German Energy Demand Hits Historic Low Amid Economic Stagnation


german-energy-demand-hits-historic-low-amid-economic-stagnation

CSA Z462 Arc Flash Training - Electrical Safety Essentials

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today

Germany Energy Demand Decline reflects economic stagnation, IEA forecasts, and the Energiewende, as industrial output slips and efficiency gains, renewables growth, and cost-cutting reduce fossil fuel use while reshaping sustainability and energy security.

 

Key Points

A projected 7% drop in German energy use driven by industrial slowdown, efficiency gains, and renewables expansion.

✅ IEA projects up to 7% demand drop in the next year

✅ Industrial slowdown and efficiency programs cut consumption

✅ Energiewende shifts mix to wind, solar, and less fossil fuel

 

Germany is on the verge of experiencing a significant decline in energy demand, with forecasts suggesting that usage could hit a record low as the country grapples with economic stagnation. This shift highlights not only the immediate impacts of sluggish economic growth but also broader trends in energy consumption, Europe's electricity markets, sustainability, and the transition to renewable resources.

Recent data indicate that Germany's economy is facing substantial challenges, including high inflation and reduced industrial output. As companies struggle to maintain profitability amid nearly doubled power prices and rising costs, many have begun to cut back on energy consumption. This retrenchment is particularly pronounced in energy-intensive sectors such as manufacturing and chemical production, which are crucial to Germany's export-driven economy.

The International Energy Agency (IEA) has projected that German energy demand could decline by as much as 7% in the coming year, a stark contrast to the trends seen in previous decades. This decline is primarily driven by a combination of factors, including reduced industrial activity, increased energy efficiency measures, and a shift toward alternative energy sources, as well as mounting pressures on local utilities to stay solvent. The current economic landscape has led businesses to prioritize cost-cutting measures, including energy efficiency initiatives aimed at reducing consumption.

In the context of these developments, Germany’s energy transition—known as the "Energiewende"—is becoming increasingly significant. The country has made substantial investments in renewable energy sources such as wind, solar, and biomass in recent years. As energy efficiency improves and the share of renewables in the energy mix rises, traditional fossil fuel consumption has begun to wane. This transition is seen as both a response to climate change and a strategy for energy independence, particularly in light of geopolitical tensions and Europe's wake-up call to ditch fossil fuels across the continent.

However, the current stagnation presents a paradox for the German energy sector. While lower energy demand may ease some pressures on supply and prices, it also raises concerns about the long-term viability of investments in renewable energy infrastructure, even as debates continue over electricity subsidies for industry to support competitiveness. The economic slowdown has the potential to derail progress made in reducing carbon emissions and achieving energy targets, particularly if it leads to decreased investment in green technologies.

Another layer to this issue is the potential impact on employment within the energy sector. As energy demand decreases, there may be a ripple effect on jobs tied to traditional energy production and even in renewable energy sectors if investment slows. Policymakers are now tasked with balancing the immediate need for economic recovery, illustrated by the 200 billion-euro energy price shield, with the longer-term goal of achieving sustainability and energy security.

The effects of the stagnation are also being felt in the residential sector. As households face increased living costs and rising heating and electricity costs, many are becoming more conscious of their energy consumption. Initiatives to improve home energy efficiency, such as better insulation and energy-efficient appliances, are gaining traction among consumers looking to reduce their utility bills. This shift toward energy conservation aligns with broader national goals of reducing overall energy consumption and carbon emissions.

Despite the challenges, there is a silver lining. The current situation offers an opportunity for Germany to reassess its energy strategies and invest in technologies that promote sustainability while also addressing economic concerns. This could include increasing support for research and development in green technologies, enhancing energy efficiency programs, and incentivizing businesses to adopt cleaner energy practices.

Furthermore, Germany’s experience may serve as a case study for other nations grappling with similar issues. As economies around the world face the dual pressures of recovery and sustainability, the lessons learned from Germany’s current energy landscape could inform strategies for balancing these often conflicting priorities.

