Solar-powered Day4 Energy sees a bright future

By Vancouver Sun


CSA Z463 Electrical Maintenance

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today
As the leader of one of the world's foremost satellite technology companies, John MacDonald spent a lot of time looking at planet Earth from outer space.

Today, at an age when most people of his generation are retired, he's looking in the opposite direction.

MacDonald is co-founder and chair of Day4 Energy, a British Columbia-based solar panel manufacturing company with proprietary technology to offer a booming global market for green energy.

"It's been apparent to me for quite a long time that the world has to evolve to where renewable energy becomes a significant source of our electrical energy and solar, as l like to say, is the king of renewables. It's energy directly from the sun," the 72-year-old MacDonald said in a recent interview at Day4's bustling manufacturing plant in south Burnaby.

A lot of people, particularly Europeans looking for alternatives to fossil fuels, seem to agree.

Day4 commenced manufacturing in 2006 and since then, annual production has quadrupled and is expected to double again within a few months.

This expansion, predicated upon a fundamental reworking of conventional solar technology, is rapid enough to rank Day4 second on The Vancouver Sun's list of the Top 50 fastest-growing companies in B.C.

The B.C. public company's entire 2009 manufacturing output is already sold out, and its patents are already recognized in the United States, the European Union, China, India and Mexico.

The key to its success is a major improvement upon the conventional electrode, or silver wire grid, that sits upon the black background sheet of a solar panel.

Day4's electrode harvests electricity about 20-per-cent more efficiently, in a smaller space, than a conventional solar panel.

In an industry where the manufacturing cost per kilowatt of electricity produced is substantially higher than other types of green power, that's a notable advantage.

MacDonald, an Officer of the Order of Canada, was retired for only a couple of years from his position as chair and CEO of MacDonald Dettwiler, the Vancouver-based satellite imaging and surveillance company, when he had a meeting with prominent Russian physicist Leonid Rubin that convinced him to get back into the business world.

In Moscow for a meeting of the APEC business advisory council, MacDonald was treated by Rubin to a whirlwind look at Russian technological innovation.

MacDonald, himself a rare combination of physicist, engineer, educator and entrepreneur, describes his two-day tour of Russian laboratories and research facilities as "a drink from a technological firehose."

"We were sitting in a coffee shop behind the Bolshoi Theatre," MacDonald recalled in a recent interview at Day4 headquarters in south Burnaby.

"Leonid said to me, 'Of all the things you've seen, which one could we build a business around in Canada?'

"I said, 'It's obvious. Your solar energy project. If you do what you say you can do, and I see absolutely no technical reason why you can't, there's a market.'

"A month later he was in Vancouver. We incorporated the company. This was in May of 2001."

What Rubin did, in essence, was build a better mousetrap.

"This industry has been around for 30-40 years and while they have made huge improvements in the cells themselves, the method of interconnection has not changed in those 30 years. "What Leonid did, is figure out a better way to do it."

Leonid Rubin's son George, already living in Vancouver and a family friend of the MacDonald's, arranged the original meeting of the two men in Moscow.

George Rubin, a physicist who also had business degree, was the "obvious" choice to run the company's day-to-day business, MacDonald said.

By 2002, MacDonald and the Rubins were laying the groundwork for the company.

Leonid Rubin remained in Russia with his technical crew, seeking to turn the electrode prototype into something that could be produced at a commercial level.

"The technical guys were over in Russia and of course the costs were much less than what you could do it for in Canada. When that was done we brought the whole bunch of them over here," MacDonald said.

"They are all here now. Leonid is a landed immigrant along with his wife, and these guys are now the core of the R&D group."

"George and I did the planning and raising the money."

They opened the first manufacturing plant, with total annual capacity of 12 megawatts of solar panels, in the third quarter of 2006.

On July 15, 2008, Day4 announced completion of an expansion that quadrupled manufacturing, from 12 megawatts to 47 megawatts.

They aren't done yet.

The company expects another doubling of production, to 97 megawatts by year's end.

There was more good news. On July 30, Day4 announced successful trials for its next-generation electrode, which is 25 per cent more efficient than its current model.

The company's bottom line is still a work in progress, given the infusions of cash necessary to support expansion.

The company reported a 2.5-per-cent gross profit, $400,000 in second quarter 2008 compared to two per cent or $300,000 in the first quarter — and a negative gross margin of 21 per cent for fiscal 2007.

Day4's most recent quarterly report, for June 30, reported total second quarter revenue reached $15 million compared to $13.5 million in the first three months of the year — and $3.1 million in second quarter 2007.

