OLG Slots at Woodbine goes green

By Canada News Wire


High Voltage Maintenance Training Online

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today
The Ontario Lottery and Gaming Corporation OLG has taken one more step towards its green energy goals, with the OLG Slots at Woodbine Racetrack facility now choosing green electricity with Bullfrog Power, Canada's 100 green electricity provider.

The Woodbine facility is the eighth OLG location to go green, making the agency the largest supporter of renewable energy through Bullfrog Power in Canada.

"Being green is becoming a part of every aspect of OLG's business. We have committed to obtaining 90 of our electricity from renewable sources by 2014, and with the switch here at Woodbine, we move even closer to that goal," said Larry Flynn, Senior Vice President, Gaming at OLG.

Currently, the Woodbine facility consumes 11,600 Megawatt Hours MWh of electricity a year, one of the highest electricity users among OLG sites. Through the new agreement, Bullfrog's generators will inject green electricity onto the regional grid to match the amount of power all eight "bullfrog-powered" OLG facilities use. More than 35,000 MWh — enough electricity to power over 3,800 homes — will be greened annually on OLG's behalf.

"Bullfrog Power is proud to be a partner in OLG's continued efforts to reach its bold renewable energy goals," said Bullfrog President Tom Heintzman. "Their expanded participation with Bullfrog not only shows their support for the green energy industry here in Ontario, but also assists the Pearson Eco-Business Zone to come closer to achieving their Green Power Challenge objectives."

OLG's significant purchase will assist Bullfrog and Partners in Project Green's 'Green Power Challenge' to reach its 50 mark. Partners in Project Green is a growing community of businesses working together to green their bottom line by creating an internationally-recognized 'eco-business zone' around Toronto Pearson Airport. Businesses in the Pearson Eco-Business Zone are working to achieve a collective goal of greening 58,000 MWh of electricity.

Casino Sault Ste. Marie and the OLG Slots at Georgian Downs, Mohawk Racetrack, Hanover Raceway and Clinton Raceway moved to green electricity in February 2010. The OLG's IT Data Systems centre and Casino Brantford switched to 100 emissions-free electricity in January 2009.

Related News

Typical Ontario electricity bill set to increase nearly 2% as fixed pricing ends

Ontario Electricity Rates update: OEB sets time-of-use and tiered pricing for residential customers, with kWh charges for peak, mid-peak, and off-peak periods reflecting COVID-19 impacts on demand, supply costs, and pricing.

 

Key Points

Ontario Electricity Rates are OEB-set time-of-use and tiered prices that set per-kWh costs for residential customers.

✅ Time-of-use: 21.7 peak, 15.0 mid-peak, 10.5 off-peak cents/kWh

✅ Tiered: 12.6 cents/kWh up to 1000 kWh, then 14.6 cents/kWh

✅ Average 700 kWh home pays about $2.24 more per month

 

Energy bills for the typical Ontario home are going up by about two per cent with fixed pricing coming to an end on Nov. 1, the Ontario Energy Board says. 

The province's electricity regulator has released new time-of-use pricing and says the rate for the average residential customer using 700 kWh per month will increase by about $2.24.

The change comes as Ontario stretches into its eight month of the COVID-19 pandemic with new case counts reaching levels higher than ever seen before.

Time-of-use pricing had been scrapped for residential bills for much for the pandemic with a single fixed COVID-19 hydro rate set for all hours of the day. The move, which came into effect June 1, was meant "to support families, small business and farms while Ontario plans for the safe and gradual reopening of the province," the OEB said at the time.

Ontario later set the off-peak price until February 7 around the clock to provide additional relief.

Fixed pricing meant customers' bills reflected how much power they used, rather than when they used it. Customers were charged 12.8 cents/kWh under the COVID-19 recovery rate no matter their time of use.

Beginning November, the province says customers can choose between time-of-use and tiered pricing options. Rates for time-of-use plans will be 21.7 cents/kWh during peak hours, 15 cents/kWh for mid-peak use and 10.5 cents/kWh for off-peak use. 

Customers choosing tiered pricing will pay 12.6 cents/kWh for the first 1000 kWh each month and then 14.6 cents/kWh for any power used beyond that.

