For years, technological visionaries have painted a seductive vision of using ocean tides and waves to produce power. They foresee large installations off the coast and in tidal estuaries that could provide as much as 10 percent of the nationÂ’s electricity.
But the technical difficulties of making such systems work are proving formidable. Last year, a wave-power machine sank off the Oregon coast. Blades have broken off experimental tidal turbines in New YorkÂ’s turbulent East River. Problems with offshore moorings have slowed the deployment of snakelike generating machines in the ocean off Portugal.
Years of such problems have discouraged ocean-power visionaries, but have not stopped them. Lately, spurred by rising costs for electricity and for the coal and other fossil fuels used to produce it, they are making a new push to overcome the barriers blocking this type of renewable energy.
The Scottish company Pelamis Wave Power plans to turn on a small wave-energy farm — the world’s first — off the coast of Portugal by year’s end, after fixing the broken moorings. Finavera Renewables, a Canadian company that recently salvaged its sunken, $2.5 million Oregon wave-power machine, has signed an agreement with Pacific Gas & Electric to produce power off the California coast by 2012. And in the East River, just off Manhattan, two newly placed turbines with tougher blades and rotors are feeding electricity into a grocery store and parking garage on Roosevelt Island.
“It’s frustrating sometimes as an ocean energy company to say, yeah, your device sank,” said Jason Bak, chief executive of Finavera. “But that is technology development.”
Roughly 100 small companies around the world are working on converting the seaÂ’s power to electricity. Many operate in Europe, where governments have pumped money into the industry. Companies and governments alike are betting that over time, costs will come down. Right now, however, little electricity is being generated from the ocean except at scattered test sites around the world.
The East River — despite its name, it is really a tidal strait with powerful currents — is the site of the most advanced test project in the United States.
Verdant Power, the company that operates it, was forced to spend several years and millions of dollars mired in a slow permit process, even before its turbine blades broke off in the currents. The company believes it is getting a handle on the problems. Verdant is trying to perfect its turbines and then install 30 of them in the East River, starting no later than spring 2010, and to develop other sites in Canada and on the West Coast.
Plenty of other start-ups also plan commercial ocean-power plants, at offshore sites such as Portugal, Oregon and Wales, but none have been built.
Ocean-power technology splits into two broad categories, tidal and wave power. Wave power, of the sort Finavera is pursuing, entails using the up and down motions of the waves to generate electricity. Tidal power — Verdant’s province — involves harnessing the action of the tides with underwater turbines, which twirl like wind machines.
(Decades-old tidal technologies in France and Canada use barrage systems that trap water at high tide; they are far larger and more obtrusive than the new, below-waterline technologies.)
A third type of power, called ocean thermal, aims to exploit temperature differences between the surface and deep ocean, mainly applicable in the tropics.
Ocean power has more potential than wind power because water is about 850 times denser than air, and therefore packs far more energy. The oceanÂ’s waves, tides and currents are also more predictable than the wind.
The drawback is that seawater can batter and corrode machinery, and costly undersea cables may be needed to bring the power to shore. And the machines are expensive to build: Pelamis has had to raise the equivalent of $77 million.
Many solar start-ups, by contrast, need as little as $5 million to build a prototype, said Martin Lagod, co-founder of Firelake Capital Management, a Silicon Valley investment firm. Mr. Lagod looked at investing in ocean power a few years ago and decided against it because of the long time horizons and large capital requirements.
General Electric, which builds wind turbines, solar panels and other equipment for virtually every other type of energy, has stayed clear of ocean energy. “At this time, these sources do not appear to be competitive with more scalable alternatives like wind and solar,” said Daniel Nelson, a GE spokesman, in an e-mail message. (An arm of GE has made a small investment in Pelamis.)
Worldwide, venture capital going to ocean-power companies has risen from $8 million in 2005 to $82 million last year, according to the Cleantech Group, a research firm. However, that is a tiny fraction of the money pouring into solar energy and biofuels.
This month the Energy Department doled out its first major Congressionally-funded grants since 1992 to ocean-power companies, including Verdant and Lockheed Martin, which is studying ocean thermal approaches.
Assuming that commercial ocean-power farms are eventually built, the power is likely to be costly, especially in the near term. A recent study commissioned by the San Francisco Public Utility Commission put the cost of harnessing the Golden GateÂ’s tides at 85 cents to $1.40 a kilowatt-hour, or roughly 10 times the cost of wind power. San Francisco plans to forge ahead regardless.
Other hurdles abound, including sticky environmental and aesthetic questions. In Oregon, crabbers worry that the wave farm proposed by Ocean Power Technologies, a New Jersey company, would interfere with their prime crabbing grounds.
“It’s right where every year we deploy 115,000 to 120,000 crab pots off the coast for an eight-month period to harvest crab,” said Nick Furman, executive director of the Oregon Dungeness Crab Commission. The commission wants to support renewable energy, but “we’re kind of struggling with that,” Mr. Furman said.
George Taylor, chief executive of Ocean Power Technologies, said he did not expect “there will be a problem with the crabs.”
In Washington State, where a utility is studying the possibility of installing tidal power at the Admiralty Inlet entrance to Puget Sound, scuba divers are worried, even as they recognize the need for clean power.
Said Mike Racine, president of the Washington Scuba Alliance: “We don’t want to be dodging turbine blades, right?”
Omnidian Acquisition of Solar Service Guys accelerates global expansion in renewable energy, enhancing solar maintenance and remote monitoring across Australia and the U.S., boosting performance management, uptime, and ROI for residential and commercial systems.
Key Points
Omnidian acquired Solar Service Guys to expand in Australia, unifying O&M and monitoring to boost solar performance.
✅ Expands Omnidian into Australia's high-adoption solar market.
✅ Integrates largest Aussie solar service network for O&M scaling.
✅ Enhances remote monitoring, uptime, and ROI for PV owners.
In a strategic move aimed at boosting its presence in the global renewable energy market, Seattle-based Omnidian has announced the acquisition of Australia's Solar Service Guys. This acquisition marks a significant step in Omnidian's expansion into Australia, one of the world’s leading solar markets, and is expected to reshape the landscape of solar panel services both in the U.S. renewables market and abroad.
Founded in 2018, Omnidian is a rapidly growing startup that specializes in managing the performance of solar power systems, ensuring they continue to operate efficiently and effectively. The company provides maintenance services for both residential and commercial solar installations, including in Washington where Avista's largest solar array highlights growing scale, and its proprietary software remotely monitors solar systems to identify any performance issues. By quickly addressing these problems, Omnidian helps customers maximize the energy output of their systems, reducing downtime and increasing the return on investment in solar power.
The company’s acquisition of Solar Service Guys, Australia’s largest solar service network, is a clear indication of its ambition to dominate the renewable energy sector globally, amid consolidation trends like TotalEnergies' VSB acquisition across Europe, that signal accelerating scale. The Australian company, which has been operational since 2006, has built a strong reputation for providing high-quality solar panel services across the country. By integrating Solar Service Guys into its operations, Omnidian plans to leverage the Australian company’s deep industry expertise and established network to extend its service offerings into Australia’s solar market.
The acquisition could not come at a better time. Australia, with its vast sun-drenched landscapes, is one of the world’s leaders in solar energy adoption per capita, even as markets like Canada's solar lag persist by comparison. The country has long been at the forefront of renewable energy development, and this acquisition presents a significant opportunity for Omnidian to tap into a booming market where solar power is increasingly seen as a primary energy source.
With the deal now finalized, Solar Service Guys will operate as a fully integrated subsidiary of Omnidian. The merger will not only strengthen Omnidian’s service capabilities but will also enhance its ability to provide comprehensive solutions to solar system owners, ensuring their panels perform at peak efficiency over their lifetime. This is particularly important as solar energy continues to grow in popularity, with more residential and commercial properties opting for solar installations as a means to lower energy costs and reduce their carbon footprints.
The acquisition also underscores the growing importance of solar energy maintenance services. As the adoption of solar panels continues to rise globally, including in Europe where demand for U.S. solar gear is strengthening, the need for ongoing monitoring and maintenance is becoming increasingly vital. Solar energy systems, while relatively low-maintenance, do require periodic checks to ensure they are functioning optimally. Omnidian’s software-based approach to remotely detecting performance issues allows the company to quickly identify and address potential problems before they become costly or result in significant energy loss.
By expanding its reach into Australia, Omnidian can now offer its services to an even broader customer base, positioning itself as a key player in the renewable energy market. The Australian solar market is projected to continue its growth trajectory, with many homeowners and businesses in the country looking to make the switch to solar power in the coming years.
In addition to expanding its geographic footprint, Omnidian’s acquisition of Solar Service Guys aligns with its broader mission to support the global transition to renewable energy. As governments worldwide push for cleaner energy alternatives and new projects like a U.S. clean energy factory accelerate domestic supply chains, companies like Omnidian are playing an essential role in making solar power a more reliable and sustainable option for consumers.
With the backing of Solar Service Guys’ extensive network and experience, Omnidian is poised to deliver even greater value to its customers, as industry transactions like Canadian Solar's plant sale underscore active market realignment. The acquisition will also help the company strengthen its technological capabilities, improve its service offerings, and accelerate its mission to create a more sustainable energy future.