The company noted that the 2008 second quarter jump was achieved despite unchanged production capacity, and pointed to an eight-per-cent efficiency gain in its manufacturing process.

In fiscal 2007, Day4's revenue increased 10 times, from $1.9 million in 2006 to $20.9 million last year.

The company hopes to be in the black on a net revenue basis, by the end of this year.

"This is a very scalable process and we can keep expanding it to meet the market," MacDonald said. "Of course these days with all that's going on in the financial world you have to take a deep breath, but the company is in good shape. I'm not worrying about it."

Related News

London Gateway Unveils World’s First All-Electric Berth

London Gateway All-Electric Berth enables shore power and cold ironing for container ships, cutting emissions, improving efficiency, and supporting green logistics, IMO targets, and UK net-zero goals through grid connection and port electrification.

 

Key Points

It is a shore power berth supplying electricity to ships, cutting emissions and costs while boosting port efficiency.

✅ Grid connection enables cold ironing for container ships

✅ Supports IMO decarbonization and UK net-zero goals

✅ Stabilizes energy costs versus marine fuels

 

London Gateway, one of the UK’s premier deep-water ports, has unveiled the world’s first all-electric berth, marking a significant milestone in sustainable port operations. This innovative development aims to enhance the port's capacity while reducing its environmental impact. The all-electric berth, which powers vessels using electricity, similar to emerging offshore vessel charging solutions, instead of traditional fuel sources, is expected to greatly improve operational efficiency and cut emissions from ships docking at the port.

The launch of this electric berth is part of London Gateway’s broader strategy to become a leader in green logistics, with parallels in electric truck deployments at California ports that support port decarbonization, aligning with the UK’s ambitious climate goals. By transitioning to electric power, the port reduces reliance on fossil fuels and significantly lowers carbon emissions, contributing to a cleaner environment and supporting the maritime industry’s transition towards sustainability.

The berth will provide cleaner power to container ships, enabling them to connect to the grid while docked, similar to electric ships on the B.C. coast, rather than running their engines, which traditionally contribute to pollution. This innovation supports the UK's broader push for decarbonizing its transportation and logistics sector, especially as the global shipping industry faces increasing pressure to reduce its carbon footprint.

The new infrastructure is expected to increase London Gateway’s operational capacity, allowing for a higher volume of traffic while simultaneously addressing the environmental challenges posed by growing port activities. By integrating advanced technologies like the all-electric berth, and advances such as battery-electric high-speed ferries, the port can handle more shipments without expanding its reliance on traditional fuel-based power sources. This could lead to increased cargo throughput, as shipping lines are incentivized to use a greener, more efficient port for their operations.

The project aligns with broader global trends, including electric flying ferries in Berlin, as ports and shipping companies seek to meet international standards set by the International Maritime Organization (IMO) and other regulatory bodies. The IMO has set aggressive targets for reducing greenhouse gas emissions from shipping, and the UK has pledged to be net-zero by 2050, with the shipping sector playing a crucial role in that transition.

In addition to its environmental benefits, the electric berth also helps reduce the operational costs for shipping lines, as seen with electric ferries scaling in B.C. programs across the sector. Traditional fuel costs can be volatile, whereas electric power offers a more stable and predictable expense. This cost stability could make London Gateway an even more attractive port for international shipping companies, further boosting its competitive position in the global market.

Furthermore, the project is expected to have broader economic benefits, generating jobs and fostering innovation, such as hydrogen crane projects in Vancouver, within the green technology and maritime sectors. London Gateway has already made significant strides in sustainable practices, including a focus on automated systems and energy-efficient logistics solutions. The introduction of the all-electric berth is the latest in a series of initiatives aimed at strengthening the port’s sustainability credentials.

This groundbreaking development sets a precedent for other global ports to adopt similar sustainable technologies. As more ports embrace electrification and other green solutions, the shipping industry could experience a dramatic reduction in its environmental footprint. This shift could have a cascading effect on the wider logistics and supply chain industries, leading to cleaner and more efficient global trade.

London Gateway’s all-electric berth represents a forward-thinking approach to the challenges of climate change and the need for sustainability in the maritime sector. With its ability to reduce emissions, improve port capacity, and enhance operational efficiency, this pioneering project is poised to reshape the future of global shipping. As more ports around the world follow suit, the potential for widespread environmental impact in the shipping industry is significant, providing hope for a greener future in international trade.

