Indonesia and China reform power sector

By The Punch


NFPA 70b Training - Electrical Maintenance

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today
Indonesia has the largest population in the Southeast Asia and the fourth largest population in the world (behind China, India, and the United States). But IndonesiaÂ’s power sector faces shortages on electricity due to underinvestment in new generating capacity.

This is because the countryÂ’s power generation sector is dominated by the state-owned electric utility PT PLN (Persero), formerly known as Perusahaan Listrik Negara.

The PT PLN operates 45 power plants, or roughly two-thirds of the countryÂ’s generating capacity. In 2004, Indonesia had 25 gigawatts (GW) of installed electricity generating capacity.

During 2004, Indonesia generated 112.6 billion kilowatt hours (Bkwh) of electricity, of which 86 per cent came from conventional thermal sources (oil, natural gas, and coal), eight per cent from hydroelectric sources, and five per cent from geothermal and other renewable sources. In 2004, Indonesia consumed 104.7 Bkwh of electric power, showing net electricity exports during the year.

According to the 2002 Electricity Law, certain markets for power generation was to be opened for competition from 2007, while retail market competition was scheduled for this 2008, when power producers would be able to sell directly to their customers rather than through PT PLN.

The 2002 legislation also established a new regulatory body, the Power Market Supervisory Agency, and created incentives for rural electrification programmes.

Because of the threats of severe underinvestment, the government set out on a programme to expand generation capacity. The plan, known as the “10,000 MW Acceleration Programme”, aims to add 10,000 MW of new capacity by 2010.

In September 2002, the government passed a new legislation aimed at strengthening regulatory guidance in the power sector and promoting new investment in power projects.

However, little progress has been made on these proposals, mostly because foreign and private companies have shown little interest in investing in IndonesiaÂ’s electricity sector. Some of the previously-cancelled Independent Power Projects have been revived, but many of them remain in a stalemate over payment disputes.

One of the major obstacles to increasing IndonesiaÂ’s power generating capacity is pricing. The government sets the price at which PT PLN sells electricity in the country, and since the Asian Financial Crisis, it has often had to sell electricity at less than the cost of production. PT PLNÂ’s financial difficulties, coupled with its inability to increase power prices, have prevented the company from investing in new infrastructure projects to build up capacity.

IndonesiaÂ’s power is generated from a combination of sources including the conventional thermal, geothermal, thermal and other renewable. In 2004, the country generated 9.4 Bkwh of electricity from hydroelectric sources, representing about eight per cent of the countryÂ’s total generation. According to a U.S. Energy Information Administration data, Indonesia generated 6Bkwh of electricity from geothermal and other renewable sources in 2004, making up about five per cent of the countryÂ’s total electricity supply.

However, outside sources claim Indonesia currently has more than 800MW of geothermal capacity, making it the fourth largest producer of geothermal power in the world behind the United States, Philippines, and Mexico. Industry reports also suggest that Indonesia holds vast hydropower potential, but that the country was yet to embark on the same sorts of large hydroelectric facilities as seen elsewhere in the region. But the government estimates that the country holds large untapped geothermal resources, with the potential to supply up to 21 GW of additional generating capacity.

Since hydropower plants require huge upfront capital investments, it is unlikely that PT PLN or other companies in Indonesia will have the incentive to invest in hydroelectric projects in the near term. Several plans for large-scale geothermal development projects were scrapped when Indonesia faced economic turmoil during the Asian Financial Crisis.

But the government has stated that it would like to promote natural gas-fired and coal-fired power stations so that the country can utilize its domestic resource base and shift away from oil-fired power generation.

Under the Energy Revolution Scenario, electricity demand is expected to increase to a disproportionate extent, with households and services the main source of growing consumption. Due to the exploitation of efficiency measures, an even higher increase can be avoided, in spite of continuous economic growth, leading to an electricity demand of around 360 TWh/a in the year 2050.