As Omnidian continues to grow, the company’s success will likely serve as a model for other startups in the renewable energy sector. By focusing on performance management, expanding its service offerings, and leveraging cutting-edge technology, Omnidian is well-positioned to lead the way in the next generation of solar energy solutions. The future looks bright for Omnidian, and with this acquisition, it is well on its way to becoming a dominant force in the global solar market.
Omnidian’s acquisition of Solar Service Guys marks a significant milestone in the company’s quest to revolutionize the renewable energy industry. By expanding into Australia and enhancing its service capabilities, Omnidian is not only strengthening its position in the market but also contributing to the global push for cleaner, more sustainable energy solutions. As the world continues to embrace solar power, companies like Omnidian will be essential in ensuring that solar systems operate at peak efficiency, helping customers maximize the benefits of their investment in renewable energy.
Boeing 787 More-Electric Architecture replaces pneumatics with bleedless pressurization, VFSG starter-generators, electric brakes, and heated wing anti-ice, leveraging APU, RAT, batteries, and airport ground power for efficient, redundant electrical power distribution.
Key Points
An integrated, bleedless electrical system powering start, pressurization, brakes, and anti-ice via VFSGs, APU and RAT.
✅ VFSGs start engines, then generate 235Vac variable-frequency power
✅ Bleedless pressurization, electric anti-ice improve fuel efficiency
✅ Electric brakes cut hydraulic weight and simplify maintenance
The 787 Dreamliner is different to most commercial aircraft flying the skies today. On the surface it may seem pretty similar to the likes of the 777 and A350, but get under the skin and it’s a whole different aircraft.
When Boeing designed the 787, in order to make it as fuel efficient as possible, it had to completely shake up the way some of the normal aircraft systems operated. Traditionally, systems such as the pressurization, engine start and wing anti-ice were powered by pneumatics. The wheel brakes were powered by the hydraulics. These essential systems required a lot of physical architecture and with that comes weight and maintenance. This got engineers thinking.
What if the brakes didn’t need the hydraulics? What if the engines could be started without the pneumatic system? What if the pressurisation system didn’t need bleed air from the engines? Imagine if all these systems could be powered electrically… so that’s what they did.
Power sources
The 787 uses a lot of electricity. Therefore, to keep up with the demand, it has a number of sources of power, much as grid operators track supply on the GB energy dashboard to balance loads. Depending on whether the aircraft is on the ground with its engines off or in the air with both engines running, different combinations of the power sources are used.
Engine starter/generators
The main source of power comes from four 235Vac variable frequency engine starter/generators (VFSGs). There are two of these in each engine. These function as electrically powered starter motors for the engine start, and once the engine is running, then act as engine driven generators.
The generators in the left engine are designated as L1 and L2, the two in the right engine are R1 and R2. They are connected to their respective engine gearbox to generate electrical power directly proportional to the engine speed. With the engines running, the generators provide electrical power to all the aircraft systems.
APU starter/generators
In the tail of most commercial aircraft sits a small engine, the Auxiliary Power Unit (APU). While this does not provide any power for aircraft propulsion, it does provide electrics for when the engines are not running.
The APU of the 787 has the same generators as each of the engines — two 235Vac VFSGs, designated L and R. They act as starter motors to get the APU going and once running, then act as generators. The power generated is once again directly proportional to the APU speed.
The APU not only provides power to the aircraft on the ground when the engines are switched off, but it can also provide power in flight should there be a problem with one of the engine generators.
Battery power
The aircraft has one main battery and one APU battery. The latter is quite basic, providing power to start the APU and for some of the external aircraft lighting.
The main battery is there to power the aircraft up when everything has been switched off and also in cases of extreme electrical failure in flight, and in the grid context, alternatives such as gravity power storage are being explored for long-duration resilience. It provides power to start the APU, acts as a back-up for the brakes and also feeds the captain’s flight instruments until the Ram Air Turbine deploys.
Ram air turbine (RAT) generator
When you need this, you’re really not having a great day. The RAT is a small propeller which automatically drops out of the underside of the aircraft in the event of a double engine failure (or when all three hydraulics system pressures are low). It can also be deployed manually by pressing a switch in the flight deck.
Once deployed into the airflow, the RAT spins up and turns the RAT generator. This provides enough electrical power to operate the captain’s flight instruments and other essentials items for communication, navigation and flight controls.
External power
Using the APU on the ground for electrics is fine, but they do tend to be quite noisy. Not great for airports wishing to keep their noise footprint down. To enable aircraft to be powered without the APU, most big airports will have a ground power system drawing from national grids, including output from facilities such as Barakah Unit 1 as part of the mix. Large cables from the airport power supply connect 115Vac to the aircraft and allow pilots to shut down the APU. This not only keeps the noise down but also saves on the fuel which the APU would use.
The 787 has three external power inputs — two at the front and one at the rear. The forward system is used to power systems required for ground operations such as lighting, cargo door operation and some cabin systems. If only one forward power source is connected, only very limited functions will be available.
The aft external power is only used when the ground power is required for engine start.
Circuit breakers
Most flight decks you visit will have the back wall covered in circuit breakers — CBs. If there is a problem with a system, the circuit breaker may “pop” to preserve the aircraft electrical system. If a particular system is not working, part of the engineers procedure may require them to pull and “collar” a CB — placing a small ring around the CB to stop it from being pushed back in. However, on the 787 there are no physical circuit breakers. You’ve guessed it, they’re electric.
Within the Multi Function Display screen is the Circuit Breaker Indication and Control (CBIC). From here, engineers and pilots are able to access all the “CBs” which would normally be on the back wall of the flight deck. If an operational procedure requires it, engineers are able to electrically pull and collar a CB giving the same result as a conventional CB.
Not only does this mean that the there are no physical CBs which may need replacing, it also creates space behind the flight deck which can be utilised for the galley area and cabin.
A normal flight
While it’s useful to have all these systems, they are never all used at the same time, and, as the power sector’s COVID-19 mitigation strategies showed, resilience planning matters across operations. Depending on the stage of the flight, different power sources will be used, sometimes in conjunction with others, to supply the required power.
On the ground
When we arrive at the aircraft, more often than not the aircraft is plugged into the external power with the APU off. Electricity is the blood of the 787 and it doesn’t like to be without a good supply constantly pumping through its system, and, as seen in NYC electric rhythms during COVID-19, demand patterns can shift quickly. Ground staff will connect two forward external power sources, as this enables us to operate the maximum number of systems as we prepare the aircraft for departure.
Whilst connected to the external source, there is not enough power to run the air conditioning system. As a result, whilst the APU is off, air conditioning is provided by Preconditioned Air (PCA) units on the ground. These connect to the aircraft by a pipe and pump cool air into the cabin to keep the temperature at a comfortable level.
APU start
As we near departure time, we need to start making some changes to the configuration of the electrical system. Before we can push back , the external power needs to be disconnected — the airports don’t take too kindly to us taking their cables with us — and since that supply ultimately comes from the grid, projects like the Bruce Power upgrade increase available capacity during peaks, but we need to generate our own power before we start the engines so to do this, we use the APU.
The APU, like any engine, takes a little time to start up, around 90 seconds or so. If you remember from before, the external power only supplies 115Vac whereas the two VFSGs in the APU each provide 235Vac. As a result, as soon as the APU is running, it automatically takes over the running of the electrical systems. The ground staff are then clear to disconnect the ground power.
If you read my article on how the 787 is pressurised, you’ll know that it’s powered by the electrical system. As soon as the APU is supplying the electricity, there is enough power to run the aircraft air conditioning. The PCA can then be removed.
Engine start
Once all doors and hatches are closed, external cables and pipes have been removed and the APU is running, we’re ready to push back from the gate and start our engines. Both engines are normally started at the same time, unless the outside air temperature is below 5°C.
On other aircraft types, the engines require high pressure air from the APU to turn the starter in the engine. This requires a lot of power from the APU and is also quite noisy. On the 787, the engine start is entirely electrical.
Power is drawn from the APU and feeds the VFSGs in the engines. If you remember from earlier, these fist act as starter motors. The starter motor starts the turn the turbines in the middle of the engine. These in turn start to turn the forward stages of the engine. Once there is enough airflow through the engine, and the fuel is igniting, there is enough energy to continue running itself.
After start
Once the engine is running, the VFSGs stop acting as starter motors and revert to acting as generators. As these generators are the preferred power source, they automatically take over the running of the electrical systems from the APU, which can then be switched off. The aircraft is now in the desired configuration for flight, with the 4 VFSGs in both engines providing all the power the aircraft needs.
As the aircraft moves away towards the runway, another electrically powered system is used — the brakes. On other aircraft types, the brakes are powered by the hydraulics system. This requires extra pipe work and the associated weight that goes with that. Hydraulically powered brake units can also be time consuming to replace.
By having electric brakes, the 787 is able to reduce the weight of the hydraulics system and it also makes it easier to change brake units. “Plug in and play” brakes are far quicker to change, keeping maintenance costs down and reducing flight delays.
In-flight
Another system which is powered electrically on the 787 is the anti-ice system. As aircraft fly though clouds in cold temperatures, ice can build up along the leading edge of the wing. As this reduces the efficiency of the the wing, we need to get rid of this.
Other aircraft types use hot air from the engines to melt it. On the 787, we have electrically powered pads along the leading edge which heat up to melt the ice.
Not only does this keep more power in the engines, but it also reduces the drag created as the hot air leaves the structure of the wing. A double win for fuel savings.