 

Related News

View more

The Cool Way Scientists Turned Falling Raindrops Into Electricity

Raindrop Triboelectric Energy Harvesting converts falling water into electricity using Teflon (PTFE) on indium tin oxide and an aluminum electrode, forming a transient water bridge; a low frequency nanogenerator for renewable, static electricity harvesting.

 

Key Points

A method using PTFE, ITO, and an aluminum electrode to turn raindrop impacts into low frequency electrical power.

✅ PTFE on ITO boosts charge transfer efficiency.

✅ Water bridge links electrodes for rapid discharge.

✅ Low frequency output suits continuous energy harvesting.

 

Scientists at the City University of Hong Kong have used a Teflon-coated surface and a phenomenon called triboelectricity to generate a charge from raindrops. “Here we develop a device to harvest energy from impinging water droplets by using an architecture that comprises a polytetrafluoroethylene [Teflon] film on an indium tin oxide substrate plus an aluminium electrode,” they explain in their new paper in Nature as a step toward cheap, abundant electricity in the long term.

Triboelectricity itself is an old concept. The word means “friction electricity”—from the Greek tribo, to rub or wear down, which is why a diatribe tires you out—and dates back a long, long time. Static electricity is the most famous kind of triboelectric, and related work has shown electricity from the night sky can be harvested as well in niche setups. In most naturally occurring kinds, scientists have studied triboelectric in order to avoid its effects, like explosions inside of grain silos or hospital workers touching off pure oxygen. (Blowing sand causes an electric field, and NASA even worries about static when astronauts eventually land on Mars.)

One of the most studied forms of intentional and useful triboelectric is in systems such as ocean wave generators where the natural friction of waves meets nanogenerators of triboelectric energy. These even already use Teflon, which has natural conductivity that makes it ideal for this job. But triboelectricity is chaotic, and harnessing it generally involves a bunch of complicated, intersecting variables that can vary with the hourly weather. Promises of static electricity charging devices have often been, well, so much hot, sandy wind.

The scientists at City University of Hong Kong used triboelectric ideas to turn falling raindrops into energy. They say previous versions of the same idea were not very efficient, with materials that didn’t allow for high-fidelity transfer of electrical charge. (Many sources of renewable energy aren’t yet as efficient to turn into power, both because of developing technology and because their renewability means even less efficient use could be better than, for example, fossil fuels, and advances in renewable energy storage could help.)

“[A]chieving a high density of electrical power generation is challenging,” the team explains in its paper. “Traditional hydraulic power generation mainly uses electromagnetic generators that are heavy, bulky, and become inefficient with low water supply.” Diversifying how power is generated by water sources such as oceans and rivers is good for the existing infrastructure as well as new installations.

The research team found that as simulated raindrops fell on their device, the way the water accumulated and spread created a link between their two electrodes, one Teflon-coated and the other aluminum. This watery de facto wire link closes the loop and allows accumulated energy to move through the system. Because it’s a mechanical setup, it’s not limited to salty seawater, and because the medium is already water, its potential isn’t affected by ambient humidity either.

Raindrop energy is very low frequency, which means this tech joins many other existing pushes to harvest continuously available, low frequency natural energy, including underwater 'kites' that exploit steady currents. To make an interface that increases “instantaneous power density by several orders of magnitude over equivalent devices,” as the researchers say they’ve done here, could represent a major step toward feasibility in triboelectric generation.

 

Related News

View more

Ontario's electricity operator kept quiet about phantom demand that cost customers millions

IESO Fictitious Demand Error inflated HOEP in the Ontario electricity market, after embedded generation was mis-modeled; the OEB says double-counted load lifted wholesale prices and shifted costs via the Global Adjustment.

 

Key Points

An IESO modeling flaw that double-counted load, inflating HOEP and charges in Ontario's wholesale market.

✅ Double-counted unmetered load from embedded generation

✅ Inflated HOEP; shifted costs via Global Adjustment

✅ OEB flagged transparency; exporters paid more

 

For almost a year, the operator of Ontario’s electricity system erroneously counted enough phantom demand to power a small city, causing prices to spike and hundreds of millions of dollars in extra charges to consumers, according to the provincial energy regulator.

The Independent Electricity System Operator (IESO) also failed to tell anyone about the error once it noticed and fixed it.

The error likely added between $450 million and $560 million to hourly rates and other charges before it was fixed in April 2017, according to a report released this month by the Ontario Energy Board’s Market Surveillance Panel.

It did this by adding as much as 220 MW of “fictitious demand” to the market starting in May 2016, when the IESO started paying consumers who reduced their demand for power during peak periods. This involved the integration of small-scale embedded generation (largely made up of solar) into its wholesale model for the first time.

The mistake assumed maximum consumption at such sites without meters, and double-counted that consumption.

The OEB said the mistake particularly hurt exporters and some end-users, who did not benefit from a related reduction of a global adjustment rate applicable to other customers.

“The most direct impact of the increase in HOEP (Hourly Ontario Energy Price) was felt by Ontario consumers and exporters of electricity, who paid an artificially high HOEP, to the benefit of generators and importers,” the OEB said.

The mix-up did not result in an equivalent increase in total system costs, because changes to the HOEP are offset by inverse changes to a electricity cost allocation mechanism such as the Global Adjustment rate, the OEB noted.


A chart from the OEB's report shows the time of day when fictitious demand was added to the system, and its influence on hourly rates.

Peak time spikes
The OEB said that the fictitious demand “regularly inflated” the hourly price of energy and other costs calculated as a direct function of it.

For almost a year, Ontario's electricity system operator @IESO_Tweets erroneously counted enough phantom demand to power a small city, causing price spikes and hundreds of millions in charges to consumers, @OntEnergyBoard says. @5thEstate reports.

It estimated the average increase to the HOEP was as much as $4.50/MWh, but that price spikes, compounded by scheduled OEB rate changes, would have been much higher during busier times, such as the mid-morning and early evening.

“In times of tight supply, the addition of fictitious demand often had a dramatic inflationary impact on the HOEP,” the report said.

That meant on one summer evening in 2016 the hourly rate jumped to $1,619/MWh, it said, which was the fourth highest in the history of the Ontario wholesale electricity market.

“Additional demand is met by scheduling increasingly expensive supply, thus increasing the market price. In instances where supply is tight and the supply stack is steep, small increases in demand can cause significant increases in the market price.

The OEB questioned why, as of September this year, the IESO had failed to notify its customers or the broader public, amid a broader auditor-regulator dispute that drew political attention, about the mistake and its effect on prices.

“It's time for greater transparency on where electricity costs are really coming from,” said Sarah Buchanan, clean energy program manager at Environmental Defence.

“Ontario will be making big decisions in the coming years about whether to keep our electricity grid clean, or burn more fossil fuels to keep the lights on,” she added. “These decisions need to be informed by the best possible evidence, and that can't happen if critical information is hidden.”

In a response to the OEB report on Monday, the IESO said its own initial analysis found that the error likely pushed wholesale electricity payments up by $225 million. That calculation assumed that the higher prices would have changed consumer behaviour, while upcoming electricity auctions were cited as a way to lower costs, it said.

In response to questions, a spokesperson said residential and small commercial consumers would have saved $11 million in electricity costs over the 11-month period, even as a typical bill increase loomed province-wide, while larger consumers would have paid an extra $14 million.

That is because residential and small commercial customers pay some costs via time-of-use rates, including a temporary recovery rate framework, the IESO said, while larger customers pay them in a way that reflects their share of overall electricity use during the five highest demand hours of the year.

The IESO said it could not compensate those that had paid too much, given the complexity of the system, and that the modelling error did not have a significant impact on ratepayers.

While acknowledging the effects of the mistake would vary among its customers, the IESO said the net market impact was less than $10 million, amid ongoing legislation to lower electricity rates in Ontario.

It said it would improve testing of its processes prior to deployment and agreed to publicly disclose errors that significantly affect the wholesale market in the future.

 

Related News

View more

Leading Offshore Wind Conference to Launch National Job Fair

OSW CareerMatch Offshore Wind Job Fair convenes industry leaders, supply chain employers, and skilled candidates at IPF 2020 in Providence, Rhode Island, spotlighting workforce development, training programs, and near-term hiring for U.S. offshore wind projects.

 

Key Points

An IPF 2020 job fair connecting offshore wind employers, advancing workforce development in Providence, RI.

✅ National job fair at IPF 2020, Providence, RI

✅ Connects supply chain employers with skilled candidates

✅ Includes a workforce development and education summit

 

The Business Network for Offshore Wind, the leading non-profit advocate for U.S. offshore wind at the state, federal and global levels, amid a U.S. grid warning about coronavirus impacts, will host its seventh annual International Partnership Forum (IPF) on April 21-24, 2020 in Providence, Rhode Island. 