The energy board says the increase in pricing reflects "a combination of factors, including those associated with the COVID-19 pandemic, that have affected demand, supply costs and prices in the summer and fall of 2020."

Asked for his reaction to the move Tuesday, Premier Doug Ford said, "I hate it," adding the province inherited an energy "mess" from the previous Liberal government and are "chipping away at it."

 

Related News

View more

3 Reasons Why Cheap Abundant Electricity Is Getting Closer To Reality

Renewable Energy Breakthroughs drive quantum dots solar efficiency, Air-gen protein nanowires harvesting humidity, and cellulose membranes for flow batteries, enabling printable photovoltaics, 24/7 clean power, and low-cost grid storage at commercial scale.

 

Key Points

Advances like quantum dot solar, Air-gen, and cellulose flow battery membranes that improve clean power and storage.

✅ Quantum dots raise solar conversion efficiency, are printable

✅ Air-gen harvests electricity from humidity with protein nanowires

✅ Cellulose membranes cut flow battery costs, aid grid storage

 

Science never sleeps. The quest to find new and better ways to do things continues in thousands of laboratories around the world. Today, the global economy is based on the use of electricity, and one analysis shows wind and solar potential could meet 80% of US demand, underscoring what is possible. If there was a way to harness all the energy from the sun that falls on the Earth every day, there would be enough of electricity available to meet the needs of every man, woman, and child on the planet with plenty left over. That day is getting closer all the time. Here are three reasons why.

Quantum Dots Make Better Solar Panels
According to Science Daily, researchers at the University of Queensland have set a new world record for the conversion of solar energy to electricity using quantum dots — which pass electrons between one another and generate electrical current when exposed to solar energy in a solar cell device. The solar devices they developed have beaten the existing solar conversion record by 25%.

“Conventional solar technologies use rigid, expensive materials. The new class of quantum dots the university has developed are flexible and printable,” says professor Lianzhou Wang, who leads the research team. “This opens up a huge range of potential applications, including the possibility to use it as a transparent skin to power cars, planes, homes and wearable technology. Eventually it could play a major part in meeting the United Nations’ goal to increase the share of renewable energy in the global energy mix.”

“This new generation of quantum dots is compatible with more affordable and large-scale printable technologies,” he adds. “The near 25% improvement in efficiency we have achieved over the previous world record is important. It is effectively the difference between quantum dot solar cell technology being an exciting prospect and being commercially viable.” The research was published on January 20 in the journal Nature Energy.

Electricity From Thin Air
Science Daily also reports that researchers at UMass Amherst also have interesting news. They claim they created a device called an Air-gen, short for air powered generator. (Note: recently we reported on other research that makes electricity from rainwater.) The device uses protein nanowires created by a microbe called Geobacter. Those nanowires can generate electricity from thin air by tapping the water vapor present naturally in the atmosphere. “We are literally making electricity out of thin air. The Air-gen generates clean energy 24/7. It’s the most amazing and exciting application of protein nanowires yet,” researchers Jun Yao and Derek Lovely say. There work was published February 17 in the journal Nature.

The new technology developed in Yao’s lab is non-polluting, renewable, and low-cost. It can generate power even in areas with extremely low humidity such as the Sahara Desert. It has significant advantages over other forms of renewable energy including solar and wind, Lovley says, because unlike these other renewable energy sources, the Air-gen does not require sunlight or wind, and “it even works indoors,” a point underscored by ongoing grid challenges that slow full renewable adoption.

Yao says, “The ultimate goal is to make large-scale systems. For example, the technology might be incorporated into wall paint that could help power your home. Or, we may develop stand-alone air-powered generators that supply electricity off the grid, and in parallel others are advancing bio-inspired fuel cells that could complement such devices. Once we get to an industrial scale for wire production, I fully expect that we can make large systems that will make a major contribution to sustainable energy production. This is just the beginning of a new era of protein based electronic devices.”

Improved Membranes For Flow Batteries From Cellulose
Storing energy is almost as important to decarbonizing the environment as making it in the first place, with the rise of affordable solar batteries improving integration.  There are dozens if not hundreds of ways to store electricity and they all work to one degree or another. The difference between which ones are commercially viable and ones that are not often comes down to money.

Flow batteries — one approach among many, including fuel cells for renewable storage — use two liquid electrolytes — one positively charged and one negatively charged — separated by a membrane that allows electrons to pass back and forth between them. The problem is, the liquids are highly corrosive. The membranes used today are expensive — more than $1,300 per square meter.

Phys.org reports that Hongli Zhu, an assistant professor of mechanical and industrial engineering at Northeastern University, has successfully created a membrane for use in flow batteries that is made from cellulose and costs just $147.68 per square meter. Reducing the cost of something by 90% is the kind of news that gets people knocking on your door.

The membrane uses nanocrystals derived from cellulose in combination with a polymer known as polyvinylidene fluoride-hexafluoropropylene.  The naturally derived membrane is especially efficient because its cellular structure contains thousands of hydroxyl groups, which involve bonds of hydrogen and oxygen that make it easy for water to be transported in plants and trees.

In flow batteries, that molecular makeup speeds the transport of protons as they flow through the membrane. “For these materials, one of the challenges is that it is difficult to find a polymer that is proton conductive and that is also a material that is very stable in the flowing acid,” Zhu says.

Cellulose can be extracted from natural sources including algae, solid waste, and bacteria. “A lot of material in nature is a composite, and if we disintegrate its components, we can use it to extract cellulose,” Zhu says. “Like waste from our yard, and a lot of solid waste that we don’t always know what to do with.”

Flow batteries can store large amounts of electricity over long periods of time — provided the membrane between the storage tanks doesn’t break down. To store more electricity, simply make the tanks larger, which makes them ideal for grid storage applications where there is often plenty of room to install them. Slashing the cost of the membrane will make them much more attractive to renewable energy developers and help move the clean energy revolution forward.

The Takeaway
The fossil fuel crazies won’t give up easily. They have too much to lose and couldn’t care less if life on Earth ceases to exist for a few million years, just so long as they get to profit from their investments. But they are experiencing a death of a thousand cuts. None of the breakthroughs discussed above will end thermal power generation all by itself, but all of them, together with hundreds more just like them happening every day, every week, and every month, even as we confront clean energy's hidden costs across supply chains, are slowly writing the epitaph for fossil fuels.

And here’s a further note. A person of Chinese ancestry is the leader of all three research efforts reported on above. These are precisely the people being targeted by the United States government at the moment as it ratchets up its war on immigrants and anybody who cannot trace their ancestry to northern Europe. Imagine for a moment what will happen to America when researchers like them depart for countries where they are welcome instead of despised. 

 

Related News

View more

Michigan Public Service Commission grants Consumers Energy request for more wind generation

Consumers Energy Wind Expansion gains MPSC approval in Michigan, adding up to 525 MW of wind power, including Gratiot Farms, while solar capacity requests face delays over cost projections under the renewable portfolio standard targets.

 

Key Points

A regulatory-approved plan enabling Consumers Energy to add 525 MW of wind while solar additions await cost review.

✅ MPSC approves up to 525 MW in new wind projects

✅ Gratiot Farms purchase allowed before May 1

✅ Solar request delayed over high cost projections

 

Consumers Energy Co.’s efforts to expand its renewable offerings gained some traction this week when the Michigan Public Service Commission (MPSC) approved a request for additional wind generation capacity.

Consumers had argued that both more wind and solar facilities are needed to meet the state’s renewable portfolio standard, which was expanded in 2016 to encompass 12.5 percent of the retail power of each Michigan electric provider. Those figures will continue to rise under the law through 2021 when the figure reaches 15 percent, alongside ongoing electricity market reforms discussions. However, Consumers’ request for additional solar facilities was delayed at this time due to what the Commission labeled unrealistically high-cost projections.

Consumers will be able to add as much as 525 megawatts of new wind projects amid a shifting wind market, including two proposed 175-megawatt wind projects slated to begin operation this year and next. Consumers has also been allowed to purchase the Gratiot Farms Wind Project before May 1.

The MPSC said a final determination would be made on Consumers’ solar requests during a decision in April. Consumers had sought an additional 100 megawatts of solar facilities, hoping to get them online sometime in 2024 and 2025.

 

Related News

View more

Summerland solar power project will provide electricity

Summerland Solar+Storage Project brings renewable energy to a municipal utility with photovoltaic panels and battery storage, generating 1,200 megawatts from 3,200 panels on Cartwright Mountain to boost grid resilience and local clean power.

 

Key Points

A municipal solar PV and battery system enabling Summerland Power to self-generate electricity on Cartwright Mountain.

✅ 3,200 panels, 20-year batteries, 35-year panel lifespan

✅ Estimated $7M cost, $6M in grants, utility reserve funding

✅ Site near grid lines; 2-year timeline with 18-month lead

 

A proposed solar energy project, to be constructed on municipally-owned property on Cartwright Mountain, will allow Summerland Power to produce some of its own electricity, similar to how Summerside's wind power supplies a large share locally.

On Monday evening, municipal staff described the Solar+Storage project, aligning with insights from renewable power developers that combining resources yields better projects.

The project will include around 3,200 solar panels and storage batteries, giving Summerland Power the ability to generate 1,200 megawatts of electrical power.

This is the amount of energy used by 100 homes over the course of a year.

The solar panels have an estimated life expectancy of 35 years, while the batteries have a life expectancy of 20 years.

“It’s a really big step for a small utility like ours,” said Tami Rothery, sustainability/alternative energy coordinator for Summerland. “We’re looking forward to moving towards a bright, sunny energy future.”

She said the price of solar panels has been dropping, with lower-cost solar contracts reported in Alberta, and the quality and efficiency of the panels has increased in recent years.

The total cost of the project is around $7 million, with $6 million to come from grant funding and the remainder to come from the municipality’s electrical utility reserve fund, while policy changes such as Nova Scotia's solar charge delay illustrate evolving market conditions.

The site, a former public works yard and storage area, was selected from 108 parcels of land considered by the municipality.

She said the site, vacant since the 1970s, is close to main electrical lines and will not be highly visible once the panels are in place, much like unobtrusive rooftop solar arrays in urban settings.

Access to the site is restricted, resulting in natural security to the solar installation.

Jeremy Storvold, general manager of Summerland’s electrical utility, said the site is 2.5 kilometres from the Prairie Valley electrical substation and close to the existing public works yard.

However, some in the audience on Monday questioned the location of the proposed solar installation, suggesting the site would be better suited for affordable housing in the community.

The timeline for the project calls for roughly two years before the work will be completed, since there is an 18-month lead time in order to receive good quality solar panels, reflecting the surge in Alberta's solar growth that is straining supply chains.

 

Related News

View more

Ontario Drops Starlink Deal, Eyes Energy Independence

Ontario Starlink Contract Cancellation underscores rising tariffs, trade tensions, and retaliation, as SpaceX's Elon Musk loses a rural broadband deal; Ontario pivots to procurement bans, energy resilience, and nuclear power to boost grid independence.

 

Key Points

Ontario ended a C$100M Starlink deal over U.S. tariffs, prompting a shift to rural broadband alternatives.

✅ Triggered by U.S. tariffs; Ontario adopts retaliatory procurement bans.

✅ Ends plan to connect 15,000 rural homes and businesses with broadband.

✅ Signals push for energy resilience, nuclear power, and grid independence.

 

In a decisive move, Ontario Premier Doug Ford announced the cancellation of a C$100 million contract with Elon Musk's Starlink, a subsidiary of SpaceX, in direct response to U.S. President Donald Trump's imposition of tariffs on Canadian imports. This action underscores the escalating trade tensions between Canada and the United States, a theme highlighted during Ford's Washington meeting on energy tariffs earlier this month, and highlights Ontario's efforts to safeguard its economic interests.

The now-terminated agreement, established in November, aimed to provide high-speed internet access to 15,000 homes and businesses in Ontario's remote areas. Premier Ford's decision to "rip up" the contract signifies a broader strategy to distance the province from U.S.-based companies amid the current trade dispute. He emphasized, "Ontario won't do business with people hell-bent on destroying our economy."

This move is part of a series of retaliatory measures by Canadian provinces, including Ford's threat to cut electricity exports to the U.S., following President Trump's announcement of a 25% tariff on nearly all Canadian imports, excluding oil, which faces a 10% surcharge. These tariffs, set to take effect imminently, have prompted concerns about potential economic downturns in Canada. In response, Prime Minister Justin Trudeau declared that Canada would impose 25% tariffs on C$155 billion worth of U.S. goods, aiming to exert pressure on the U.S. administration to reconsider its stance.

Premier Ford's actions reflect a broader sentiment of economic nationalism, as he also announced a ban on American companies from provincial contracts until the U.S. tariffs are lifted. He highlighted that Ontario's government and its agencies allocate $30 billion annually on procurement, and reiterated his earlier vow to fire the Hydro One CEO and board as part of broader reforms aimed at efficiency.

The cancellation of the Starlink contract raises concerns about the future of internet connectivity in Ontario's rural regions. The original deal with Starlink was seen as a significant step toward bridging the digital divide, offering high-speed internet to underserved communities. With the contract's termination, the province faces the challenge of identifying alternative solutions to fulfill this critical need.

Beyond the immediate implications of the Starlink contract cancellation, Ontario is confronting broader challenges in ensuring the resilience and independence of its energy infrastructure. The province's reliance on external entities for critical services, such as internet connectivity and energy, has come under scrutiny, as Canada's electricity exports are at risk amid ongoing trade tensions and policy uncertainty.

Premier Ford has expressed a commitment to expanding Ontario's capacity to generate nuclear power as a means to bolster energy self-sufficiency. While this strategy aims to reduce dependence on external energy sources, it presents its own set of challenges that critics argue require cleaning up Ontario's hydro mess before new commitments proceed. Developing nuclear infrastructure requires substantial investment, rigorous safety protocols, and long-term planning. Moreover, the integration of nuclear power into the province's energy mix necessitates careful consideration of environmental impacts and public acceptance.

The concept of "Trump-proofing" Ontario's electricity grid involves creating a robust and self-reliant energy system capable of withstanding external political and economic pressures. Achieving this goal entails diversifying energy sources, including building on Ontario's electricity deal with Quebec to strengthen interties, investing in renewable energy technologies, and enhancing grid infrastructure to ensure stability and resilience.

However, the path to energy independence is fraught with complexities. Balancing the immediate need for reliable energy with long-term sustainability goals requires nuanced policy decisions, including Ontario's Supreme Court challenge to the global adjustment fee and related regulatory reviews to clarify cost impacts. Additionally, fostering collaboration between government entities, private sector stakeholders, and the public is essential to navigate the multifaceted challenges associated with overhauling the province's energy framework.

Ontario's recent actions, including the cancellation of the Starlink contract, underscore the province's proactive stance in safeguarding its economic and infrastructural interests amid evolving geopolitical dynamics. While such measures reflect a commitment to self-reliance, they also highlight the intricate challenges inherent in reducing dependence on external entities. As Ontario charts its course toward a more autonomous future, strategic planning, investment in sustainable technologies, and collaborative policymaking will be pivotal in achieving long-term resilience and prosperity.

 

Related News

View more

Russia and Ukraine Accuse Each Other of Violating Energy Ceasefire

Russia-Ukraine Energy Ceasefire Violations escalate as U.S.-brokered truce frays, with drone strikes, shelling, and grid attacks disrupting gas supply and power infrastructure across Kursk, Luhansk, Sumy, and Dnipropetrovsk, prompting sanctions calls.

 

Key Points

Alleged breaches of a U.S.-brokered truce, with both sides striking power grids, gas lines, and critical energy nodes.

✅ Drone and artillery attacks reported on power and gas assets

✅ Both sides accuse each other of breaking truce terms

✅ U.S. mediation faces verification and compliance hurdles

 

Russia and Ukraine have traded fresh accusations regarding violations of a fragile energy ceasefire, brokered by the United States, which both sides had agreed to last month. These new allegations highlight the ongoing tensions between the two nations and the challenges involved in implementing a truce amid global energy instability in such a complex and volatile conflict.

The U.S.-brokered ceasefire had initially aimed to reduce the intensity of the fighting, specifically in the energy sector, where both sides had previously targeted each other’s infrastructure. Despite this agreement, the accusations on Wednesday suggest that both Russia and Ukraine have continued their attacks on each other's energy facilities, a crucial aspect of the ceasefire’s terms.

Russia’s Ministry of Defence claimed that Ukrainian forces had launched drone and shelling attacks in the western Kursk region, cutting power to over 1,500 homes. This attack allegedly targeted key infrastructure, leaving several localities without electricity. Additionally, in the Russian-controlled part of Ukraine's Luhansk region, a Ukrainian drone strike hit a gas distribution station, severely disrupting the gas supply for over 11,000 customers in the area around Svatove.

In response, Ukrainian President Volodymyr Zelensky accused Russia of breaking the ceasefire. He claimed that Russian drone strikes had targeted an energy substation in Ukraine’s Sumy region, while artillery fire had damaged a power line in the Dnipropetrovsk region, leaving nearly 4,000 consumers without power even as Ukraine increasingly leans on electricity imports to stabilize the grid. Ukraine's accusations painted a picture of continued Russian aggression against critical energy infrastructure, a strategy that had previously been a hallmark of Russia’s broader military operations in the war.

The U.S. had brokered the energy truce as a potential stepping stone toward a more comprehensive ceasefire agreement. However, the repeated violations raise questions about the truce’s viability and the broader prospects for peace between Russia and Ukraine. Both sides are accusing each other of undermining the agreement, which had already been delicate due to previous suspicions and mistrust. In particular, the U.S. administration, led by President Donald Trump, has expressed impatience with the slow progress in moving toward a lasting peace, amid debates over U.S. national energy security priorities.

Kremlin spokesperson Dmitry Peskov defended Russia’s stance, emphasizing that President Vladimir Putin had shown a commitment to peace by agreeing to the energy truce, despite what he termed as daily Ukrainian attacks on Russian infrastructure. He reiterated that Russia would continue to cooperate with the U.S., even though the Ukrainian strikes were ongoing. This perspective suggests that Russia remains committed to the truce but views Ukraine’s actions as violations that could potentially derail efforts to reach a more comprehensive ceasefire.

On the other hand, President Zelensky argued that Russia was not adhering to the terms of the ceasefire. He urged the U.S. to take a stronger stance against Russia, including increasing sanctions on Moscow as punishment for its violations. Zelensky’s call for heightened sanctions is a continuation of his efforts to pressure international actors, particularly the U.S. and European countries, to provide greater energy security support for Ukraine’s struggle and to hold Russia accountable for its actions.

The ceasefire’s fragility is also reflected in the differing views between Ukraine and Russia on what constitutes a successful resolution. Ukraine had proposed a full 30-day ceasefire, but President Putin declined, raising concerns about monitoring and verifying compliance with the terms. This disagreement suggests that both sides are not entirely aligned on what a peaceful resolution should look like and how it can be realistically achieved.

The situation is complicated by the broader context of the war, which has now dragged on for over three years. The conflict has seen significant casualties, immense destruction, and deep geopolitical ramifications. Both countries are heavily reliant on their energy infrastructures, making any attack on these systems not only a military tactic but also a form of economic warfare. Energy resources, including electricity and natural gas, have become central to the ongoing conflict, with both sides using them to exert pressure on the other amid Europe's deepening energy crisis that reverberates beyond the battlefield.

As of now, it remains unclear whether the recent violations of the energy ceasefire will lead to a breakdown of the truce or whether the United States will intervene further to restore compliance, even as Ukraine prepares for winter amid energy challenges. The situation remains fluid, and the international community continues to closely monitor the developments. The U.S., which played a central role in brokering the energy ceasefire, has made it clear that it expects both sides to uphold the terms of the agreement and work toward a more permanent cessation of hostilities.

The continued accusations between Russia and Ukraine regarding the breach of the energy ceasefire underscore the challenges of negotiating peace in such a complex and entrenched conflict. While both sides claim to be upholding their commitments, the reality on the ground suggests that reaching a full and lasting peace will require much more than temporary truces. The international community, particularly the U.S., will likely continue to push for stronger actions to enforce compliance and to prevent the conflict from further escalating. The outcome of this dispute will have significant implications for both countries and the broader European energy landscape and security landscape.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.