Once on the ground at the destination, it’s time to start thinking about the electrical configuration again. As we make our way to the gate, we start the APU in preparation for the engine shut down. However, because the engine generators have a high priority than the APU generators, the APU does not automatically take over. Instead, an indication on the EICAS shows APU RUNNING, to inform us that the APU is ready to take the electrical load.
Shutdown
With the park brake set, it’s time to shut the engines down. A final check that the APU is indeed running is made before moving the engine control switches to shut off. Plunging the cabin into darkness isn’t a smooth move. As the engines are shut down, the APU automatically takes over the power supply for the aircraft. Once the ground staff have connected the external power, we then have the option to also shut down the APU.
However, before doing this, we consider the cabin environment. If there is no PCA available and it’s hot outside, without the APU the cabin temperature will rise pretty quickly. In situations like this we’ll wait until all the passengers are off the aircraft until we shut down the APU.
Once on external power, the full flight cycle is complete. The aircraft can now be cleaned and catered, ready for the next crew to take over.
Bottom line
Electricity is a fundamental part of operating the 787. Even when there are no passengers on board, some power is required to keep the systems running, ready for the arrival of the next crew. As we prepare the aircraft for departure and start the engines, various methods of powering the aircraft are used.
The aircraft has six electrical generators, of which only four are used in normal flights. Should one fail, there are back-ups available. Should these back-ups fail, there are back-ups for the back-ups in the form of the battery. Should this back-up fail, there is yet another layer of contingency in the form of the RAT. A highly unlikely event.
The 787 was built around improving efficiency and lowering carbon emissions whilst ensuring unrivalled levels safety, and, in the wider energy landscape, perspectives like nuclear beyond electricity highlight complementary paths to decarbonization — a mission it’s able to achieve on hundreds of flights every single day.
California income-based utility charges face bipartisan pushback as the PUC weighs fixed fees for PG&E, SDG&E, and Southern California Edison, reshaping rate design, electricity affordability, energy equity, and privacy amid proposed per-kWh reductions.
Key Points
PUC-approved fixed fees tied to household income for PG&E, SDG&E, and SCE, offset by lower per-kWh rates.
✅ Critics warn admin, privacy, legal risks and higher bills for savers
✅ Backers say lower-income pay less; kWh rates cut ~33% in PG&E area
Efforts are being made across California's political landscape to derail a legislative initiative that introduced income-based utility charges for customers of Southern California Edison and other major utilities.
Legislators from both the Democratic and Republican parties have proposed bills aimed at nullifying the 2022 legislation that established a sliding scale for utility charges based on customer income, a decision made in a late-hour session and subsequently endorsed by Governor Gavin Newsom.
The plan, pending final approval from the state Public Utilities Commission (PUC) — all of whose current members were appointed by Governor Newsom — would enable utilities like Southern California Edison, San Diego Gas & Electric, and PG&E to apply new income-based charges as early as this July.
Among the state legislators pushing back against the income-based charge scheme are Democrats Jacqui Irwin and Marc Berman, along with Republicans Janet Nguyen, Kelly Seyarto, Rosilicie Ochoa Bogh, Scott Wilk, Brian Dahle, Shannon Grove, and Roger Niello.
A cadre of specialists, including economist Ahmad Faruqui who has advised all three utilities implicated in the fee proposal, have outlined several concerns regarding the PUC's pending decision.
Faruqui and his colleagues argue that the proposed charges are excessively high in comparison to national standards, reflecting soaring electricity prices across the state, potentially leading to administrative challenges, legal disputes, and negative unintended outcomes, such as penalizing energy-conservative consumers.
Advocates for the income-based fee model, including The Utility Reform Network (TURN) and the National Resources Defense Council, argue it would result in higher charges for wealthier consumers and reduced fees for those with lower incomes. They also believe that the utilities plan to decrease per kilowatt-hour rates as part of a broader rate structure review to balance out the new fees.
However, even supporters like TURN and the Natural Resources Defense Council acknowledge that the income-based fee model is not a comprehensive solution to making soaring electricity bills more affordable.
If implemented, California would have the highest income-based utility fees in the country, with averages far surpassing the national average of $11.15, as reported by EQ Research:
Southern California Edison would charge $51.
San Diego Gas & Electric would levy $73.31.
PG&E would set fees at $50.92.
The proposal has raised concerns among state legislators about the additional financial burden on Californians already struggling with high electricity costs.
Critics highlight several practical challenges, including the PUC's task of assessing customers' income levels, a process fraught with privacy concerns, potential errors, and constitutional questions regarding access to tax information.
Economists have pointed out further complications, such as the difficulty in accurately assessing incomes for out-of-state property owners and the variability of customers' incomes over time.
The proposed income-based charges would differ by income bracket within the PG&E service area, for example, with lower-income households facing lower fixed charges and higher-income households facing higher charges, alongside a proposed 33% reduction in electricity rates to help mitigate the fixed charge impact.
Yet, the economists warn that most customers, particularly low-usage customers, could end up paying more, essentially rewarding higher consumption and penalizing efficiency.
This legislative approach, they caution, could inadvertently increase costs for moderate users across all income brackets, a sign of major changes to electric bills that could emerge, challenging the very goals it aims to achieve by promoting energy inefficiency.
Tucson Electric Power Coal Phaseout advances an Integrated Resource Plan to exit Springerville coal by 2032, lift renewables past 70 percent by 2035, add wind, solar, battery storage, and cut carbon emissions 80 percent.
Key Points
A 2032 coal exit and 2035 plan to lift renewables above 70 percent, add wind, solar, storage, and cut CO2 80 percent.
✅ Coal purchases end at Springerville units by 2032
✅ Renewables exceed 70 percent of load by 2035
✅ 80 percent CO2 cut from 2005 baseline via wind, solar, storage
In a dramatic policy shift, Tucson Electric Power says it will stop using coal to generate electricity by 2032 and will increase renewable energy's share of its energy load to more than 70% by 2035.
As part of that change, the utility will stop buying electricity from its two units at its coal-fired Springerville Generating Station by 2032. The plant, TEP's biggest power source, provides about 35% of its energy.
The utility already had planned to start up two New Mexico wind farms and a solar storage plant in the Tucson area by next year. The new plan calls for adding an additional 2,000 megawatts of renewable energy capacity by 2035.
The utility's switch from fossil fuels is spelled out in the plan, submitted to the Arizona Corporation Commission, amid shifts in federal power plant rules that could affect implementation. Called an Integrated Resource Plan, it would reduce TEP's carbon dioxide emissions 80% by 2035 compared with 2005 levels.
The plan drew generally positive reviews from a number of environmentalists and other representatives of an advisory committee that had worked with TEP for a year.
Two commissioners, Chairman Bob Burns and Tucsonan Lea Marquez Peterson, also generally praised the plan, although they held off on final judgment.
University of Arizona researchers said the plan would likely meet the utility's share of the worldwide goal of holding down global temperatures to less than 2 degrees Celsius, or about 3.6 degrees Fahrenheit, above pre-industrial levels, even as studies find that climate change threatens grid reliability in many regions.
But a representative of AARP and the Pima Council on Aging expressed concern because the plan would require 1% annual electric rate increases a year to put into effect.
Officials in the eastern Arizona town of Springerville aren't happy.
And Sierra Club official Sandy Bahr said the plan doesn't move fast enough to get TEP off coal. She listed 14 separate units of various Western coal-fired plants that are scheduled to shut down sooner than 2032, many in the 2020s.
But TEP says the plan best balances costs and environmental benefits compared with 24 others it reviewed.
"We know our customers want safe, reliable energy from resources that are both affordable and environmentally responsible. TEP's 2020 Integrated Resource Plan will help us maintain that delicate balance," TEP CEO David Hutchens wrote in the forward to the plan.
The plan isn't legally binding but is aimed at sending a signal to regulators and the public about TEP's future direction. TEP and other regulated Arizona utilities update such plans every three years.
TEP has been one of the West's more fossil-fuel-friendly utilities. It stuck with coal even as many other utilities were moving away from it, including Alliant Energy's carbon-neutral plan to cut emissions and costs, and as the Sierra Club called on utilities to move beyond what it termed a highly polluting energy source that emits large quantities of heat-trapping greenhouse gases linked by scientists to global warming.
Last year, TEP got 13% of its electricity from renewables such as wind farms and solar plants along with photovoltaic solar panels atop individual homes. Fossil fuels coal and natural gas supplied the rest, a University of Arizona study paid for by TEP found.
Economics, not just emissions, a big factor
TEP's previous resource plan, from 2017, called for boosting renewable use to 30% by 2030 and to cut coal to 38% of its electric load by then from 69% in 2017, reflecting broader 2017 utility trends across the industry.
A TEP official said last week the utility is heading in a different direction not only due to concerns about greenhouse gas emissions but because of changing economics.
"For the last several decades, coal was the most economical resource. It was the lowest-cost resource to supply energy for our customers, and it wasn't really close," said Jeff Yockey, TEP's resource planning director.
But over the past few years, first natural gas prices and more recently solar and wind energy prices have fallen dramatically, he said.
Their prices are projected to keep falling, along with the cost of battery-fueled storage of solar energy for use when the sun is down, he said.
"Coal just isn't the most economical resource" now, Yockey said.
Yet the utility still needs, for now, the extra energy capacity that coal provides, he said, even as other states outline ways to improve grid reliability through targeted investments.