New this year: the first-ever national offshore wind industry job fair plus a half-day workforce development summit, in partnership with Skills for Rhode Island’s Future. The OSW CareerMatch, will showcase jobs at top-tier companies seeking to grow the workforce of the future, informed by young people's interest in electricity careers, and recruit qualified candidates. The Offshore Wind Workforce Development and Education Summit, an invitation-only event, will bring together educators, stakeholders, and industry leaders to address current energy training programs, identify industry employment needs, required skillsets, and how organizations can fulfill these near-term needs. CareerMatch will take place 8:30 a.m. to 1:00 p.m. on Tuesday, April 21, and the Workforce Summit from 12:30 p.m. to 4:00 p.m., both at the Rhode Island Convention Center. 

“The U.S. offshore wind industry has reached the stage that, in order to successfully develop and meet new project demands, will require an available and qualified workforce,” said Liz Burdock, CEO and president of the Business Network for Offshore Wind, noting worker safety concerns in other energy sectors. “This first-ever national Job Fair will allow top-tier supply chain companies to connect with skilled individuals to discuss projects that are going on as they speak.” 

“Hosting the first-of-its-kind offshore wind energy job fair in The Ocean State is apropos,” said Nina Pande, executive director of Skills for Rhode Island’s Future, as future of work investments accelerate across the electricity sector. “Our organization is thrilled to have the unique opportunity to help convene talent at OSW CareerMatch to engage with the employers across the offshore wind supply chain.”

The annual IPF conference is the premier event for the offshore wind supply chain, which is now projected to be a $70 billion revenue opportunity through 2030. Fully developing this supply chain will foster local economic growth, provide thousands of jobs, adapt to shifts like working from home electricity demand, and help offshore wind energy meet its potential. If fully built out worldwide, offshore wind could power 18 times the world’s current electricity needs.    

The exhibit and conference sells out every year and is again on track to draw over 2,500 industry professionals representing over 575 companies, all focused on sharing valuable insights on how to move the emerging U.S. wind industry forward, including operational resilience such as on-site staffing plans during the outbreak. The full conference schedule may be seen online here. More details, including special guest speakers, will be announced soon.
 

 

Related News

View more

National Grid and SSE to use electrical transformers to heat homes

Grid Transformer Waste Heat Recovery turns substations into neighborhood boilers, supplying district heating via heat networks, helping National Grid and SSE cut emissions, boost energy efficiency, and advance low carbon, net zero decarbonization.

 

Key Points

Grid Transformer Waste Heat Recovery captures substation heat for district heating, cutting emissions and gas use.

✅ Captures waste heat from National Grid transformers

✅ Feeds SSE district heat networks for nearby homes

✅ Cuts carbon, improves efficiency, aligns with net zero

 

Thousands of homes could soon be warmed by the heat from giant electricity grid transformers for the first time as part of new plans to harness “waste heat” and cut carbon emissions from home heating.

Trials are due to begin on how to capture the heat generated by transmission network transformers, owned by National Grid, to provide home heating for households connected to district heating networks operated by SSE.

Currently, hot air is vented from the giant substations to help cool the transformers that help to control the electricity running through National Grid’s high-voltage transmission lines.

However, if the trial succeeds, about 1,300 National Grid substations could soon act as neighbourhood “boilers”, piping water heated by the substations into nearby heating networks, and on into the thousands of homes that use SSE’s services.

“Electric power transformers generate huge amounts of heat as a byproduct when electricity flows through them. At the moment, this heat is just vented directly into the atmosphere and wasted,” said Nathan Sanders, the managing director of SSE Energy Solutions.

“This groundbreaking project aims to capture that waste heat and effectively turn transformers into community ‘boilers’ that serve local heat networks with a low- or even zero-carbon alternative to fossil-fuel-powered heat sources such as gas boilers, a shift akin to a gas-for-electricity swap in heating markets,” Sanders added.

Alexander Yanushkevich, National Grid’s innovation manager, said the scheme was “essential to achieve net zero” and a “great example of how, taking a whole-system approach, including power-to-gas in Europe precedents, the UK can lead the way in helping accelerate decarbonisation”.

The energy companies believe the scheme could initially reduce heat network carbon emissions by more than 40% compared with fossil gas systems. Once the UK’s electricity system is zero carbon, and with recent milestones where wind was the main source of UK electricity on the grid, the heating solution could play a big role in helping the UK meet its climate targets.

The first trials have begun at National Grid’s specially designed testing site at Deeside in Wales to establish how the waste heat could be used in district heating networks. Once complete, the intellectual property will be shared with smaller regional electricity network owners, which may choose to roll out schemes in their areas.

Tim O’Reilly, the head of strategy at National Grid, said: “We have 1,300 transmission transformers, but there’s no reason why you couldn’t apply this technology to smaller electricity network transformers, too, echoing moves to use more electricity for heat in colder regions.”

Once the trials are complete, National Grid and SSE will have a better idea of how many homes could be warmed using the heat generated by electricity network substations, O’Reilly said, and how the heat can be used in ways that complement virtual power plants for grid resilience.

“The heavier the [electricity] load, which typically reaches a peak at around teatime, the more heat energy the transformer will be able to produce, aligning with times when wind leads the power mix nationally. So it fits quite nicely to when people require heat in the evenings,” he added.

Other projects designed to capture waste heat to use in district heating schemes include trapping the heat generated on the Northern line of London’s tube network to warm homes in Islington, and harnessing the geothermal heat from disused mines for district heating networks in Durham.

Only between 2% and 3% of the UK is connected to a district heating network, but more networks are expected to emerge in the years ahead as the UK tries to reduce the carbon emissions from homes, alongside its nuclear power plans in the wider energy strategy.

 

Related News

View more

Utility giant Electricite de France acquired 50pc stake in Irish offshore wind farm

Codling Bank Offshore Wind Project will deliver a 1.1 GW offshore wind farm off the Wicklow coast, as EDF Renewables and Fred Olsen Renewables invest billions to support Ireland's CAP 2030 and cut carbon emissions.

 

Key Points

A 1.1 GW offshore wind farm off Co Wicklow, led by EDF and Fred Olsen, advancing Ireland's CAP 2030 targets.

✅ Up to 1.1 GW capacity; hundreds of turbines off Co Wicklow

✅ EDF Renewables partners with Fred Olsen Renewables

✅ Investment well over €2bn, supporting 70% electricity by 2030

 

It’s been previously estimated that the entire Codling Bank project, which will eventually see hundreds of wind turbines, such as a huge offshore wind turbine now coming to market, erected about 13km off the Co Wicklow coast, could be worth as much as €100m. The site is set to generate up to 1.1 gigawatts of electricity when it’s eventually operational.

It’s likely to cost well over €2bn to develop, and with new pipelines abroad where Long Island offshore turbine proposals are advancing, scale economies are increasingly relevant.

The other half of the project is owned by Norway’s Fred Olsen Renewables, with tens of millions of euro already reportedly spent on surveys and other works associated with the scheme. Initial development work started in 2003.

Mr Barrett will now continue to focus on his non-Irish renewable projects, at a time when World Bank wind power support is accelerating in developing countries, said Hazel Shore, the company that sold the stake. It added that Johnny Ronan and Conor Ronan, the developer’s brother, will retain an equity interest in the Codling project.

“The Hazel Shore shareholders remain committed to continuing their renewable and forestry businesses,” noted the firm, whose directors include Paddy Teahon, a former secretary of the Department of the Taoiseach and chairman of the National Offshore Wind Association of Ireland.

The French group’s EDF Renewables subsidiary will now partner with the Norwegian firm to develop and build the Codling Bank project, in a sector widely projected to become a $1 trillion business over the coming decades.

EDF pointed out that the acquisition of the Codling Bank stake comes after the government committed to reducing carbon emissions. A Climate Action Plan launched last year will see renewable projects generating 70pc of Ireland’s electricity by 2030, with more than a third of Irish electricity to be green within four years according to recent analysis. Offshore wind is expected to deliver at least 3.5GW of power in support of the objective.

Bruno Bensasson, EDF Group senior executive vice-president of renewable energies and the CEO of EDF Renewables said the French group is “committed to contributing to the Irish government’s renewables goals”.

“This important project clearly strengthens our strong ambition to be a leading global player in the offshore wind industry,” he added. “This is consistent with the CAP 2030 strategy that aims to double EDF’s renewable energy generation by 2030 and increase it to 50GW net.”

Matthieu Hue, the CEO of EDF Renewables UK and Ireland said the firm already has an office in Dublin and is looking for further renewable projects, as New York's biggest offshore wind farm moves ahead, underscoring momentum.

Last November, the ESB teamed up with EDF in Scotland, reflecting how UK offshore wind is powering up, with the Irish utility buying a 50pc stake in the Neart na Gaoithe offshore wind project. The massive wind farm is expected to generate up to 450MW of electricity and will cost about €2.1bn to develop.

EDF said work on that project is “well under way”.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified