Completion of 1st fast-charging network 'just the beginning' for electric car owners in N.L.


Jennifer Williams, president & CEO of Newfoundland and Labrador Hydro

CSA Z463 Electrical Maintenance

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today

Newfoundland EV Fast-Charging Network enables DC fast charging along the Trans-Canada Highway, from Port aux Basques to St. John's, with Level 3 stations, reducing range anxiety and accelerating electric vehicle adoption.

 

Key Points

A DC fast charging corridor with Level 3 stations every 70 km, enabling EV road trips and easing range anxiety.

✅ 14 Level 3 DC fast chargers across the Trans-Canada Highway

✅ Charges most EVs to 80% in under an hour, $15/hr prorated

✅ Expansion planned into Labrador with 19 additional fast chargers

 

The first electric vehicle fast-charging network is now up and running across Newfoundland, which the province's main energy provider hopes will make road trips easier for electric car owners and encourage more drivers to go electric in the future.

With the last of the 14 charging stations coming online in Corner Brook earlier this month, drivers now have a place to charge up about every 70 kilometres along the Trans-Canada Highway, where 10 new fast-charging stations in N.B. are being planned, from Port aux Basques to St. John's, along with one in Gros Morne National Park.

Jennifer Williams, president & CEO of Newfoundland and Labrador Hydro, says many potential electric vehicle owners have been hesitant to give up on gasoline without fast chargers available across the island.

"The majority of people who were interested in EVs said one of the major barriers to them was indeed not having a fast-charging network that they could access," she said.

"We really believe that this is going to help people cross over and become an EV owner."

The charging network was first announced in October 2019, with an eye to having all 14 chargers up and running by the end of 2020. When work began, Newfoundland and Labrador was the only province in Canada without any publicly available Level 3 chargers, even as NB Power's public charging network was expanding elsewhere.

After some COVID-19 pandemic-related delays, the stations are now up and running and can charge most EVs to 80 per cent in less than an hour at a prorated cost of $15 an hour

"The pandemic did have some effect, but we're there now and we're really happy and this is just the beginning," said Williams.

Public charging becoming 'a non-issue'
That's encouraging for Jon Seary, an electric car owner and a co-founder of advocacy group Drive Electric N.L. He says the lack of fast chargers has been the "deal breaker" for many people looking to buy electric vehicles.

"Now you can drive right across the province. You can choose to stop at any of these to top up," Seary said.

Joe Butler, who is also a co-founder of the group, says the fast chargers have already made trips easier as they've come online across the island.

"In the past, it was a major impediment, really, to get anywhere, but now it's changed dramatically," said Butler.

"I just came back from Gros Morne and I had two stops and I was home, so the convenience factor if you just travel occasionally outside of town makes all the difference."

Jon Seary and Joe Butler stand with a slower level-two charging station on Kenmount Road in St. John's. 'We are at the cusp now of seeing a huge upswing in electric vehicle adoption,' Seary said. (Gavin Simms/CBC)
Seary said according to numbers from provincial motor vehicle registration, there were 195 electric cars on the road at the end of 2020, but he estimates that there are now closer to 300 vehicles in use in the province — with the potential for many more.

"We are at the cusp now of seeing a huge upswing in electric vehicle adoption," he said, even though Atlantic Canadians have been less inclined to buy EVs so far. 

"The cost of the cars is coming way down, and has come down. More places are selling them and the availability of public charging is becoming a non-issue as we put more and more charging stations out there."

The future is electric but the province's infrastructure is lagging behind, says non-profit
But Seary said there is still more work to be done to improve the province's charging infrastructure to catch up with other parts of the country. 

"We are lagging the rest of the country," Seary said, even as the N.W.T. encourages more residents to drive EVs through new initiatives.

"We have opportunities for federal funding for our charging infrastructure and it needs to be moving now. We have the surplus from Muskrat Falls to use and we have a climate that's not going to wait … this is the time to get going with this now."

Williams said together with Newfoundland Power, N.L. Hydro is now working on 19 more fast chargers to be placed elsewhere in the province and into Labrador, where the N.L. government has promoted EV adoption but infrastructure has lagged in some areas.

"We've heard very loudly and very clearly from the folks in Labrador, as well as other parts of the province, that they want to have charging stations in their neck of the woods too," she said.

"Putting them in Labrador, we believe that we'll help people get over that concern and that fear. There are EV owners in Labrador … so we believe it can work there as well."

With more chargers and electric vehicles comes less reliance on burning fossil fuels, and utilities like Nova Scotia Power are piloting vehicle-to-grid integration to amplify benefits, and Williams said 21 tonnes of greenhouse gas emissions have already been offset with the chargers as they've come online over the past few months.

"It actually does equate to as if you had powered a whole house all year, but the important part to remember [is that] these are an enabler. Putting these in place is enabling people to purchase electric vehicles," she said.

"You do 90 per cent of your charging at home, so if we're seeing about 20 tonnes has been offset in the short period of time they've been in service, for the vehicles that are charging at home, imagine how much they're actually offsetting. We figure it's well in excess of 200 tons."

 

Related News

Related News

Will EV Supply Miss the Demand Mark in the Short and Medium Term?

EV Carpocalypse signals potential mismatch between electric vehicle production and demand, as charging infrastructure, utility coordination, and plug-in hybrid strategies lag forecasts, while state mandates and market-share plays drive cautious, data-informed scaling.

 

Key Points

EV Carpocalypse describes overbuilt EV supply versus demand amid charging rollout, mandates, and risk-managed scaling.

✅ Forecasts vs actual EV demand may diverge in near term

✅ Charging infrastructure and utilities lag vehicle output

✅ Mandates and PHEVs cushion adoption while data guides scaling

 

According to Forbes contributor David Kiley, and Wards Automotive columnist John McElroy, there may be an impending “carpocalypse” of electric vehicles on the way. Sounds very damning and it’s certainly not the upbeat tone I’ve taken on nearly every piece of EV demand content I’ve authored but the author, Kiley does bring up some interesting points worth considering. EV Adoption is happening, and it’s certainly doing so at ever faster rates as the market nears an EV inflection point today. The infrastructure (charging stations, utility cooperation) is being built out more slowly than vehicle manufacturers are producing cars but, as the GM president on EV hurdles has noted, the issue seems to be just that, maybe even the short and medium term plans for EV manufacturing are too aggressive.

#google#

With new EV and plug-in hybrid vehicle sales representing a mere .6% of new car cales in the US, a sign that EV sales remain behind gas cars even as new models proliferate, car makers are are going to be spending more than $100 billion to come out with more than a hundred models of battery electric vheicles which also includes PHEVs and the fear is these vehicles aren’t going to sell in the numbers that automakers and industry analysts may have expected. But forecasts are just that, forecasts, even as U.S. EV sales surge into 2024 suggest momentum. So there’s a valid argument to be made that they’ll either overshoot the true mark or come in way below the actual amount. With nine U.S. states mandating that 15% of new cars sold be EVs by 2025, you could say that at least automakers have supporters in state government helping to push the new technology into the hands of more drivers.

Still, it’s anyone’s guess as to what true adoption will be, and a brief Q1 2024 market share dip underscores lingering volatility. The use of big data and just in time manufacturing will ensure that manufacturers will miss the mark on EVs by less than they have in the past, and will able to cope with breaking even on these vehicles for the sake of gobbling up precious early stage market share. After all, many vendors have up to this point been very willing to break even or make a loss on their lease-only EVs or on EV or hybrid financing in order to gain that share and build out their brand awareness and technical prowess. With some stops and starts, demand will meet supply or supply may need to meet demand but either way, the EV adoption wave is coming to a driveway near you. 

 

Related News

View more

France's new EV incentive rules toughen market for Chinese cars

France EV Incentive Rules prioritize EU-made electric vehicles, tying subsidies to manufacturing emissions and carbon footprint, making Stellantis, Renault, and Tesla Model Y eligible while excluding many China-built models under a new eligibility list.

 

Key Points

Links EV subsidies to manufacturing emissions, favoring EU-made models and restricting many China-built cars.

✅ Subsidies tied to lifecycle manufacturing emissions.

✅ EU production favored; many China-built EVs excluded.

✅ Eligible: Stellantis, Renault, Tesla Model Y; not Model 3.

 

France's revamped new EV rules on consumer cash incentives for electric car purchases favour vehicles made in France and Europe over models manufactured in China, a government list of eligible car types published recently has showed.

Some 65% of electric cars sold in France will be eligible for the scheme, which from Friday will include new criteria covering the amount of carbon emitted in the manufacturing of an electric vehicle (EV).

The list of eligible models includes 24 produced by Franco-Italian group Stellantis (STLAM.MI) and five by French carmaker Renault (RENA.PA). Elon Musk's Tesla (TSLA.O) Model Y will be eligible but not its Model 3.

Electric vehicle brand MG Motors, owned by China's SAIC, said it expects the new rules to weigh on the French EV market, despite the global surge in EV sales seen in recent years.

"There are cars that will entirely lose their competitiveness", an MG spokesperson told Reuters, adding that the brand had decided not to apply for the bonus scheme for its MG4 model because it was "designed to exclude us".

French Finance Minister Bruno Le Maire hailed what he called the new rules' incentive for automakers to reduce their carbon footprint.

"We will no longer be subsidising car production that emits too much CO2," he said in a statement.

President Emmanuel Macron's government has wanted to make French and European-made EVs more affordable for domestic consumers relative to cheaper vehicles produced in China, amid a record EV market share in the country.

The average retail price of an EV in Europe, even as the EU EV share grew during lockdown months, was more than 65,000 euros ($71,000) in the first half of 2023, compared with just over 31,000 euros in China, according to research by Jato Dynamics.

The French government already offered buyers a cash incentive of between 5,000 and 7,000 euros to get more electric cars on the road, at a total cost of 1 billion euros ($1.1 billion) per year.

However, in the absence of cheap European-made EVs, a third of all incentives are going to consumers buying EVs made in China, French finance ministry officials say. The trend has helped spur a surge in imports and a growing competitive gap with domestic producers.

China's auto industry relies heavily on coal-generated electricity, meaning many Chinese-made EVs will henceforth not qualify.

The Ademe agency overseeing the process studied the eligibility of almost 500 EV models and their variants to include in the scheme.

Dacia, the low-cost Renault brand, saw its Spring model imported from China excluded from the list.

Tesla's Model 3 is made in China. The Model Y, which is larger and more expensive, is made mainly in Berlin and was the top selling EV in France over the first 11 months of the year, amid forecasts that EVs could dominate within a decade in many markets.

 

Related News

View more

China's electric carmakers make their move on Europe

Chinese EV Makers in Europe target the EU market with electric SUVs, battery swapping, competitive pricing, and subsidies, led by NIO, Xpeng, MG, and BYD, starting in Norway amid Europe's zero-emissions push.

 

Key Points

Chinese EV makers expanding into EU markets with tech, pricing, and lean retail to gain share.

✅ Early launches in Norway leverage EV incentives

✅ Compete via battery swapping, OTA tech, and price

✅ Mix of importers, online sales, and lean dealerships

 

China's electric carmakers are darting into Europe, hoping to catch traditional auto giants cold and seize a slice of a market supercharged by the continent's EV transition towards zero emissions.

Nio Inc (NIO.N), among a small group of challengers, launches its ES8 electric SUV in Oslo on Thursday - the first foray outside China for a company that is virtually unheard of in Europe even though it's valued at about $57 billion.

Other brands unfamiliar to many Europeans that have started selling or plan to sell cars on the continent include Aiways, BYD's (002594.SZ) Tang, SAIC's (600104.SS) MG, Dongfeng's VOYAH, and Great Wall's (601633.SS) ORA.

Yet Europe, a crowded, competitive car market dominated by famous brands, has proved elusive for Chinese carmakers in the past. They made strategic slips and also contended with a perception that China, long associated with cheap mass-production, could not compete on quality.

Indeed, Nio Chief Executive William Li told Reuters he foresees a long road to success in a mature market where it is "very difficult to be successful".

Chinese carmakers may need up to a decade to "gain a firm foothold" in Europe, the billionaire entrepreneur said - a forecast echoed by He Xiaopeng, CEO of electric vehicle (EV) maker Xpeng (9868.HK) who told Reuters his company needs 10 years "to lay a good foundation" on the continent.

These new players, many of which have only ever made electric vehicles, believe they have a window of opportunity to finally crack the lucrative market.

While electric car sales in the European Union more than doubled last year and jumped 130% in the first half of this year, even as threats to the EV boom persist, traditional manufacturers are still gradually shifting their large vehicle ranges over to electric and have yet to flood the thirsty market with models.

"The market is not that busy yet, if you compare it with combustion-engine models where each of the major carmakers has a whole range of vehicles," said Alexander Klose, who heads the foreign operations of Chinese electric vehicle maker Aiways.

"That is where we think we have an opportunity," he added on a drive around Munich in a U5, a crossover SUV on sale in Germany, the Netherlands, Belgium and France, where new EV rules are aimed at discouraging purchases of Chinese models.

The U5 starts at 30,000 euros ($35,000) in Germany - below the average new car price and most local EV prices - before factoring in 9,000 euros in EV subsidies, though France's EV incentives have tightened for Chinese models - and comes in just four colours and two trim levels to minimize costs.

'GERMAN PEOPLE BUY GERMAN CARS'
As Chinese carmakers gear up to enter Europe, they are trying out different business models, from relying on importers, low-cost retail options or building up more traditional dealerships.

The new reality that top Western carmakers like BMW (BMWG.DE) and Tesla Inc (TSLA.O) now produce cars in technological powerhouse China, where the EV market is intensely competitive, has likely undermined past perceptions of low quality workmanship - though they can be hard to shake.

Antje Levers, a teacher who lives in western Germany near the Dutch border, and her husband owned a diesel Chevrolet Orlando but wanted a greener option. They bought an Aiways U5 last year after plenty of research to fend off criticism for not buying local, and loves its handling and low running costs.

She said people had told her: "You can't buy a Chinese car, they're plastic and cheap and do not support German jobs." But she feels that is no longer true in a global car industry where you find German auto parts in Chinese cars and vice versa.

"German people buy German cars, so to buy a Chinese car you need to have a little courage," the 47-year-old added. "Sometimes you just have to be open for new things."

NIO LANDS IN NORWAY WITH NOMI
Nio launches its ES8 electric SUV alongside a NIO House - part-showroom, part-cafe and workspace for customers in the capital of Norway, a country that's also the initial base for Xpeng.

Norwegian state support for EVs has put the country at the forefront of the shift to electric. It makes sense as a European entry point because customers are used to electric vehicles so only have to be sold on an unknown Chinese brand, said Christina Bu, secretary general of the Norwegian EV Association.

"If you go to another European country you may struggle to sell both," said Bu, adding that her organisation has talked extensively with a number of Chinese EV makers keen to learn market specifics and consumer culture before launching there.

She is uncertain, though, how consumers will react to Nio's approach of swapping out batteries for customers rather than stopping to charge them, a contrast to other EV battery strategies in the industry, or the carmaker's strategy of leasing rather than selling batteries to customers.

"But where the Chinese are really at the forefront is the technology," she added, referring in particular to Nomi, the digital assistant in the dashboard of Nio's cars.

NEWCOMERS' STRATEGIES DIVERGE
One size does not fit all. While Nio and Xpeng have been hiring staff building up their organizations in Norway, SAIC's MG works through a car importer to sell cars in a handful of European markets.

Aiways is trying an lower-cost approach to selling cars in Europe, though Klose says it varies by market.

In Germany, for instance, the company sells its cars through Euronics, an association of independent electronics retailers, rather than building traditional dealerships.

It aims to sell across the EU by next year and to enter the U.S. market by 2023, said Klose, a former Volvo and Ford executive.

Past failed attempts by Chinese carmakers to conquer Europe are unlikely to hurt Chinese EV makers today, as consumers have grown accustomed to electronics coming from China, he added.

Such failures included Brilliance in 2007, whose vehicle received one out of five stars in a German car crash test, damaging the brand.

"The fact there are more Chinese carmakers entering the market will also help us, as it will make Chinese brands more accepted by consumers," Klose said.

Selling cars to Europeans is a "tough business, especially if your product isn't well known," said Arnie Richters, chairman of Brussels-based industry group Platform for Electromobility.

"But if they bring a lot of innovation they have a lot of opportunity."

 

Related News

View more

Zero-emissions electricity by 2035 is possible

Canada Net-Zero Electricity 2035 aligns policy and investments with renewables, wind, solar, hydro, storage, and transmission to power electrification of EVs and heat pumps, guided by a stringent clean electricity standard and carbon pricing.

 

Key Points

A 2035 plan for a zero-emissions grid using renewables, storage and transmission to electrify transport and homes.

✅ Wind, solar, and hydro backed by battery storage and reservoirs

✅ Interprovincial transmission expands reliability and lowers costs

✅ Stringent clean electricity standard and full carbon pricing

 

By Tom Green
Senior Climate Policy Advisor
David Suzuki Foundation

Electric vehicles are making inroads in some areas of Canada. But as their numbers grow, will there be enough electrical power for them, and for all the buildings and the industries that are also switching to electricity?

Canada – along with the United States, the European Union and the United Kingdom – is committed to a “net-zero electricity grid by 2035 policy goal”. This target is consistent with the Paris Agreement’s ambition of staying below 1.5 C of global warming, compared with pre-industrial levels.

This target also gives countries their best chance of energy security, as laid out in landmark reports over the past year from the International Energy Agency and the Intergovernmental Panel on Climate Change. A new federal regulation in the form of a clean electricity standard is being developed, but will it be stringent enough to set us up for climate success and avoid dead ends?

Canada starts this work from a relatively low emissions-intensity grid, powered largely by hydroelectricity. However, some provinces such as Alberta, Saskatchewan, Nova Scotia and New Brunswick still have predominantly fossil fuel-powered electricity. Plus, there is a risk of more natural gas generation of electricity in the coming years in most provinces without new federal and provincial regulations.

This means the transition of Canada’s electricity system must solve two problems at once. It must first clean up the existing electricity system, but it must also meet future electricity needs from zero-emissions sources while overall electricity capacity doubles or even triples by 2050.

Canada has enormous potential for renewable generation, even though it remains a solar power laggard in deployment to date. Wind, solar and energy storage are proven, affordable technologies that can be produced here in Canada, while avoiding the volatility of global fossil fuel markets.

As wind and solar have become the cheapest forms of electricity generation in history, we’re already seeing foreign governments and utilities ramp up renewable projects at the pace and scale that would be needed here in Canada, highlighting a significant global electricity market opportunity for Canadian firms at home. In 2020, 280 gigawatts of new capacity was added globally – a 45 per cent increase over the previous year. In Canada, since 2010, annual growth in renewables has so far averaged less than three per cent.

So why aren’t we moving full steam – or electron – ahead? With countries around the world bringing in wind and solar for new generation, why is there so much delay and doubt in Canada, even as analyses explore why the U.S. grid isn’t 100% renewable and remaining barriers?

The modelling team drew on a dataset that accounts for how wind and solar potential varies across the country, through the weeks of the year and the hours of each day. The models provide solutions for the most cost-effective new generation, storage and transmission to add to the grid while ensuring electricity generation meets demand reliably every hour of the year.

The David Suzuki Foundation partnered with the University of Victoria to model the electricity grid of the future.

To better understand future electricity demand, a second modelling team was asked to explore a future when homes and businesses are aggressively electrified; fossil fuel furnaces and boilers are retired and replaced with electric heat pumps; and gasoline and diesel cars are replaced by electric vehicles and public transit. It also dialed up investments in energy efficiency to further reduce the need for energy. These hourly electricity-demand projections were fed back to the models developed at the University of Victoria.

The results? It is possible to meet Canada’s needs for clean electricity reliably and affordably through a focus on expanding wind and solar generation capacity, complemented with new transmission connections between provinces, and other grid improvements.

How is it that such high levels of variable wind and solar can be added to the grid while keeping the lights on 24/7? The model took full advantage of the country’s existing hydroelectric reservoirs, using them as giant batteries, storing water behind the dams when wind and solar generation was high to be used later when renewable generation is low, or when demand is particularly high. The model also invested in more transmission to enable expanded electricity trade between provinces and energy storage in the form of batteries to smooth out the supply of electricity.

Not only is it possible, but the renewable pathway is the safe bet.

There’s no doubt it will take unprecedented effort and scale to transform Canada’s electricity systems. The high electrification pathway would require an 18-fold increase over today’s renewable electricity capacity, deploying an unprecedented amount of new wind, solar and energy storage projects every year from now to 2050. Although the scale seems daunting, countries such as Germany are demonstrating that this pace and scale is possible.

The modelling also showed that small modular nuclear reactors (SMRs) are neither necessary nor cost-effective, making them a poor candidate for continued government subsidies. Likewise, we presented pathways with no need for continued fossil fuel generation with carbon capture and storage (CCS) – an expensive technology with a global track record of burning through public funds while allowing fossil fuel use to expand and while capturing a smaller proportion of the smokestack carbon than promised. We believe that Canada should terminate the significant subsidies and supports it is giving to fossil fuel companies and redirect this support to renewable electricity, energy efficiency and energy affordability programming.

The transition to clean electricity would come with new employment for people living in Canada. Building tomorrow’s grid will support more than 75,000 full-time jobs each year in construction, operation and maintenance of wind, solar and transmission facilities alone.

Regardless of the path chosen, all energy projects in Canada take place on unceded Indigenous territories or treaty land. Decolonizing power structures with benefits to Indigenous communities is imperative. Upholding Indigenous rights and title, ensuring ownership opportunities and decision-making and direct support for Indigenous communities are all essential in how this transition takes place.

Wind, solar, storage and smart grid technologies are evolving rapidly, but our understanding of the possibilities they offer for a zero-emissions future, including debates over clean energy’s dirty secret in some supply chains, appears to be lagging behind reality. As the Institut de L’énergie Trottier observed, decarbonization costs have fallen faster than modellers anticipated.

The shape of tomorrow’s grid will largely depend on policy decisions made today. It’s now up to people living in Canada and their elected representatives to create the right conditions for a renewable revolution that could make the country electric, connected and clean in the years ahead.

To avoid a costly dash-to-gas that will strand assets and to secure early emissions reductions, the electricity sector needs to be fully exposed to the carbon price. The federal government’s announcement that it will move forward with a clean electricity standard – requiring net-zero emissions in the electricity sector by 2035 – will help if the standard is stringent.

Federal funding to encourage provinces to expand interprovincial transmission, including recent grid modernization investments now underway will also move us ahead. At the provincial level, electricity system governance – from utility commission mandates to electricity markets design – needs to be reformed quickly to encourage investments in renewable generation. As fossil fuels are swapped out across the economy, more and more of a household’s total energy bill will come from a local electric utility, so a national energy poverty strategy focused on low-income and equity-seeking households must be a priority.

The payoff from this policy package? Plentiful, reliable, affordable electricity that brings better outcomes for community health and resilience while helping to avoid the worst impacts of climate change.

 

Related News

View more

Local study to look at how e-trucks might supply future electricity

Electrified Trucking Grid Integration explores vehicle-to-grid (V2G) strategies where rolling batteries backfeed power during peak demand, optimizing charging infrastructure, time-of-use pricing, and IESO market operations for Ontario shippers like Nature Fresh Farms.

 

Key Points

An approach using V2G-enabled electric trucks to support the grid, cut peak costs, and add revenue streams.

✅ Models charging sites, timing, and local grid impacts.

✅ Evaluates V2G backfeed economics and IESO pricing.

✅ Uses Nature Fresh Farms data for logistics and energy.

 

A University of Windsor project will study whether an electrified trucking industry might not only deliver the goods, but help keep the lights on with the timely off-loading of excess electrons from their powerful batteries via vehicle-to-grid approaches now emerging.

The two-year study is being overseen by Environmental Energy Institute director Rupp Carriveau and associate professor Hanna Moah of the Cross-Border Institute in conjunction with the Leamington-based greenhouse grower Nature Fresh Farms.

“The study will look at what happens if we electrified the transport truck fleet in Ontario to different degrees, considering the power demand for truck fleets that would result,” Carriveau said.

“Where trucks would be charging and how that will affect the electricity grid grid coordination in those locations at specific times. We’ll be able to identify peak times on the demand side.

“On the other side, we have to recognize these are rolling batteries. They may be able to backfeed the grid, sell electricity back to prop the grid up in locations it wasn’t able to in the past.”

The national research organization Mathematics of International Technology and Complex Systems (Mitacs) is funding the $160,000 study, and the Independent Electricity Systems Operator, a Crown corporation responsible for operating Ontario’s electricity market, amid an electricity supply crunch that is boosting storage efforts, is also offering support for the project.

Because of the varying electricity prices in the province based on usage, peak demand and even time of year, Carriveau said there could be times where draining off excess truck battery power will be cheaper than the grid, and vehicle-to-building charging models show how those savings can be realized.

“It could offer the truck owner another revenue stream from his asset, and businesses a cheaper electricity alternative in certain circumstances,” he said.

The local greenhouse industry was a natural fit for the study, said Carriveau, based on the amount of work the university does with the sector along with the fact it is both a large consumer and producer of electricity.

The study will be based on assumptions for electric truck capacity and performance because the low number of such vehicles currently on the road, though large electric bus fleets offer operational insights.

How will an electrified trucking industry affect Ontario’s electricity grid? University of Windsor engineering professor Rupp Carriveau is part of a new study on trucks being used to help deliver electricity as well as their products around Ontario. He is shown on campus on Tuesday, July 6, 2021.

How will an electrified trucking industry affect Ontario’s electricity grid? University of Windsor engineering professor Rupp Carriveau is part of a new study on trucks being used to help deliver electricity as well as their products around Ontario. He is shown on campus on Tuesday, July 6, 2021.

Nature Fresh Farms will supply all its data on power use, logistics, utility costs and shipping schedules to determine if switching to an electrified fleet makes sense for the company.

“As an innovative company, we are always thinking, ‘What is next?’, whether its developments in product varieties, technology or sustainability,” said company CEO Peter Quiring. “Green transportation is the next big focus.

“We were given the opportunity to work closely on this project and offer our operations as a case study to see how we can find feasible alternatives, not only for Nature Fresh Farms or even for companies in agriculture, but for every industry that relies on the transportation of their goods.”

Currently, Nature Fresh Farms doesn’t have any electrified trucks. Carriveau said the second phase of the study might actually involve an electric truck in a pilot project.

 

Related News

View more

Canadian climate policy and its implications for electricity grids

Canada Electricity Decarbonization Costs indicate challenging greenhouse gas reductions across a fragmented grid, with wind, solar, nuclear, and natural gas tradeoffs, significant GDP impacts, and Net Zero targets constrained by intermittency and limited interties.

 

Key Points

Costs to cut power CO2 via wind, solar, gas, and nuclear, considering grid limits, intermittency, and GDP impacts.

✅ Alberta model: eliminate coal; add wind, solar, gas; 26-40% CO2 cuts

✅ Nuclear option enables >75% cuts at higher but feasible system costs

✅ National costs 1-2% GDP; reserves, transmission, land, and waste not included

 

Along with many western developed countries, Canada has pledged to reduce its greenhouse gas emissions by 40–45 percent by 2030 from 2005 emissions levels, and to achieve net-zero emissions by 2050.

This is a huge challenge that, when considered on a global scale, will do little to stop climate change because emissions by developing countries are rising faster than emissions are being reduced in developed countries. Even so, the potential for achieving emissions reduction targets is extremely challenging as there are questions as to how and whether targets can be met and at what cost. Because electricity can be produced from any source of energy, including wind, solar, geothermal, tidal, and any combustible material, climate change policies have focused especially on nations’ electricity grids, and in Canada cleaning up electricity is viewed as critical to meeting climate pledges.

Canada’s electricity grid consists of ten separate provincial grids that are weakly connected by transmission interties to adjacent grids and, in some cases, to electricity systems in the United States. At times, these interties are helpful in addressing small imbalances between electricity supply and demand so as to prevent brownouts or even blackouts, and are a source of export revenue for provinces that have abundant hydroelectricity, such as British Columbia, Manitoba, and Quebec.

Due to generally low intertie capacities between provinces, electricity trade is generally a very small proportion of total generation, though electricity has been a national climate success in recent years. Essentially, provincial grids are stand alone, generating electricity to meet domestic demand (known as load) from the lowest cost local resources.

Because climate change policies have focused on electricity (viz., wind and solar energy, electric vehicles), and Canada will need more electricity to hit net-zero according to the IEA, this study employs information from the Alberta electricity system to provide an estimate of the possible costs of reducing national CO2 emissions related to power generation. The Alberta system serves as an excellent case study for examining the potential for eliminating fossil-fuel generation because of its large coal fleet, favourable solar irradiance, exceptional wind regimes, and potential for utilizing BC’s reservoirs for storage.

Using a model of the Alberta electricity system, we find that it is infeasible to rely solely on renewable sources of energy for 100 percent of power generation—the costs are prohibitive. Under perfect conditions, however, CO2 emissions from the Alberta grid can be reduced by 26 to 40 percent by eliminating coal and replacing it with renewable energy such as wind and solar, and gas, but by more than 75 percent if nuclear power is permitted. The associated costs are estimated to be some $1.4 billion per year to reduce emissions by at most 40 percent, or $1.9 billion annually to reduce emissions by 75 percent or more using nuclear power (an option not considered feasible at this time).

Based on cost estimates from Alberta, and Ontario’s experience with subsidies to renewable energy, and warnings that the switch from fossil fuels to electricity could cost about $1.4 trillion, the costs of relying on changes to electricity generation (essentially eliminating coal and replacing it with renewable energy sources and gas) to reduce national CO2 emissions by about 7.4 percent range from some $16.8 to $33.7 billion annually. This constitutes some 1–2 percent of Canada’s GDP.

The national estimates provided here are conservative, however. They are based on removing coal-fired power from power grids throughout Canada. We could not account for scenarios where the scale of intermittency turned out worse than indicated in our dataset—available wind and solar energy might be lower than indicated by the available data. To take this into account, a reserve market is required, but the costs of operating such a capacity market were not included in the estimates provided in this study. Also ignored are the costs associated with the value of land in other alternative uses, the need for added transmission lines, environmental and human health costs, and the life-cycle costs of using intermittent renewable sources of energy, including costs related to the disposal of hazardous wastes from solar panels and wind turbines.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.