"Being a utility with no nuclear or hydro(electric) energy, with coal, there is reliability, a fuel on the ground, 30 or 90 days supply," he said. "It's the only source not subject to disruption in the next hour. It's our only long-term, stable fuel supply. Over time, we will be able to overcome that."
UA researchers, community panel worked on plan
TEP paid the UA $100,000 to have three researchers prepare two reports, one comparing 24 different proposals and a second comparing TEP's fossil fuel/renewable split with those of other utilities.
Also, the utility appointed an advisory council representing environmental, business and government interests that met regularly to guide TEP in producing the plan. The utility chose a preferred energy "portfolio," Yockey said.
The goal "was very much about basically achieving significant emissions reductions as quickly as we can and as cost effectively as we can," he said. TEP wanted the biggest cumulative emission cut possible over 15 years.
"If it was just about cost, we wouldn't have selected the portfolio that we selected. It wasn't the lowest cost portfolio."
UA assistant research professors Ben McMahan and Will Holmgren said combined carbon dioxide emission reductions from TEP's new plan over 15 years would be expected to hit the Paris accord's 2-degree target.
"There is considerable uncertainty about what will happen between now and 2050, but the preferred portfolio's early start on reductions and lowest cumulative emissions is certainly a positive sign that well below 2C is achievable," the researchers said in an email.
Environmentalists pleased, but some want coal cut sooner
The Sierra Club, Western Resource Advocates, the Southwest Energy Efficiency Project and Pima County offered varying degrees of praise for the new TEP plan.
In a memo Friday, County Administrator Chuck Huckelberry congratulated TEP for "the comprehensive, inclusive and transparent process" used to develop the plan.
Because of UA's involvement, TEP's advisory council and the public "can feel confident that the utility is on track to make significant progress in curbing greenhouse gas emissions to combat climate change," Huckelberry wrote.
The TEP plan "is the most aggressive commitment to reducing emissions by a utility in Arizona," said Autumn Johnson of Western Resource Advocates in a news release.
"Adding clean energy generation and storage while accelerating the retirement of coal units will ensure a healthier and better future for Arizonans," said Johnson, an energy policy analyst in Phoenix.
The Sierra Club will have a technical expert review the plan and already wants more energy savings, said Bahr, director of the group's Grand Canyon chapter. But overall, this plan is a step in the right direction for TEP, she said.
By comparison, Arizona Public Service's new resource plan only calls for 45% renewable energy by 2030, Bahr noted, while California regulators consider more power plants to ensure reliability. APS committed to going coal-free by 2031.
A Sierra Club proposal that the UA reviewed called for TEP to quit coal by 2027.
But TEP analyzed that proposal and concluded it would require $300 million in investments and would reduce the utility's cumulative emissions by only 2.4 million tons, to 70.2 million tons by 2035, Yockey said.
The Sierra Club plan was the most expensive portfolio investigated, Yockey said.
"The difference is in the timing. We still have a fair amount of value in our coal plants which we need to depreciate, which we do over time," Yockey said. "Trying to replace the capacity that coal provides in the near term with storage and solar is very expensive, although those costs are declining."
Seniors on fixed incomes could be hurt, advocate says
Rene Pina, an advisory council member representing two senior citizen organizations, praised the plan's goals but was concerned about impacts of even 1% annual rate increases on elderly people on fixed incomes.
They can't always handle such an increase, he said.
One possible fix is that TEP could ease eligibility requirements for its low-income energy assistance program, aligning with equity-focused electricity regulation principles, to allow more seniors to benefit, said Pina, representing AARP and the Pima Council on Aging.
"The program is structured so it just barely disqualifies most of our seniors. Their social security pension is just barely over the low-income limit. It can easily be adjusted without any problems to the utility," Pina said.
Advisory council member Rob Lamb, an engineer with GHLN, an architecture-engineering firm, said he was very pleased with TEP's plan.
"One of the things a lot of people don't realize when they put together a plan like that, is they have to balance environment with 'Hey, what's the reliability of service? Are we going to be able to keep our rates for something that will work?'" Lamb said.
Egypt-Huawei Smart Grid advances Egypt's energy sector with digital transformation, grid modernization, and ICT solutions, enhancing power generation, transmission, and distribution while enabling renewable integration, data analytics, cybersecurity, and scalable infrastructure nationwide.
Key Points
An Egypt-Huawei project to modernize Egypt's grid into a smart network using ICT, analytics, and scalable infrastructure.
✅ Gradual migration to a smart grid to absorb higher load
✅ Boosts generation, transmission, and distribution efficiency
✅ ICT training supports workforce and digital transformation
Egypt and China's tech giant Huawei on Thursday discussed the gradual transformation of Egypt's electricity network to a smart grid model, Egyptian Ministry of Electricity and Renewable Energy said.
Egyptian Minister of Electricity and Renewable Energy Mohamed Shaker met with Huawei's regional president Li Jiguang in Cairo, where they discussed the cooperation, the ministry said in a statement.
The meeting is part of Egypt's plans to develop its energy sector based on the latest technologies and smarter electricity infrastructure initiatives, it added.
During the meeting, Shaker hailed the existing cooperation between Egypt and China in several mega projects, citing regional efforts like the Philippines power grid upgrades, welcoming further cooperation with China to benefit from its expertise and technological progress.
"The future vision of the Egyptian electricity sector is based on the gradual transformation of the current network from a typical one to a smart grid that would help absorb the large amounts of generated power," Shaker said.
Shaker highlighted his ministry's efforts to improve its services, including power generation, transportation and grid improvements across distribution.
Li, president of Huawei Northern Africa Enterprise Business Group, commended the rapid and remarkable development of the projects implemented by the Egyptian ministry to establish a strong infrastructure along with a smart grid that supports the digital grid transformation.
The Huawei official added that despite the challenges the corporation faced in the first half of 2020, it has managed to achieve revenues growth, which shows Huawei's strength and stability amid global challenges such as cybersecurity fears in critical infrastructure.
In late February, Egypt's Ministry of Higher Education and Scientific Research and Huawei discussed plans to provide training to develop the skills of Egyptian university students talented in information and communications technology, including emerging topics like 5G energy use considerations.
Nord Stream Pipeline Sabotage triggers Baltic Sea gas leaks as Norway and Denmark tighten energy infrastructure security, offshore surveillance, and exclusion zones, after drone sightings near platforms and explosions reported by experts.
Key Points
An alleged attack causing Baltic gas leaks and heightened energy security measures in Norway and Denmark.
✅ Norway boosts offshore and onshore site security
✅ Denmark enforces 5 nm exclusion zone near leaks
✅ Drones spotted; police probe sabotage and safety breaches
Norway and Denmark will increase security and surveillance around their energy infrastructure sites after the alleged sabotage of Russia's Nord Stream gas pipeline in the Baltic Sea, as the EU pursues a plan to dump Russian energy to safeguard supplies.
Major leaks struck two underwater natural gas pipelines running from Russia to Germany, which has moved to a 200 billion-euro energy shield amid surging prices, with experts reporting that explosions rattled the Baltic Sea beforehand.
Norway -- an oil-rich nation and Europe's biggest supplier of gas -- will strengthen security at its land and offshore installations, even as it weighs curbing electricity exports to avoid shortages, the country's energy minister said.
The Scandinavian country's Petroleum Safety Authority also urged vigilance on Monday after unidentified drones were seen flying near Norway's offshore oil and gas platforms.
"The PSA has received a number of warnings/notifications from operator companies on the Norwegian Continental Shelf concerning the observation of unidentified drones/aircraft close to offshore facilities" the agency said in a statement.
"Cases where drones have infringed the safety zone around facilities are now being investigated by the Norwegian police."
Meanwhile Denmark will increase security across its energy sector after the Nord Stream incident, as wider market strains, including Germany's struggling local utilities, ripple across Europe, a spokesperson for gas transmission operator Energinet told Upstream.
The Danish Maritime Agency has also imposed an exclusion zone for five nautical miles around the leaks, warning ships of a danger they could lose buoyancy, and stating there is a risk of the escaping gas igniting "above the water and in the air," even as Europe weighs emergency electricity measures to limit prices.
Denmark's defence minister said there was no cause for security concerns in the Baltic Sea region.
"Russia has a significant military presence in the Baltic Sea region and we expect them to continue their sabre-rattling," Morten Bodskov said in a statement.
Video taken by a Danish military plane on Tuesday afternoon showed the extent of one of gas pipeline leaks, with the surface of the Baltic bubbling up as gas escapes, highlighting Europe's energy crisis for global audiences:
Meanwhile police in Sweden have opened a criminal investigation into "gross sabotage" of the Nord Stream 1 and Nord Stream 2 pipelines, and Sweden's crisis management unit was activated to monitor the situation. The unit brings together representatives from different government agencies.
Swedish Foreign Minister Ann Linde had a call with her Danish counterpart Jeppe Kofod on Tuesday evening, and the pair also spoke with Norwegian Foreign Minister Anniken Huitfeldt on Wednesday, as the bloc debates gas price cap strategies to address the crisis, with Kofod saying there should be a "clear and unambiguous EU statement about the explosions in the Baltic Sea."
"Focus now on uncovering exactly what has happened - and why. Any sabotage against European energy infrastructure will be met with a robust and coordinated response," said Kofod.