In conclusion, Germany is poised to witness a historic decline in energy demand as economic stagnation takes hold. While this trend poses challenges for the energy sector and economic growth, it also highlights the importance of sustainability and energy efficiency in shaping the future. As the nation navigates this complex landscape, the focus will need to be on fostering innovation and investment that aligns with both immediate economic needs and long-term environmental goals. The path forward will require a careful balancing act, but with the right strategies, Germany can emerge as a leader in sustainable energy practices even in challenging times.

 

Related News

Related News

The Rise of Data Centers in Alberta

Alberta Data Centers fuel the digital economy with cloud computing, AI, and streaming, leveraging renewable energy and low-cost power; yet grid capacity, sustainability, efficient cooling, and regulatory frameworks remain critical considerations for reliable growth.

 

Key Points

Alberta facilities for cloud, AI, and digital services, balancing energy demand, renewable power, and grid reliability.

✅ Low electricity costs and renewables attract hyperscale builds

✅ Grid upgrades needed to meet rising, 24/7 workloads and cooling

✅ Workforce training aligns with IT, HVAC, and electrical roles

 

As Alberta continues to evolve its energy landscape, the recent surge in data center projects is making headlines. With companies investing heavily in this sector, Alberta is positioning itself as a key player in the digital economy. This trend, however, brings both opportunities and challenges that need careful consideration.

The Digital Economy Boom

Data centers are essential for supporting the growing demands of the digital economy, which includes everything from cloud computing to streaming services and artificial intelligence. As businesses increasingly rely on digital infrastructure, the need for reliable and efficient data centers has skyrocketed. Alberta has become an attractive destination for these facilities due to its relatively low electricity costs, abundant renewable energy resources, and favorable regulatory environment, according to a 2023 clean grids outlook that highlighted the province.

The influx of major tech companies establishing data centers in Alberta not only promises job creation but also contributes to the provincial economy. With investments pouring in, local businesses may see increased opportunities for partnerships, supplies, and services, ultimately benefiting the broader economic landscape, though proposed market changes could influence procurement and siting decisions.

Energy Demand and Infrastructure

While the growth of data centers can drive economic benefits, it also raises important questions about energy demand and infrastructure capacity, questions that have intensified since Kenney-era electricity changes in the sector. Data centers are energy-intensive, often requiring significant amounts of electricity to operate and cool their servers. As these facilities multiply, they will place additional pressure on Alberta's power grid.

The province has made strides in transitioning to renewable energy sources, with a defined path to clean electricity that aligns well with the goals of many data center operators seeking to reduce their carbon footprint. However, the challenge lies in ensuring that the electricity grid can meet the increasing demand without compromising reliability. The integration of more renewable energy into the grid requires careful planning and investment in infrastructure to handle variable supply and maintain a stable energy flow.

Environmental Concerns

The environmental implications of expanding data centers are also a point of concern. While many tech companies prioritize sustainability and aim for carbon neutrality, the reality is that increased energy consumption can contribute to greenhouse gas emissions if not managed properly, especially when regional export restrictions constrain low-carbon power flows. Alberta’s reliance on fossil fuels for a significant portion of its energy supply raises questions about how these data centers will impact the province's climate goals.

To address these concerns, there is a need for policies that encourage the use of renewable energy sources specifically for data center operations. Incentives for companies to invest in green technologies, such as energy-efficient cooling systems or on-site renewable energy generation, could help mitigate the environmental impact.

Workforce Development

Another critical aspect of this data center boom is the potential for job creation. Data centers require a range of skilled workers, from IT professionals to engineers and maintenance staff. However, there is a pressing need for workforce development initiatives to ensure that Albertans are equipped with the necessary skills to fill these roles.

Educational institutions and training programs must adapt to the changing demands of the job market. Collaborations between tech companies and local colleges can foster specialized training programs that prepare workers for careers in this evolving sector. By investing in workforce development, Alberta can maximize the benefits of data center growth while ensuring that its residents are prepared for the jobs of the future.

The Future of Alberta's Data Center Landscape

Looking ahead, Alberta’s data center landscape is poised for continued growth. The province's commitment to diversifying its economy, coupled with its abundant energy resources, makes it an appealing choice for tech companies. However, as the industry expands, careful consideration must be given to energy management, environmental impact, and workforce readiness, especially as Alberta changes how it produces and pays for electricity.

Regulatory frameworks will play a crucial role in shaping the future of data centers in Alberta, as the province pursues a market overhaul that could affect costs and reliability. Policymakers will need to balance the interests of businesses, environmental concerns, and the need for a reliable energy supply. By creating a supportive environment for innovation while addressing these challenges, Alberta can emerge as a leader in the digital economy.

The rise of data centers in Alberta marks an exciting chapter in the province's economic evolution. With the potential for job creation, technological advancement, and economic diversification, the opportunities are significant. However, it is essential to navigate the associated challenges thoughtfully. By prioritizing sustainability, infrastructure investment, and workforce development, Alberta can harness the full potential of this burgeoning sector, positioning itself as a key player in the global digital landscape.

 

Related News

View more

How IRENA Study Will Resolve Philippines’ Electricity Crisis

Philippines Renewable Energy Mini-Grids address rising electricity demand, rolling blackouts, off-grid electrification, and decentralized power in an archipelago, leveraging solar, wind, and hybrid systems to close the generation capacity gap and expand household access.

 

Key Points

Decentralized solar, wind, and hybrid systems powering off-grid areas to relieve shortages and expand access.

✅ Targets 2.3M unelectrified homes with reliable clean power

✅ Mitigates rolling blackouts via modular mini-grid deployments

✅ Supports energy access, resilience, and grid decentralization

 

The reason why IRENA made its study in the Philippines is because of the country’s demand for electricity is on a steady rise while the generating capacity lags behind. To provide households the electricity, the government is constrained to implement rolling blackouts in some regions. By 2030, the demand for electricity is projected to reach 30 million kilowatts as compared to 17 million kilowatts which is its current generating capacity.

One of the country’s biggest conglomerations, San Miguel Corporation is accountable for almost 20% of power output. It has power plants that has a 900,000-kW generation capacity. Another corporation in the energy sector, Aboitiz Power, has augmented its facilities as well to keep up with the demand. As a matter fact, even foreign players such as Tokyo Electric Power and Marubeni, as a result of the gradual privatization of the power industry which started in 2001, have built power plants in the country, a challenge mirrored in other regions where electricity for all demands greater investment, yet the power supply remains short.

And so, the IRENA came up with the study entitled “Accelerating the Deployment of Renewable Energy Mini-Grids for Off-Grid Electrification – A Study on the Philippines” to provide a clearer picture of what the current state of the crisis is and lay out possible solutions. It showed that as of 2016, a record year for renewables worldwide, the Philippines has approximately 2.3 million households without electricity. With only 89.6 percent of household electrification, that leaves about 2.36 million homes either with limited power of four to six hours each day or totally without electricity.

By the end of 2017, the Philippine government will have provided 90% of Philippine households with electricity. It is worth mentioning that in 2014, the National Capital Region together with two other regions had received 90 percent electrification. However, some areas are still unable to access power that’s within or above the national average. IRENA’s study has become a source of valuable information and analysis to the Philippines’ power systems and identified ways on how to surmount the challenges involving power systems decentralization, with renewable energy funding supporting those mini-grids which are either powered in parts or in full by renewable energy resources. This, however, does not discount the fact that providing electricity in every household still is an on-going struggle. Considering that the Philippines is an archipelago, providing enough, dependable, and clean modern energy to the entire country, including the remote and isolated islands is difficult. The onset of renewable energy is a viable and cost-effective option to support the implementation of mini-grids, as shown by Ireland's green electricity targets rising rapidly.

 

 

Related News

View more

Illinois electric utility publishes online map of potential solar capacity

ComEd Hosting Capacity Map helps Illinois communities assess photovoltaic capacity, distributed energy resources, interconnection limits, and grid planning needs, guiding developers and policymakers on siting solar, net metering feasibility, and RPS-aligned deployment by circuit.

 

Key Points

An online tool showing circuit-level DER capacity, PV limits, and interconnection readiness across ComEd.

✅ Circuit-level estimates of solar hosting capacity

✅ Guides siting, interconnection, and net metering

✅ Supports RPS goals with grid planning insights

 

As the Illinois solar market grows from the Future Energy Jobs Act, the largest utility in the state has posted a planning tool to identify potential PV capacity in their service territory. ComEd, a Northern Illinois subsidiary of Exelon, has a hosting capacity website for its communities indicating how much photovoltaic capacity can be sited in given areas, based on the existing electrical infrastructure, as utilities pilot virtual power plant programs that leverage distributed resources.

According to ComEd’s description, “Hosting Capacity is an estimate of the amount of DER [distributed energy resources] that may be accommodated under current configurations at the overall circuit level without significant system upgrades to address adverse impacts to power quality or reliability.” This website will enable developers and local decision makers to estimate how much solar could be installed by township, sections and fractions of sections as small as ½ mile by ½ mile and to gauge EV charging impacts with NREL's projection tool for distribution planning. The map sections indicate potential capacity by AC kilowatts with a link to to ComEd’s recently upgraded Interconnection and Net Metering homepage.

The Hosting Map can provide insight into how much solar can be installed in which locations in order to help solar reach a significant portion of the Illinois Renewable Portfolio Standard (RPS) of 25% electricity from renewable sources by 2025, and to plan for transportation electrification as EV charging infrastructure scales across utility territories. For example, the 18 sections of Oak Park Township capacity range from 612 to 909 kW, and total 13,260 kW of photovoltaic power. That could potentially generate around 20 million kWh, and policy actions such as the CPUC-approved PG&E EV program illustrate how electrification initiatives may influence future demand. Oak Park, according to the PlanItGreen Report Card, a joint project of the Oak Park River Forest Community Foundation and Seven Generations Ahead, uses about 325 million kWh.

Based on ComEd’s Hosting Capacity, Oak Park could generate about 6% of its electricity from solar power located within its borders. Going significantly beyond this amount would likely require a combination of upgrades by ComEd’s infrastructure, potentially higher interconnection costs and deployment of technologies like energy storage solutions. What this does indicate is that a densely populated community like Oak Park would most likely have to get the majority of its solar and renewable electricity from outside its boundaries to reach the statewide RPS goal of 25%. The Hosting Capacity Map shows a considerable disparity among communities in ½ mile by ½ mile sections with some able to host only 100-200 kWs to some with capacities of over 3,000 kW.

 

Related News

View more

Power Outage in Northeast D.C.

Northeast D.C. Power Outage highlights Pepco substation equipment failure, widespread service disruptions, grid reliability concerns, and restoration efforts, with calls for smart grid upgrades, better communication, and resilient infrastructure to protect residents, schools, and businesses.

 

Key Points

A Pepco substation failure caused outages, prompting restoration work and plans for smarter, resilient grid upgrades.

✅ Pepco cites substation equipment failure as root cause

✅ Crews prioritized rapid restoration and customer updates

✅ Calls grow for smart grid, resilience, and transparency

 

A recent power outage affecting Northeast Washington, D.C., has drawn attention to the vulnerabilities within the city’s energy infrastructure. The outage, caused by equipment failure at a Pepco substation, left thousands of residents in the dark and raised concerns about the reliability of electricity services in the area.

The Outage: What Happened?

On a typically busy weekday morning, Pepco, the local electric utility, reported significant power disruptions that affected several neighborhoods in Northeast D.C. Initial reports indicated that around 3,000 customers were without electricity due to issues at a nearby substation. The outages were widespread, impacting homes, schools, and businesses, and reflecting pandemic energy insecurity seen in many communities, creating a ripple effect of inconvenience and frustration.

Residents experienced not only the loss of power but also disruptions in daily activities. Many were unable to work from home, students faced challenges with remote learning, and businesses had to close or operate under limited conditions. The timing of the outage further exacerbated the situation, as it coincided with a period of increased demand for electricity, making efforts to prevent summer outages even more crucial for residents and businesses.

Community Response

In the wake of the outage, local community members and leaders quickly mobilized to assess the situation. Pepco crews were dispatched to restore power as swiftly as possible, but residents were left grappling with the immediate consequences. Local organizations and community leaders stepped in to provide support, especially as extreme heat can exacerbate electricity struggles for vulnerable households, offering resources such as food and shelter for those most affected.

Social media became a vital tool for residents to share information and updates about the situation. Many took to platforms like Twitter and Facebook to report their experiences and seek assistance. This grassroots communication helped keep the community informed and fostered a sense of solidarity during the disruption.

The Utility's Efforts

Pepco’s response involved not only restoring power but also addressing the underlying issues that led to the outage. The utility company communicated its commitment to investigating the cause of the equipment failure and ensuring that similar incidents would be less likely in the future. As part of this commitment, Pepco outlined plans for infrastructure upgrades, despite supply-chain constraints facing utilities nationwide, aimed at enhancing reliability across its service area.

Moreover, Pepco emphasized the importance of communication during outages. The company has been working to improve its notification systems, ensuring that customers receive timely updates about outages and restoration efforts. Enhanced communication can help mitigate the frustration experienced during such events and keep residents informed about when they can expect power to be restored.

Broader Implications for D.C.'s Energy Infrastructure

This recent outage has sparked a larger conversation about the resilience of Washington, D.C.’s energy infrastructure. As the city continues to grow and evolve, the demand for reliable electricity is more critical than ever. Frequent outages can undermine public confidence in utility providers and highlight the need for ongoing investment in infrastructure amid an aging U.S. grid that complicates renewable deployment and EV adoption across the country.

Experts suggest that to ensure a more reliable energy supply, utilities must embrace modernization efforts, including the integration of smart grid technology and renewable energy sources. These innovations can enhance the ability to manage electricity supply and demand, especially during unprecedented demand in the Eastern U.S. when heatwaves strain systems, reduce outages, and improve response times during emergencies.

The Path Forward

In response to the outage, community advocates are calling for greater transparency from Pepco and other utility companies. They emphasize the importance of holding utilities accountable for maintaining reliable service and communicating effectively with customers, while also promoting customer bill-reduction initiatives that help households manage costs. Public forums and discussions about energy policy can empower residents to voice their concerns and contribute to solutions.

As D.C. looks to the future, it is essential to prioritize investments in energy infrastructure that can withstand the demands of a growing population. Collaborations between local government, utility companies, and community organizations can drive initiatives aimed at enhancing resilience and ensuring that all residents have access to reliable electricity.

The recent power outage in Northeast D.C. serves as a reminder of the challenges facing urban energy infrastructure. While Pepco's efforts to restore power and improve communication are commendable, the incident highlights the need for long-term solutions to enhance reliability. By investing in modern technology and fostering community engagement, D.C. can work towards a more resilient energy future, ensuring that residents can count on their electricity service even in times of crisis.

 

Related News

View more

New Rules for a Future Puerto Rico Microgrid Landscape

Puerto Rico Microgrid Regulations outline renewable energy, CHP, and storage standards, enabling islanded systems, PREPA interconnection, excess energy sales, and IRP alignment to boost resilience, distributed resources, and community power across the recovering grid.

 

Key Points

Rules defining microgrids, requiring 75 percent renewables or CHP, and setting interconnection and PREPA fee frameworks.

✅ 75 percent renewables or CHP; hybrids allowed

✅ Registration, engineer inspection, and annual generation reports

✅ PREPA interconnection fees; excess energy sales permitted

 

The Puerto Rico Energy Commission unveiled 29 pages of proposed regulations last week for future microgrid installations on the island.

The regulations, which are now open for 30 days of public comment, synthesized pages of responses received after a November 10 call for recommendations. Commission chair José Román Morales said it’s the most interest the not-yet four-year-old commission has received during a public rulemaking process.

The goal was to sketch a clearer outline for a tricky-to-define concept -- the term "microgrid" can refer to many types of generation islanded from the central grid -- as climate pressures on the U.S. grid mount and more developers eye installations on the recovering island.

“There’s not a standard definition of what a microgrid is, not even on the mainland,” said Román Morales.

According to the commission's regulation, “a microgrid shall consist, at a minimum, of generation assets, loads and distribution infrastructure. Microgrids shall include sufficient generation, storage assets and advanced distribution technologies, including advanced inverters, to serve load under normal operating and usage conditions.”

All microgrids must be renewable (with at least 75 percent of power from clean energy), combined heat and power (CHP) or hybrid CHP-and-renewable systems. The regulation applies to microgrids controlled and owned by individuals, customer cooperatives, nonprofit and for-profit companies, and cities, but not those owned by the Puerto Rico Electric Power Authority (PREPA). Owners must submit a registration application for approval, including a certification of inspection from a licensed electric engineer, and an annual fuel, generation and sales report that details generation and fuel source, as well as any change in the number of customers served.

Microgrids, like the SDG&E microgrid in Ramona in California, can interconnect with the PREPA system, but if a microgrid will use PREPA infrastructure, owners will incur a monthly fee. That amounts to $25 per customer up to a cap of $250 per month for small cooperative microgrids. The cost for larger systems is calculated using a separate, more complex equation. Operators can also sell excess energy back to PREPA.

 

Big goals for the island's future grid

In total, 53 groups and companies, including Sunnova, AES, the Puerto Rico Solar Energy Industries Association (PR-SEIA), the Advanced Energy Management Alliance (AEMA), and the New York Smart Grid Consortium, submitted their thoughts about microgrids or, in many cases, broader goals for the island’s future energy system. It was a quick turnaround: The Puerto Rico Energy Commission offered a window of just 10 days to submit advice, although the commission continued to accept comments after the deadline.

“PREC wanted the input as fast as possible because of the urgency,” said AES CEO Chris Shelton.

AES’ plan includes a network of “mini-grids” that could range in size from several megawatts to one large enough to service the entire city of San Juan.

“The idea is, you connect those to each other with transmission so they can have a co-optimized portfolio effect and lower the overall cost,” said Shelton. “But they would be largely autonomous in a situation where the tie-lines between them were broken.”

According to estimates provided in AES’ filing, utility-scale solar installations over 50 megawatts on the island could cost between $40 and $50 per megawatt-hour. Those prices make solar located near load centers an economic alternative to the island’s fossil-fuel generating plants. The utility’s analysis showed that a 10,000-megawatt solar system could replace 12,000 gigawatt-hours of fossil generation, with 25 gigawatt-hours of battery storage leveling out load throughout the day. Puerto Rico’s peak load is 3,000 megawatts.

In other filings, PR-SEIA urged a restructuring of FEMA funds so they’re available for microgrid development. GridWise Alliance wrote that plans should consider cybersecurity, and AEMA recommended the commission develop an integrated resource plan (IRP) that includes distributed energy resources, microgrids and non-wires alternatives.

 

An air of optimism, though 1.5 million are still without power

After the commission completes the microgrid rulemaking, a new IRP is next on the commission’s to-do list. PREPA must file that plan in July, and regulators are working furiously to make sure it incorporates the recent flood of rebuilding recommendations from the energy industry.

Though the commission has the final say when it comes to approval of the plan, PREPA will lead the IRP process. The utility’s newly formed Transformation Advisory Council (TAC), a group of 11 energy experts, will contribute.

With that group, along with New York’s Resiliency Working Group, lessons from California's grid transition, the Energy Commission, the utility itself, and the dozens of other clean energy experts and entrepreneurs who want to offer their two cents, the energy planning process has a lot of moving parts. But according to Julia Hamm, CEO of the Smart Electric Power Alliance and a member of both the Energy Resiliency Working Group and the TAC, those working to establish standards for Puerto Rico’s future are hitting their stride.

“Certainly over the past three months, it has been a bit of a challenge to ensure that everybody has been coordinating efforts. Just over the past couple of weeks, we’ve seen some good progress on that front. We’re starting to see a lot more communication,” she said, adding that an air of optimism has settled on the process. “The key stakeholders all have a very common vision for Puerto Rico when it comes to the power sector.”

Nisha Desai, a PREPA board member who is liaising with the TAC, affirmed that collaborators are on the same page. “Everyone is violently in agreement that the future of Puerto Rico involves renewables, microgrids and distributed generation,” she said.

The TAC will hold its first in-person meeting in mid-January, and has already consulted with the utility on its formal fiscal plan submission, due January 10.

Though many taking part in the process feel the once-harried recovery is beginning to adopt a more organized approach, Desai acknowledges that “there are a lot of people in Puerto Rico who feel forgotten.”

Puerto Rico’s current generation sits at just 72.6 percent, in a nation facing longer, more frequent outages due to extreme weather. The government recently offered its first estimate that about half the island, 1.5 million residents, remains without power.

In late December and into January, 1,500 more crewmembers from 18 utilities in states as far flung as Minnesota, Missouri and Arizona will land on the island to aid further restoration through mutual aid agreements.

“The system is getting up to speed, getting to 100 percent, but there’s still some instability,” said Román Morales. “Right now it’s a matter of time.”

 

Related News

View more

Despite delays, BC Hydro says crews responded well to 'atypical' storm

BC Hydro Ice Storm Response to Fraser Valley power outages highlights freezing rain impacts, round the clock crews, infrastructure challenges, and climate change risks across the Lower Mainland during winter weather and restoration efforts.

 

Key Points

A plan for freezing rain events that prioritizes safety, rapid repairs, and clear communication to restore power.

✅ Prioritizes hazards, critical loads, and public safety first

✅ Deploys crews, contractors, and equipment across affected areas

✅ Addresses climate risks without costly undergrounding expansion

 

Call it the straw that broke the llama's back.

The loss of power during recent Fraser Valley ice storms meant Jennifer Quick, who lives on a Mission farm, had no running water, couldn't cook with appliances and still had to tend to a daughter sick with stomach flu.

As if that wasn't enough, she had to endure the sight of her shivering llamas.

"I brought them outside at one point and when I brought them back in, they had icicles on their fur," she said, adding the animals stayed in the warmth of their barn from then on.

For three and a half days, Quick and her family were among more than 160,000 BC Hydro customers in the Fraser Valley left in the dark after ice storms whipped through the region.

BC Hydro expects to get all customers back online Tuesday, five days after the storm hit.

And with another storm possibly on the horizon, the utility is defending its response to the treacherous weather, noting that windstorm power outages can be widespread.

BC Hydro spokesperson Mora Scott said the utility has a "best in class" storm response system, similar to PG&E winter storm prep in the U.S.

"In a typical storm situation we normally have 95 per cent of our customers back up within 24 hours. Ice storms are different and obviously this was an atypical storm for us," she said.

Scott said that in this case, the utility got power back on for 75 per cent of customers within 24 hours. It took the work of 450 employees called in from around B.C., working around the clock, a mobilization echoed by Sudbury Hydro crews after a storm, she said.

The work was complicated by trees falling near crews, icy roads, low visibility and even substations so frozen over the ice had to be melted off with blowtorches.

She said that in the long term, BC Hydro has no plans to make changes to how it responds to extreme ice storms or how infrastructure is built.

"Seeing ice build up in the Lower Mainland like this is a rare event," she said. "So to build for extremes like that probably doesn't make a lot of sense."

 

Climate change will bring storms

But CBC meteorologist Johanna Wagstaffe said that might not always be the case as climate change continues to impact our planet.

"The less severe winter events, like light snowfall, will happen less often," she said. "But the disruptive events — like last week's storm — will actually happen more often and we are already seeing this shift happen."

Marc Eliesen, a former CEO of BC Hydro in the early 1990s, said the utility needs to keep that in mind when planning for worst-case scenarios.

"This [storm] is a condition characteristic of the weather in the east, particularly in Ontario and Quebec, where freezing rain outages in Quebec are more common, which is organized to deal with freezing rain and heavy snow on the lines," he said. "This is a new phenomenon for British Columbia."

Eliesen questions whether BC Hydro has adequate equipment and crew training to deal with ice storms if they become more frequent, pointing to Hydro One storm restoration in Ontario as a comparison.

 

'Always something we can learn'

Scott disagrees with some of Eliesen's points.

She said some of the crews called in to deal with the recent storm come from northern B.C. and the Interior and have plenty of experience with snow.

"There's always something we can learn in every major storm situation," she said.

The idea of putting power lines underground was raised by some CBC readers and listeners, but Scott said running underground lines is five to 10 times the cost of running lines on pole, so it is done sparingly. Besides, equipment like substations and transmission lines need to be kept aboveground.

Meanwhile, Wagstaffe said that beginning Thursday, wintry weather could return to the Lower Mainland.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified