD HOSTAGE' BY 'DINOSAURS'
The Pembina Institute’s Jeyakumar agreed “the last mile is often the most difficult” and will require “a concerted effort both at the federal level and the provincial level.”

Governments will “need to be able to support innovation and solutions such as non-wires alternatives,” she said. “Instead of building a massive new transmission line or beefing up an old one, you could put a storage facility at the end of an existing line. Distributed energy resources provide those kinds of non-wires alternatives and they are already cost-effective and competitive with oil and gas.”

For Glen Murray, who served as Ontario’s minister of infrastructure and transportation from early 2013 to mid-2014 before assuming the environment and climate change portfolio until his resignation in mid-2017, that is a key lesson governments have yet to learn.

“We are moving away from a centralized distribution model to distributed systems where individual buildings and homes and communities will supply their own electricity needs,” said Murray, who currently works for an urban planning software company in Winnipeg, in an interview. “Yet both the federal and provincial governments are assuming that we are going to continue to have large, centralized generation of power, but that is simply not going to be the case.”

“Government policy is not focused on driving that because they are held hostage by their own hydro utilities and the big gas companies,” Murray said. “They are controlling the agenda even though they are the dinosaurs.”

Referencing the SNC-Lavalin report, Gorman noted as many as 45 small, modular nuclear reactors as well as 20 conventional nuclear power plants will be required in the coming decades, with jurisdictions like Ontario exploring new large-scale nuclear as part of that mix: “And that is in the context of also maximizing all the other emission-free electricity sources we have available as well from wind to solar to hydro and marine renewables,” Gorman said, echoing the “all-of-the-above” mindset of the Canadian Electricity Association.

There are, however, “fundamental rules of the market and the regulatory system that make it an uneven playing field for these new technologies to compete,” said Jeyakumar, agreeing with Murray’s concerns. “These are all solvable problems but we need to work on them now.”
 

'2035 IS TOMORROW'
According to Bentley, the former Ontario energy minister-turned academic, “the government's role is to match the aspiration with the means to achieve that aspiration.”

“We have spent far more time as governments talking about the goals and the high-level promises [of a net-zero electricity grid by 2035] without spending as much time as we need to in order to recognize what a massive transformation this will mean,” Bentley said. “It is easy to talk about the end-goal, but how do you get there?”

The Canadian Electricity Assocation’s Bradley agreed “there are still a lot of outstanding questions about how we are going to turn those aspirations into actual policies. The 2035 goal is going to be very difficult to achieve in the absence of seeing exactly what the policies are that are going to move us in that direction.”

“It can take a decade to go through the processes of consultations and planning and then building and getting online,” Bradley said. “Particularly when you’re talking about big electricity projects, 2035 is tomorrow.”

Jeyakumar said “we cannot afford to wait any longer” for policies to be put in place as the decisions governments make today “will then lock us in for the next 30 or 40 years into specific technologies.”

“We need to consider it like saving for retirement,” said Gorman of the Canadian Nuclear Association. “Every year that you don’t contribute to your retirement savings just pushes your retirement one more year into the future.”

 

Related News

View more

Canadians Support Tariffs on Energy and Minerals in U.S. Trade Dispute

Canada Tariffs on U.S. Energy and Minerals signal retaliatory tariffs amid trade tensions, targeting energy exports and critical minerals, reflecting sovereignty concerns and shifting consumer behavior, reduced U.S. purchases, and demand for Canadian-made goods.

 

Key Points

They are proposed retaliatory tariffs on energy exports and critical minerals to counter U.S. trade pressures.

✅ 75% support tariffs; 70% back dollar-for-dollar retaliation

✅ Consumer shift: fewer U.S. purchases, more Canadian-made goods

✅ Concerns over sovereignty and U.S. trade tactics intensify

 

A recent survey has revealed that a significant majority of Canadians—approximately 75%—support the implementation of tariffs on energy exports and critical minerals in response to electricity exports at risk amid trade tensions with the United States. This finding underscores the nation's readiness to adopt assertive measures to protect its economic interests amid escalating trade disputes.​

Background on Trade Tensions

The trade relationship between Canada and the United States has experienced fluctuations in recent years, with both nations navigating complex issues related to tariffs and energy tariffs and trade tensions as well as trade agreements and economic policies. The introduction of tariffs has been a contentious strategy, often leading to reciprocal measures and impacting various sectors of the economy.​

Public Sentiment Towards Retaliatory Tariffs

The survey, conducted by Leger between February 14 and 17, 2025, sampled 1,500 Canadians and found that 70% favored implementing dollar-for-dollar retaliatory tariffs against the U.S. Notably, 45% of respondents were strongly in favor, while 25% were somewhat in favor. This strong support reflects widespread dissatisfaction with U.S. trade policies and growing support for Canadian energy projects among voters, alongside a collective sentiment favoring decisive action. ​

Concerns Over U.S. Economic Strategies

The survey also highlighted that 81% of Canadians are apprehensive about potential U.S. economic tactics aimed at drawing Canada into a closer political union. These concerns are fueled by statements from U.S. President Donald Trump, who has suggested annexation and employed tariffs that could spike NY energy prices to influence Canadian sovereignty. Such sentiments have heightened fears about the erosion of Canada's political autonomy under economic duress. ​

Impact on Consumer Behavior

In response to these trade tensions, including reports that Ford threatened to cut U.S. electricity exports, many Canadians have adjusted their purchasing habits. The survey indicated that 63% of respondents are buying fewer American products in stores, and 62% are reducing online purchases from U.S. retailers. Specific declines include a 52% reduction in Amazon purchases, a 50% drop in fast-food consumption from American chains, and a 43% decrease in spending at U.S.-based retail stores. Additionally, 30% of Canadians have canceled planned trips to the United States, while 68% have increased their purchases of Canadian-made products. These shifts demonstrate a tangible impact on consumer behavior driven by nationalistic sentiments and support for retaliatory measures. ​

Economic and Political Implications

The widespread support for retaliatory tariffs and the corresponding changes in consumer behavior have significant economic and political implications. Economically, while tariffs can serve as a tool for asserting national interests, they also risk triggering trade wars that can harm various sectors, including agriculture, manufacturing, and technology, with experts cautioning against cutting Quebec's energy exports in response. Politically, the situation presents a challenge for Canadian leadership to balance assertiveness in defending national interests with the necessity of maintaining a stable and mutually beneficial relationship with the U.S., Canada's largest trading partner.​

As Canada approaches its federal elections, trade policy is emerging as a pivotal issue. Voters are keenly interested in how political parties propose to navigate the complexities of international trade, particularly with the United States and how a potential U.S. administration's stance, such as Biden's approach to the energy sector could shape outcomes. The electorate's strong stance on retaliatory tariffs may influence party platforms and campaign strategies, emphasizing the need for clear and effective policies that address both the immediate concerns of trade disputes and the long-term goal of sustaining positive international relations.​

The survey results reflect a nation deeply engaged with its trade dynamics and protective of its sovereignty. While support for retaliatory tariffs is robust, it is essential for policymakers to carefully consider the broader consequences of such actions. Striking a balance between defending national interests and fostering constructive international relationships will be crucial as Canada navigates these complex trade challenges in the coming years.

 

Related News

View more

COVID-19 closures: It's as if Ottawa has fallen off the electricity grid

Ontario Electricity Demand Drop During COVID-19 reflects a 1,000-2,000 MW decline as IESO balances the grid, shifts peak demand later, throttles generators and baseload nuclear, and manages exports amid changing load curves.

 

Key Points

An about 10% reduction in Ontario's load, shifting peaks and requiring IESO grid balancing measures.

✅ Demand down 1,000-2,000 MW; roughly 10% below normal.

✅ Peak shifts later in morning as home use rises.

✅ IESO throttles generators; baseload nuclear stays online.

 

It’s as if the COVID-19 epidemic had tripped a circuit breaker, shutting off all power to a city the size of Ottawa.

Virus-induced restrictions that have shut down large swaths of normal commercial life across Canada has led to a noticeable drop in demand for power in Ontario and reflect a global demand dip according to reports, insiders said on Friday.

Terry Young, vice-president with the Independent Electricity System Operator, said planning was underway for further declines in usage and for whether Ontario will embrace more clean power in the long term, given the delicate balance that needs to be maintained between supply and demand.

“We’re now seeing demand that is running about 1,000 to 2,000 megawatts less than we would normally see,” Young said. “You’re essentially seeing a city the size of Ottawa drop off demand during the day.”

At the high end, a 2,000 megawatt reduction would be close to the equivalent peak demand of Ottawa and London, Ont., combined.

The decline, in the order of 10 per cent from the 17,000 to 18,000 megawatts of usage that might normally be expected and similar to the UK’s 10% drop reported during lockdowns, began last week, Young said. The downward trend became more noticeable as governments and health authorities ordered non-essential businesses to close and people to stay home. However, residential and hospital usage has climbed.

Experts say frequent hand-washing and staying away from others is the most effective way to curb the spread of the highly contagious coronavirus, which poses a special risk to older people and those with underlying health conditions. As a result, factories and other big users have reduced production or closed entirely.

Because electricity cannot be stored, generators need to throttle back their output as domestic demand shrinks and exports to places such as the United States, including New York City, which is also being hit hard by the coronavirus, fall.

“We’re watching this carefully,” Young said. “We’re able to manage this drop, but it’s something we obviously have to keep watching…and making sure we’re not over-generating electricity.”

Turning off generation, especially for nuclear plants, is an intensive process, as are restarts and would likely happen only if the downward demand trend intensifies significantly, amid concerns over Ontario’s electricity getting dirtier if baseload is displaced. However, one of North America’s largest generators, Bruce Power near Kincardine, Ont., said it had a large degree of flexibility to scale down or up.

“We have the ability to provide one-third of our output as a dynamic response, which is unique to our facility,” said James Scongack, an executive vice-president with Bruce Power. “We developed this coming out of the 2008 downturn and it’s been a critical system asset for the last decade.”

“We don’t see there being a scenario where our baseload will not be needed,” he said, even as some warn Ontario may be short of electricity in the coming years.

The province’s publicly owned Ontario Power Generation said it was also in conversations with the system operator, which provides direction to generators, and is often cited in the Ontario election discussion.

One clear shift in normal work-day usage with so many people staying at home has been the change in demand patterns. Typically, Young said, there’s a peak from about 7 a.m. to 8 a.m. as people wake and get ready to go to work or school. The peak is now occurring later in the morning, Young said.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified