Ventyx to upgrade AEP with latest version of Asset Suite

By PR Newswire


Protective Relay Training - Basic

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
Ventyx, the world's largest private software provider to the energy and utility industry, today announced that American Electric Power, the largest electricity generator in the United States, has committed to upgrade their enterprise-wide work management and supply chain systems to the latest version of Asset Suite from Ventyx.

AEP is one of the largest electric utilities in the United States, with more than 5 million customers linked to AEP's 11-state electricity transmission and distribution grid. AEP has been a user of Ventyx solutions for years, but chose to perform a highly competitive and extensive evaluation process to ensure they were selecting the optimum solution for their future needs.

The selection process concluded with not only a recommitment to Asset Suite, but an expansion of its use as the enterprise asset management system within the corporation.

AEP will be using Asset Suite for supply chain functions including materials and procurement management across the enterprise, as well as for asset and work management for nuclear and fossil generation and transmission, and for partial replacement of their project management system used for major construction and retrofit projects.

"Ventyx has aggressively invested in our product suites, and we are obviously delighted that AEP has selected Ventyx as their go forward enterprise asset management solution," said Ventyx President and CEO Vince Burkett. "Ventyx has earned a solid track record of proven performance in the Tier 1 utility marketplace, as evidenced by our unique ability to meet AEP's needs for a solution that covers their generation fleet, transmission network and integrated supply chain.

"AEP, their customer base and shareholders will benefit from the application of enhanced functionality and technology to reduce operating costs, extend asset life and improve asset availability."

By standardizing on Asset Suite, companies like AEP can benefit from the economies of scale enabled by the software. Asset Suite is the only comprehensive asset management solution that enables the deployment of best practices standardization across an entire organization, enabling efficiencies far beyond those achievable by a single site.

Related News

BC Hydro says three LNG companies continue to demand electricity, justifying Site C

BC Hydro LNG Load Forecast signals rising electricity demand from LNG Canada, Woodfibre, and Tilbury, aligning Site C dam capacity with BCUC review, hydroelectric supply, and a potential fourth project in feasibility study British Columbia.

 

Key Points

BC Hydro's projection of LNG-driven power demand, guiding Site C capacity, BCUC review, and grid planning.

✅ Includes LNG Canada, Woodfibre, and Tilbury load requests

✅ Aligns Site C hydroelectric output with industrial electrification

✅ Notes feasibility study for a fourth LNG project

 

Despite recent project cancellations, such as the Siwash Creek independent power project now in limbo, BC Hydro still expects three LNG projects — and possibly a fourth, which is undergoing a feasibility study — will need power from its controversial and expensive Site C hydroelectric dam.

In a letter sent to the British Columbia Utilities Commission (BCUC) on Oct. 3, BC Hydro’s chief regulatory officer Fred James said the provincially owned utility’s load forecast includes power demand for three proposed liquefied natural gas projects because they continue to ask the company for power.

The letter and attached report provide some detail on which of the LNG projects proposed in B.C. are more likely to be built, given recent project cancellations.

The documents are also an attempt to explain why BC Hydro continues to forecast a surge in electricity demand in the province, as seen in its first call for power in 15 years driven by electrification, even though massive LNG projects proposed by Malaysia’s state owned oil company Petronas and China’s CNOOC Nexen have been cancelled.

An explanation is needed because B.C.’s new NDP government had promised the BCUC would review the need for the $9-billion Site C dam, which was commissioned to provide power for the province’s nascent LNG industry, amid debates over alternatives like going nuclear among residents. The commission had specifically asked for an explanation of BC Hydro’s electric load forecast as it relates to LNG projects by Wednesday.

The three projects that continue to ask BC Hydro for electricity are Shell Canada Ltd.’s LNG Canada project, the Woodfibre LNG project and a future expansion of FortisBC’s Tilbury LNG storage facility.

None of those projects have officially been sanctioned but “service requests from industrial sector customers, including LNG, are generally included in our industrial load forecast,” the report noted, even as Manitoba Hydro warned about energy-intensive customers in a separate notice.

In a redacted section of the report, BC Hydro also raises the possibility of a fourth LNG project, which is exploring the need for power in B.C.

“BC Hydro is currently undertaking feasibility studies for another large LNG project, which is not currently included in its Current Load Forecast,” one section of the report notes, though the remainder of the section is redacted.

The Site C dam, which has become a source of controversy in B.C. and was an important election issue, is currently under construction and, following two new generating stations recently commissioned, is expected to be in service by 2024, a timeline which had been considered to provide LNG projects with power by the time they are operational.

BC Hydro’s letter to the BCUC refers to media and financial industry reports that indicate global LNG markets will require more supply by 2023.

“While there remains significant uncertainty, global LNG demand will continue to grow and there is opportunity for B.C. LNG,” the report notes.

 

Related News

View more

Demand for electricity in Yukon hits record high

Yukon Electricity Demand Record underscores peak load growth as winter cold snaps drive heating, lighting, and EV charging, blending hydro, LNG, and diesel with renewable energy and planned grid-scale battery storage in Whitehorse.

 

Key Points

It is the territory's new peak electricity load, reflecting winter demand, electric heating, EVs, and mixed generation.

✅ New peak: 104.42 MW, surpassing 2020 record of 103.84 MW

✅ Winter peaks met with hydro, LNG, diesel, and renewables mix

✅ Customers urged to shift use off peak hours and use timers

 

A new record for electricity demand has been set in Yukon. The territory recorded a peak of 104.42 megawatts, according to a news release from Yukon Energy.

The new record is about a half a megawatt higher than the previous record of 103.84 megawatts recorded on Jan. 14, 2020.

While in general, over 90 per cent of the electricity generated in Yukon comes from renewable resources each year, with initiatives such as new wind turbines expanding capacity, during periods of high electricity use each winter, Yukon Energy has to use its hydro, liquefied natural gas and diesel resources to generate the electricity, the release says.

But when it comes to setting records, Andrew Hall, CEO of Yukon Energy, says it's not that unusual.

"Typically, during the winter, when the weather is cold, demand for electricity in the Yukon reaches its maximum. And that's because folks use more electricity for heating their homes, for cooking meals, there's more lighting demand, because the days are shorter," he said.

"It usually happens either in December or sometimes in January, when we get a cold snap."

He said generally over the years, electricity demand has grown.

"We get new home construction, construction of new apartment buildings. And typically, those new homes are all heated by electricity, maybe not all of them but the majority," Hall said.

Vuntut Gwitchin First Nation's solar farm now generating electricity
In taking action on climate, this Arctic community wants to be a beacon to the world

Efforts to curb climate change add to electricity demand
There are also other reasons, ones that are "in the name of climate change," Hall added.

That includes people trying to limit fossil fuel heating by swapping to electric heating. And, he said some Yukoners are switching to electric vehicles as incentives expand across the North.

"Over time, those two new demands, in the name of climate change, will also contribute to growing demand for electricity," he said.

While Yukon did reach this new all time high, Hall said the territory still hadn't hit the maximum capacity for the week, which was 118 megawatts, and discussions about a potential connection to the B.C. grid are part of long-term planning.


Yukon Energy's hydroelectric dam in Whitehorse. Yukon Energy's CEO, Andrew Hall, said demand of 104 megawatts wasn't unexpected, nor was it an emergency. The corporation has the ability to generate 118 megawatts. (Paul Tukker/CBC)
Tips to curve demand
"When we plan our system, we actually plan for a scenario, guided by the view that sustainability is key to the grid's future, where we actually lose our largest hydro generating facility," Hall said.

"We had plenty of generation available so it wasn't an emergency situation, and, even as other provinces face electricity shortages, it was more just an observation that hey, our peaks are growing."

He also said it was an opportunity to reach out to customers on ways to curve their demand for electricity around peak times, drawing on energy efficiency insights from other provinces, which is typically between 7 a.m. and 9 a.m., and between 5 p.m. and 7 p.m., Monday to Friday.

For example, he said, people should consider running major appliances, like dishwashers, during non-peak hours, such as in the afternoon rather than in the morning or evening.

During winter peaks, people can also use a block heater timer on vehicles and turn down the thermostat by one or two degrees.

'We plan for each winter'
Hall said Yukon Energy is working to increase its peak output, including working on a large grid scale battery to be installed in Whitehorse, similar to Ontario's energy storage push now underway. 

When it comes to any added load from people working from home due to COVID-19, Hall said they haven't noticed any identifiable increase there.

"Presumably, if someone's working from home, you know, their computer is at home, and they're not using the computer at the office," he said.

Yukon Energy one step closer to having largest battery storage site in the North
He said there shouldn't be any concern for maxing out the capacity of electricity demand as Yukon moves into the colder winter months, since those days are forecast for.

"This number of 104 megawatts wasn't unexpected," he said, adding how much electricity is needed depends on the weather too.

"We plan for each winter."

 

Related News

View more

Doug Ford's New Stance on Wind Power in Ontario

Ontario Wind Power Policy Shift signals renewed investment in renewable energy, wind farms, and grid resilience, aligning with climate goals, lower electricity costs, job creation, and turbine technology for cleaner, diversified power.

 

Key Points

A provincial pivot to expand wind energy, meet climate goals, lower costs, and boost jobs across Ontario’s power system.

✅ Diversifies Ontario's grid with scalable renewable capacity.

✅ Targets emissions cuts while stabilizing electricity prices.

✅ Spurs rural investment, supply chains, and skilled jobs.

 

Ontario’s energy landscape is undergoing a significant transformation as Premier Doug Ford makes a notable shift in his approach to wind power. This change represents a strategic pivot in the province’s energy policy, potentially altering the future of Ontario’s power generation, environmental goals, and economic prospects.

The Backdrop: Ford’s Initial Stance on Wind Power

When Doug Ford first assumed the role of Premier in 2018, his administration was marked by a strong stance against renewable energy projects, including wind power, with Ford later saying he was proud of tearing up contracts as part of this shift. Ford’s government inherited a legacy of ambitious renewable energy commitments from the previous Liberal administration under Kathleen Wynne, which had invested heavily in wind and solar energy. The Ford government, however, was critical of these initiatives, arguing that they resulted in high energy costs and a surplus of power that was not always needed.

In 2019, Ford’s government began rolling back several renewable energy projects, including wind farms, and was soon tested by the Cornwall wind farm ruling that scrutinized a cancellation. This move was driven by a promise to reduce electricity bills and cut what was perceived as wasteful spending on green energy. The cancellation of several wind projects led to frustration among environmental advocates and the renewable energy sector, who viewed the decision as a setback for Ontario’s climate goals.

The Shift: Embracing Wind Power

Fast forward to 2024, and Premier Ford’s administration is taking a markedly different approach. The recent policy shift, which moves to reintroduce renewable projects, indicates a newfound openness to wind power, reflecting a broader acknowledgment of the changing dynamics in energy needs and environmental priorities.

Several factors appear to have influenced this shift:

  1. Rising Energy Demands and Climate Goals: Ontario’s growing energy demands, coupled with the pressing need to address climate change, have necessitated a reevaluation of the province’s energy strategy. As Canada commits to reducing greenhouse gas emissions and transitioning to cleaner energy sources, wind power is increasingly seen as a crucial component of this strategy. Ford’s change in direction aligns with these national and global goals.

  2. Economic Considerations: The economic landscape has also evolved since Ford’s initial opposition to wind power. The cost of wind energy has decreased significantly over the past few years, making it a more competitive and viable option compared to traditional energy sources, as competitive wind power gains momentum in markets worldwide. Additionally, the wind energy sector promises substantial job creation and economic benefits, which are appealing in the context of post-pandemic recovery and economic growth.

  3. Public Opinion and Pressure: Public opinion and advocacy groups have played a role in shaping policy. There has been a growing demand from Ontarians for more sustainable and environmentally friendly energy solutions. The Ford administration has been responsive to these concerns, recognizing the importance of addressing public and environmental pressures.

  4. Technological Advancements: Advances in wind turbine technology have improved efficiency and reduced the impact on wildlife and local communities. Modern wind farms are less intrusive and more effective, addressing some of the concerns that were previously associated with wind power.

Implications of the Policy Shift

The implications of Ford’s shift towards wind power are far-reaching. Here are some key areas affected by this change:

  1. Energy Portfolio Diversification: By reembracing wind power, Ontario will diversify its energy portfolio, reducing its reliance on fossil fuels and increasing the proportion of renewable energy in the mix. This shift will contribute to a more resilient and sustainable energy system.

  2. Environmental Impact: Increased investment in wind power will contribute to Ontario’s efforts to combat climate change. Wind energy is a clean, renewable source that produces no greenhouse gas emissions during operation. This aligns with broader environmental goals and helps mitigate the impact of climate change.

  3. Economic Growth and Job Creation: The wind power sector has the potential to drive significant economic growth and create jobs. Investments in wind farms and associated infrastructure can stimulate local economies, particularly in rural areas where many wind farms are located.

  4. Energy Prices: While the initial shift away from wind power was partly motivated by concerns about high energy costs, including exposure to costly cancellation fees in some cases, the decreasing cost of wind energy could help stabilize or even lower electricity prices in the long term. As wind power becomes a larger component of Ontario’s energy supply, it could contribute to a more stable and affordable energy market.

Moving Forward: Challenges and Opportunities

Despite the positive aspects of this policy shift, there are challenges to consider, and other provinces have faced setbacks such as the Alberta wind farm scrapped by TransAlta that illustrate potential hurdles. Integrating wind power into the existing grid requires careful planning and investment in grid infrastructure. Additionally, addressing local concerns about wind farms, such as their impact on landscapes and wildlife, will be crucial to gaining broader acceptance.

Overall, Doug Ford’s shift towards wind power represents a significant and strategic change in Ontario’s energy policy. It reflects a broader understanding of the evolving energy landscape and the need for a sustainable and economically viable energy future. As the province navigates this new direction, the success of this policy will depend on effective implementation, ongoing stakeholder engagement, and a commitment to balancing environmental, economic, and social considerations, even as the electricity future debate continues among party leaders.

 

Related News

View more

Funding Approved for Bruce C Project Exploration

Bruce C Project advances Ontario clean energy with NRCan funding for nuclear reactors, impact assessment, licensing, and Indigenous engagement, delivering reliable baseload power and low-carbon electricity through pre-development studies at Bruce Power.

 

Key Points

A proposed nuclear build at Bruce Power, backed by NRCan funding for studies, licensing, and impact assessment to expand clean power.

✅ Up to $50M NRCan support for pre-development

✅ Focus: feasibility, impact assessment, licensing

✅ Early Indigenous and community engagement

 

Canada's clean energy landscape received a significant boost recently with the announcement of federal funding for the Bruce Power's Bruce C Project. Natural Resources Canada (NRCan) pledged up to $50 million to support pre-development work for this potential new nuclear build on the Bruce Power site. This collaboration between federal and provincial governments signifies a shared commitment to a cleaner energy future for Ontario and Canada.

The Bruce C Project, if it comes to fruition, has the potential to be a significant addition to Ontario's clean energy grid. The project envisions constructing new nuclear reactors at the existing Bruce Power facility, located on the shores of Lake Huron. Nuclear energy is a reliable source of clean electricity generation, as evidenced by Bruce Power's operating record during the pandemic, producing minimal greenhouse gas emissions during operation.

The funding announced by NRCan will be used to conduct crucial pre-development studies. These studies will assess the feasibility of the project from various angles, including technical considerations, environmental impact assessments, and Indigenous and community engagement, informed by lessons from a major refurbishment that required a Bruce reactor to be taken offline, to ensure thorough planning. Obtaining a license to prepare the site and completing an impact assessment are also key objectives for this pre-development phase.

This financial support from the federal government aligns with both national and provincial clean energy goals. The "Powering Canada Forward" plan, spearheaded by NRCan, emphasizes building a clean, reliable, and affordable electricity system across the country. Ontario's "Powering Ontario's Growth" plan echoes these objectives, focusing on investment options, such as the province's first SMR project, to electrify the province's economy and meet its growing clean energy demand.

"Ontario has one of the cleanest electricity grids in the world and the nuclear industry is leading the way," stated Mike Rencheck, President and CEO of Bruce Power. He views this project as a prime example of collaboration between federal and provincial entities, along with the private sector, where recent manufacturing contracts underscore industry capacity.

Nuclear energy, however, remains a topic of debate. While proponents highlight its role in reducing greenhouse gas emissions and providing reliable baseload power, opponents raise concerns about nuclear waste disposal and potential safety risks. The pre-development studies funded by NRCan will need to thoroughly address these concerns as part of the project's evaluation.

Transparency and open communication with local communities and Indigenous groups will also be crucial for the project's success. Early engagement activities facilitated by the funding will allow for open dialogue and address any potential concerns these stakeholders might have.

The Bruce C Project is still in its early stages. The pre-development work funded by NRCan will provide valuable data to determine the project's viability. If the project moves forward, it has the potential to significantly contribute to Ontario's clean energy future, while also creating jobs and economic benefits for local communities and suppliers.

However, the project faces challenges. Public perception of nuclear energy and the lengthy regulatory process are hurdles that will need to be addressed, as debates around the Pickering B refurbishment have highlighted in Ontario. Additionally, ensuring cost-effectiveness and demonstrating the project's long-term economic viability will be critical for securing broader support.

The next few years will be crucial for the Bruce C Project. The pre-development work funded by NRCan will be instrumental in determining its feasibility. If successful, this project could be a game-changer for Ontario's clean energy future, building on the province's Pickering life extensions to strengthen system adequacy, offering a reliable, low-carbon source of electricity for the province and beyond.

 

Related News

View more

Net-Zero Emissions Might Not Be Possible Without Nuclear Power

Nuclear Power for Net-Zero Grids anchors reliable baseload, integrating renewables with grid stability as solar, wind, and battery storage scale. Advanced reactors complement hydropower, curb natural gas reliance, and accelerate deep decarbonization of electricity systems.

 

Key Points

Uses nuclear baseload and advanced reactors to stabilize power grids and integrate higher shares of variable renewables.

✅ Provides firm, zero-carbon baseload for renewable-heavy grids

✅ Reduces natural gas dependence and peaker emissions

✅ Advanced reactors enhance safety, flexibility, and cost

 

Declining solar, wind, and battery technology costs are helping to grow the share of renewables in the world’s power mix to the point that governments are pledging net-zero emission electricity generation in two to three decades to fight global warming.

Yet, electricity grids will continue to require stable baseload to incorporate growing shares of renewable energy sources and ensure lights are on even when the sun doesn’t shine, or the wind doesn’t blow. Until battery technology evolves enough—and costs fall far enough—to allow massive storage and deployment of net-zero electricity to the grid, the systems will continue to need power from sources other than solar and wind.

And these will be natural gas and nuclear power, regardless of concerns about emissions from the fossil fuel natural gas and potential disasters at nuclear power facilities such as the ones in Chernobyl or Fukushima.

As natural gas is increasingly considered as just another fossil fuel, nuclear power generation provides carbon-free electricity to the countries that have it, even as debates over nuclear power’s outlook continue worldwide, and could be the key to ensuring a stable power grid capable of taking in growing shares of solar and wind power generation.

The United States, where nuclear energy currently provides more than half of the carbon-free electricity, is supporting the development of advanced nuclear reactors as part of the clean energy strategy.

But Europe, which has set a goal to reach carbon neutrality by 2050, could find itself with growing emissions from the power sector in a decade, as many nuclear reactors are slated for decommissioning and questions remain over whether its aging reactors can bridge the gap. The gap left by lost nuclear power is most easily filled by natural gas-powered electricity generation—and this, if it happens, could undermine the net-zero goals of the European Union (EU) and the bloc’s ambition to be a world leader in the fight against climate change.

 

U.S. Power Grid Will Need Nuclear For Net-Zero Emissions

A 2020 report from the University of California, Berkeley, said that rapidly declining solar, wind, and storage prices make it entirely feasible for the U.S. to meet 90 percent of its power needs from zero-emission energy sources by 2035 with zero increases in customer costs from today’s levels.

Still, natural gas-fired generation will be needed for 10 percent of America’s power needs. According to the report, in 2035 it would be possible that “during normal periods of generation and demand, wind, solar, and batteries provide 70% of annual generation, while hydropower and nuclear provide 20%.” Even with an exponential rise in renewable power generation, the U.S. grid will need nuclear power and hydropower to be stable with such a large share of solar and wind.

The U.S. Backs Advanced Nuclear Reactor Technology

The U.S. Department of Energy is funding programs of private companies under DOE’s new Advanced Reactor Demonstration Program (ARDP) to showcase next-gen nuclear designs for U.S. deployment.

“Taking leadership in advanced technology is so important to the country’s future because nuclear energy plays such a key role in our clean energy strategy,” U.S. Secretary of Energy Dan Brouillette said at the end of December when DOE announced it was financially backing five teams to develop and demonstrate advanced nuclear reactors in the United States.

“All of these projects will put the U.S. on an accelerated timeline to domestically and globally deploy advanced nuclear reactors that will enhance safety and be affordable to construct and operate,” Secretary Brouillette said.

According to Washington DC-based Nuclear Energy Institute (NEI), a policy organization of the nuclear technologies industry, nuclear energy provides nearly 55 percent of America’s carbon-free electricity. That is more than 2.5 times the amount generated by hydropower, nearly 3 times the amount generated by wind, and more than 12 times the amount generated by solar. Nuclear energy can help the United States to get to the deep carbonization needed to hit climate goals.

 

Europe Could See Rising Emissions Without Nuclear Power

While the United States is doubling down on efforts to develop advanced and cheaper nuclear reactors, including microreactors and such with new types of technology, Europe could be headed to growing emissions from the electricity sector as nuclear power facilities are scheduled to be decommissioned over the next decade and Europe is losing nuclear power just when it really needs energy, according to a Reuters analysis from last month.

In many cases, it will be natural gas that will come to the rescue to power grids to ensure grid stability and enough capacity during peak demand because solar and wind generation is variable and dependent on the weather.

For example, Germany, the biggest economy in Europe, is boosting its renewables targets, but it is also phasing out nuclear by next year, amid a nuclear option debate over climate strategy, while its deadline to phase out coal-fired generation is 2038—more than a decade later compared to phase-out plans in the UK and Italy, for example, where the deadline is the mid-2020s.

The UK, which left the EU last year, included support for nuclear power generation as one of the ten pillars in ‘The Ten Point Plan for a Green Industrial Revolution’ unveiled in November.

The UK’s National Grid has issued several warnings about tight supply since the fall of 2020, due to low renewable output amid high demand.

“National Grid’s announcement underscores the urgency of investing in new nuclear capacity, to secure reliable, always-on, emissions-free power, alongside other zero-carbon sources. Otherwise, we will continue to burn gas and coal as a fallback and fall short of our net zero ambitions,” Tom Greatrex, Chief Executive of the Nuclear Industry Association, said in response to one of those warnings.

But it’s in the UK that one major nuclear power plant project has notoriously seen a delay of nearly a decade—Hinkley Point C, originally planned in 2007 to help UK households to “cook their 2017 Christmas turkeys”, is now set for start-up in the middle of the 2020s.

Nuclear power development and plant construction is expensive, but it could save the plans for low-carbon emission power generation in many developed economies, including in the United States.

 

Related News

View more

Relief for power bills in B.C. offered to only part of province

BC Hydro COVID-19 Relief offers electricity bill credits for laid-off workers and small business support, announced by Premier John Horgan, while FortisBC customers face deferrals and billing arrangements across Kelowna, Okanagan, and West Kootenay.

 

Key Points

BC Hydro COVID-19 Relief gives bill credits to laid-off residents; FortisBC offers deferrals and payment plans.

✅ Credit equals 3x average monthly bill for laid-off BC Hydro users

✅ Small businesses on BC Hydro get three months bill forgiveness

✅ FortisBC waives late fees, no disconnections, offers deferrals

 

On April 1, B.C. Premier John Horgan announced relief for BC Hydro customers who are facing bills after being laid-off during the economic shutdown due to the COVID-19 epidemic, while the utility also explores time-of-use rates to manage demand.

“Giving people relief on their power bills lets them focus on the essentials, while helping businesses and encouraging critical industry to keep operating,” he said.

BC Hydro residential customers in the province who have been laid off due to the pandemic will see a credit for three times their average monthly bill and, similar to Ontario's pandemic relief fund, small businesses forced to close will have power bills forgiven for three months.

But a large region of the province which gets its power from FortisBC will not have the same bail out.

FortisBC is the electricity provider to the tens of thousands who live and work in the Silmikameen Valley on Highway 3, the city of Kelowna, the Okanagan Valley south from Penticton, the Boundary region along the U.S. border. as well as West Kootenay communities.

“We want to make sure our customers are not worried about their FortisBC bill,” spokesperson Nicole Brown said.

FortisBC customers will still be on the hook for bills despite measures being taken to keep the lights on, even as winter disconnection pressures have been reported elsewhere.

Recent storm response by BC Hydro also highlights how crews have kept electricity service reliable during recent atypical events.

“We’ve adjusted our billing practices so we can do more,” she said. “We’ve discontinued our late fees for the time being and no customer will be disconnected for any financial reason.”

Brown said they will work one-on-one with customers to help find a billing arrangement that best suits their needs, aligning with disconnection moratoriums seen in other jurisdictions.

Those arrangement, she said, could include a “deferral, an equal payment plan or other billing options,” similar to FortisAlberta's precautions announced in Alberta.

Global News inquired with the Premier’s office why FortisBC customers were left out of Wednesday’s announcement and were deferred to the Ministry of Energy, Mines and Petroleum Resources.

The Ministry referred us back to FortisBC on the issue and offered no other comment, even as peak rates for self-isolating customers remained unchanged in parts of Ontario.

“We’re examining all options of how we can further help our customers and look forward to learning more about the program that BC Hydro is offering,” Brown said.

Disappointed FortisBC customers took to social media to vent about the disparity.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.