Compared to the Reference Scenario, efficiency measures will avoid the generation of about 200 TWh/a. This continuing reduction in energy demand can be achieved in particular by using highly efficient electronic devices representing the currently best available technology.

The development of the electricity supply sector is characterized by a dynamically growing renewable energy market and an increasing share of renewable electricity. This will compensate for the reduction of coal and a reduction in fossil-fired condensing power plants to the minimum required for grid stabilization.

By 2050, 60 per cent of the electricity produced in Indonesia will come from renewable energy sources. ‘New’ renewables, such as wind, biomass, geothermal and solar energy, will contribute 70 per cent of this capacity. The following strategy paves the way for a future renewable energy supply:

The reduction of coal power plants and increasing electricity demand will be compensated for initially by bringing into operation new highly efficient gas-fired combined-cycle power plants, plus an increasing capacity of geothermal power plants. In the long term, geothermal, solar photovoltaic and biomass will be the most important sources of electricity generation.

PV, biomass and geothermal energy will make substantial contributions to electricity production. In particular, as non-fluctuating renewable energy sources, geothermal and biomass will be important elements in the overall generation mix.

Because of nature conservation concerns, the use of hydro power will be limited to small hydro power plants and grow up to 12,000 MW in 2050, although the potential is even higher.

Again due to nature conservation concerns, the use of biomass will be largely limited to agricultural waste and grow up to 5,000 MW in 2050, although the technical potential is ten times higher.

The installed capacity of renewable energy technologies will increase from the current 5GW to 78GW in 2050. Increasing renewable capacity by a factor of 15 within the next 42 years requires policy support and well-designed policy instruments. Because electricity demand is still growing, there will be a large demand for investment in new capacity over the next 20 years. As investment cycles in the power sector are long, decisions for restructuring the Indonesian supply system need to be taken now.

To achieve an economically attractive growth in renewable energy sources, a balanced and timely mobilization of all technologies is of great importance.

This mobilization depends on technical potential, actual costs, cost reduction potential and technological maturity. Up to 2010, hydro-power and biomass will remain the main contributors. From 2020 onwards, the continually growing use of geothermal will be complemented by electricity from photovoltaics, especially for the supply of households in villages and IndonesiaÂ’s more than 6,000 inhabited islands.

Until 2002, ChinaÂ’s power sector was run as a single unit under a state monopoly, the State Power Corporation. Thereafter, the unit was separated into generation, transmission, and services units.

According to an industry study conducted at the end of 2005, over 120 GW of generating capacity is currently under construction in China.

Although much of the new investment has been earmarked to alleviate electricity supply shortages, some independent analysts forecast the possibility of oversupply as an assortment of new projects are scheduled to come online between 2007 and 2009. To ward off a possible supply glut, Chinese government officials have made an effort to approve new projects at a steady and measured rate.

Since the reform, ChinaÂ’s electricity generation sector is dominated by five state-owned holding companies, namely China Huaneng Group, China Datang Group, China Huandian, Guodian Power, and China Power Investment.

These five holding companies manage more than 80 per cent of ChinaÂ’s generating capacity. Much of the remainder is operated by independent power producers, often in partnership with the privately listed arms of the state-owned companies. Deregulation and other reforms have opened the electricity sector to foreign investment, although this has so far been limited.

During the 2002 reforms, SPC divested all of its electricity transmission and distribution assets into two new companies, the Southern Power Company and the State Power Grid Company. The government aims to merge SPC?s 12 regional grids into three large power grid networks, namely a northern and north-western grid operated by the State Power Grid Company and a southern grid operated by the Southern Power Company and the hope to achieve an integrated national electricity grid by 2020.

Also in 2002, the State Electricity Regulatory Commission was established, which is responsible for the overall regulation of the electricity sector.

In view of its huge population, china has a cocktail of energy mix, although its electricity generation continues to be dominated by fossil fuel sources, particularly coal but the government has made the expansion of natural gas-fired power plants a priority.

Conventional thermal sources are expected to remain the dominant fuel for electricity generation in the coming years, with many power projects under construction or planned that will use coal or natural gas.

In 2004, China was the worldÂ’s second-largest producer of hydroelectric power behind Canada. In the same year, it generated 328 billion kilowatt hours (Bkwh) of electricity from hydroelectric sources, representing 15.8 per cent of its total generation. This figure is likely to increase given the number of large-scale hydroelectric projects planned or under construction in China.

During the same period, China had total installed electricity generating capacity of 391.4 GW, 74 per cent of which came from conventional thermal sources. In 2004, China generated 2.08(Bkwh) and consumed 1.93Bkwh of electricity. Since 2000, both electricity generation and consumption have increased by 60 per cent.

Between 1990 and 2010, the country is expected to almost triple its consumption of electricity. China recently opened its power sector to foreign investment. Several joint ventures have already been established for the construction of electric generating units. China is modifying its legal framework to allow the possibility of full foreign ownership of power plants.

In at least one project a build-ownership-transfer financing arrangement is being tested. Coastal constructed a 40-megawatt power plant in Wuxi City and began construction on a 76-MW power plant in Suzhou, and plans a 72-MW plant in Nanjing. Enserch reached an agreement to cooperatively develop and operate a 36-MW coal-fired plant near Zhejiang.

As with coal mining, the Chinese government is looking to shut down or modernize many small and inefficient power plants in favour of medium-sized (300 to 600MW) and large (1000MW and up) units.

ChinaÂ’s eleventh five-year plan, covering the period 2005-2010, calls for the country to increase the share of natural gas and other cleaner technologies into the countryÂ’s energy mix. There are several examples of ChinaÂ’s effort to bring new natural gas-fired power stations online.

In July 2006, Huaneng Power International, which is ChinaÂ’s largest listed electricity generation company, started operations at a new natural gas-fired power plant in Shanghai. The facility has a capacity of 1,200MW, making it ChinaÂ’s largest natural gas-fired power station.

Construction is also underway at the 2,000-MW Huizhou power plant near Shenzhen that will use 560,000 metric tonnes of Liquefied Natural Gas per year from the new Guangdong terminal. Also in Guangdong, at least six other 300-MW natural gas-fired units are planned or under construction, and 1.8GW of other existing coal and oil-fired power plants are being converted to run on natural gas.

The first natural-gas fired plant in Beijing started operations in July 2006. The new unit has a capacity of 150MW, and several companies worked hard to open additional larger natural gas-fired generators in Beijing before the 2008 summer Olympics.

Although many analysts forecast that natural gas will see the greatest percentage rise in installed electricity generation capacity over the next decade, coal is expected to show the largest increase in absolute terms.

In the first half of 2006, the continued uncertainty over future Russian natural gas supplies and the rising costs of planned LNG imports may push China even more toward coal for its future energy needs. China has vast coal reserves, much of which have yet to be developed, and coal projects tend to be much cheaper than natural gas or other sources.

China is currently building the Three Gorges Dam hydroelectric facility, which, when completed in 2009, will be the largest hydroelectric project in the world.

The will include 26 separate 700-MW generators, for a total of 18.2GW. When completed, although the Three Gorges project already had several units in operation, but the project is not expected to be fully completed until 2009.

Another large hydropower project involves a series of dams on the upper portion of the Yellow River. Shaanxi, Qinghai, and Gansu provinces have joined to create the Yellow River Hydroelectric Development Corporation, with plans for the eventual construction of 25 generating stations with a combined installed capacity of 15.8GW.

China is also actively promoting nuclear power as a clean and efficient source of electricity generation. Although it makes up only a small fraction of ChinaÂ’s installed generating capacity, many of the major developments taking place in the Chinese electricity sector recently involve nuclear power.

EIA and independent sources forecast that China will add between 15 and 30 GW of new nuclear energy capacity by 2020, but even with this expansion, nuclear power will only represent between 2.5 and 4.5 per cent of total installed generating capacity.

As of mid-2006, China had eight new nuclear power plants under construction, the biggest of which is a 6-GW nuclear complex at Yangjiang in Guangdong province, set to begin commercial operation in 2010.

Related News

American Households Struggle with Sky-High Energy Bills During Extreme Summer Heat

US Summer Energy Bills Crisis is driven by record heatwaves, soaring electricity prices, AC cooling demand, energy poverty risks, and LIHEAP relief, straining low-income households, vulnerable seniors, and budgets amid volatile utilities and peak demand.

 

Key Points

Rising household energy costs from extreme heat, higher electricity prices, and AC demand, straining vulnerable families.

✅ Record heatwaves drive peak electricity and cooling loads

✅ Tiered rates and volatile markets inflate utility bills

✅ LIHEAP aid and cooling centers offer short-term relief

 

As the sweltering heat of summer continues to grip much of the United States, American households are grappling with a staggering rise in energy bills. The combination of record-breaking temperatures and rising electricity prices is placing an unprecedented financial strain on families, raising concerns about the long-term impact on household budgets and overall well-being.

Record Heat and Energy Consumption

This summer has witnessed some of the hottest temperatures on record across the country. With many regions experiencing prolonged heatwaves, the demand for air conditioning and cooling systems has surged amid unprecedented electricity demand across parts of the U.S. The increased use of these energy-intensive appliances has led to a sharp rise in electricity consumption, which, combined with elevated energy prices, has pushed household energy bills to new heights.

The situation is particularly dire for households that are already struggling financially. Many families are facing energy bills that are not only higher than usual but are reaching levels that are unsustainable, underscoring electricity struggles for thousands of families across the country. This has prompted concerns about the potential for energy poverty, where individuals are forced to make difficult choices between paying for essential services and covering other necessary expenses.

Impact on Low-Income and Vulnerable Households

Low-income households and vulnerable populations are disproportionately affected by these soaring energy costs. For many, the financial burden of high energy bills is compounded by energy insecurity during the pandemic and other economic pressures, such as rising food prices and stagnant wages. The strain of paying for electricity during extreme heat can lead to tough decisions, including cutting back on other essential needs like healthcare or education.

Moreover, the heat itself poses a serious health risk, particularly for the elderly, children, and individuals with pre-existing health conditions. High temperatures can exacerbate conditions such as cardiovascular and respiratory illnesses, making the need for reliable cooling even more critical. For those struggling to afford adequate cooling, the risk of heat-related illnesses and fatalities increases significantly.

Utilities and Energy Pricing

The sharp rise in energy bills can be attributed to several factors, including higher costs of electricity production and distribution. The ongoing transition to cleaner energy sources, while necessary for long-term environmental sustainability, has introduced short-term volatility in energy markets. Additionally, power-company supply chain crises and increased demand during peak summer months have contributed to higher prices.

Utilities are often criticized for their pricing structures, which can be complex and opaque. Some regions, including areas where California electricity bills soar under scrutiny, use tiered pricing models that charge higher rates as energy consumption increases. This can disproportionately impact households that need to use more energy during extreme heat, further exacerbating financial strain.

Government and Community Response

In response to the crisis, various government and community initiatives are being rolled out to provide relief. Federal and state programs aimed at assisting low-income households with energy costs are being expanded. These programs, such as the Low-Income Home Energy Assistance Program (LIHEAP), offer financial assistance to help with utility bills, but demand often outstrips available resources.

Local community organizations are also stepping in to offer support. Initiatives include distributing fans and portable air conditioners, providing temporary cooling centers, and offering financial assistance to help cover energy costs. These efforts are crucial in helping to mitigate the immediate impact of high energy bills on vulnerable households.

Long-Term Solutions and Sustainability

The current crisis highlights the need for long-term solutions to address both the causes and consequences of high energy costs. Investing in energy efficiency and renewable energy technologies can help reduce the overall demand for electricity and lower long-term costs. Improvements in building insulation, the adoption of energy-efficient appliances, and advancements in smart grid technologies to prevent summer power outages are all essential components of a sustainable energy future.

Furthermore, addressing income inequality and supporting economic stability are critical to ensuring that all households can manage their energy needs without facing financial hardship. Policymakers will need to consider a range of strategies, including financial support programs, regulatory reforms, and infrastructure investments, to create a more equitable and resilient energy system.

Conclusion

As American households endure the double burden of extreme summer heat and skyrocketing energy bills, the need for immediate relief and long-term solutions has never been clearer. The current crisis serves as a reminder of the broader challenges facing the nation’s energy system and the importance of addressing both short-term needs and long-term sustainability. By investing in efficient technologies, supporting vulnerable populations, and developing resilient infrastructure, the U.S. can work towards a future where energy costs are manageable, and everyone has access to the resources they need to stay safe and comfortable.

 

Related News

View more

Next Offshore Wind in U.S. Can Compete With Gas, Developer Says

Offshore Wind Cost Competitiveness is rising as larger turbines boost megawatt output, cut LCOE, and trim maintenance and installation time, enabling projects in New England to rival natural gas pricing while scaling reliably.

 

Key Points

It describes how larger offshore turbines lower LCOE and O&M, making U.S. projects price competitive with natural gas.

✅ Larger turbines boost MW output and reduce LCOE.

✅ Lower O&M and faster installation cut lifecycle costs.

✅ Competes with gas in New England bids, per BNEF.

 

Massive offshore wind turbines keep getting bigger, as projects like the biggest UK offshore wind farm come online, and that’s helping make the power cheaper — to the point where developers say new projects in U.S. waters can compete with natural gas.

The price “is going to be a real eye-opener,” said Bryan Martin, chairman of Deepwater Wind LLC, which won an auction in May to build a 400-megawatt wind farm southeast of Rhode Island.

Deepwater built the only U.S. offshore wind farm, a 30-megawatt project that was completed south of Block Island in 2016. The company’s bid was selected by Rhode Island the same day that Massachusetts picked Vineyard Wind to build an 800-megawatt wind farm in the same area, while international investors such as Japanese utilities in UK projects signal growing confidence.

#google#

Bigger turbines that make more electricity have cut the cost per megawatt by about half, a trend aided by higher-than-expected wind potential in many markets, said Tom Harries, a wind analyst at Bloomberg New Energy Finance. That also reduces maintenance expenses and installation time. All of this is helping offshore wind vie with conventional power plants.

“You could not build a thermal gas plant in New England for the price of the wind bids in Massachusetts and Rhode Island,” Martin said Friday at the U.S. Offshore Wind Conference in Boston. “It’s very cost-effective for consumers.”

The Massachusetts project could be about $100 to $120 a megawatt hour, according to a February estimate from Harries, though recent UK price spikes during low wind highlight volatility. The actual prices there and in Rhode Island weren’t disclosed.

For comparison, a new U.S. combine-cycle gas turbine ranges from $40 to $60 a megawatt-hour, and a new coal plant is $67 to $113, according to BNEF data.

 

A new power plant in land-constrained New England would probably be higher than that, and during winter peaks the region has seen record oil-fired generation in New England that underscores reliability concerns. More importantly, gas plants get a significant portion of their revenue from being able to guarantee that power is always available, something wind farms can’t do, said William Nelson, a New York-based analyst with BNEF. Looking only at the price at which offshore turbines can deliver electricity is a “narrow mindset,” he said.

 

Related News

View more

Germany turns to coal for a third of its electricity

Germany's Coal Reliance reflects an energy crisis, soaring natural gas prices, and a nuclear phase-out, as Destatis data show higher coal-fired electricity despite growing wind and solar generation, impacting grid stability and emissions.

 

Key Points

Germany's coal reliance is more coal power due to gas spikes and a nuclear phase-out, despite wind and solar growth.

✅ Coal share near one-third of electricity, per Destatis

✅ Gas-fired output falls as prices soar after Russia's invasion

✅ Wind and solar rise; grid stability and recession risks persist

 

Germany is relying on highly-polluting coal for almost a third of its electricity, as the impact of government policies, reflecting an energy balancing act for the power sector, and the war in Ukraine leads producers in Europe’s largest economy to use less gas and nuclear energy.

In the first six months of the year, Germany generated 82.6 kWh of electricity from coal, up 17 per cent from the same period last year, according to data from Destatis, the national statistics office, published on Wednesday. The leap means almost one-third of German electricity generation now comes from coal-fired plants, up from 27 per cent last year. Production from natural gas, which has tripled in price to €235 per megawatt hour since Russia’s invasion in late February, fell 18 per cent to only 11.7 per cent of total generation.

Destatis said that the shift from gas to coal was sharper in the second quarter. Coal-fired electricity increased by an annual rate of 23 per cent in the three months to June, while electricity generation from natural gas fell 19 per cent.

The figures highlight the challenge facing European governments in meeting clean energy goals after the Kremlin announced this week that the Nordstream 1 pipeline that takes Russian gas to Germany would remain closed until Europe removed sanctions on the country’s oil.

Germany has been trying to reduce its reliance on coal, which releases almost twice as many emissions as gas and more than 60 times those of nuclear energy, according to estimates from the Intergovernmental Panel on Climate Change, though grid expansion challenges have slowed renewable build-out in recent years.

Chancellor Olaf Scholz said the opposition CDU bore “complete responsibility” for the exit from coal and nuclear power that formed part of his predecessor Angela Merkel’s Energiewende policies, amid a continuing nuclear option debate in climate policy, which in turn raised reliance on Russian gas. At the beginning of this year, more than 50 per cent of Germany’s gas imports came from Russia, a figure that fell slightly over the opening half of 2022.

But CDU leader Friedrich Merz accused the government of “madness” over its decision to idle the country’s three remaining nuclear power stations from the end of this year, though officials have argued that nuclear would do little to solve the gas issue in the short term.

Electricity generation from nuclear energy has already halved after three of the six nuclear power plants that were still in operation at the end of 2021 were closed during the first half of this year. Berlin said on Monday it would keep on standby two of its remaining three nuclear power stations, a move to extend nuclear power during the energy crisis, which were all due to close at the end of the year.

The German government has warned of the risk of electricity shortages this winter. “We cannot be sure that, in the event of grid bottlenecks in neighbouring countries, there will be enough power plants available to help stabilise our electricity grid in the short term,” said German economy minister Robert Habeck on Monday.

However Scholz said that, after raising gas storage levels to 86 per cent of capacity, Germany would “probably get through this winter, despite all the tension”.

One bright spot from the data was the increase in use of renewable energy, highlighting a recent renewables milestone in Germany. The proportion of electricity generated from wind power generation rose by 18 per cent to 25 per cent of all electricity generation, while solar energy production increased 20 per cent.

Ángel Talavera, head of Europe economics at the consultancy Oxford Economics, said that the success in moving away from gas towards other energy sources “means that the risks of hard energy rationing over the winter are less severe now, even with little to no Russian gas flows”.

However, economists still expect a recession in the eurozone’s largest economy, amid a deteriorating German economy outlook over the near term, as a large part of the impact comes via higher prices and because industries and households still rely on gas for heating.

Separate official data also published on Wednesday showed that German industrial production slid 0.3 per cent between June and July. Production at Germany’s most energy intensive industries fell almost 7 per cent in the five months after Russia’s invasion of Ukraine.

“The demand destruction caused by the surge in prices will still send the German economy into recession over the winter,” said Talavera.

 

Related News

View more

German coalition backs electricity subsidy for industries

Germany Industrial Electricity Price Subsidy weighs subsidies for energy-intensive industries to bolster competitiveness as Germany shifts to renewables, expands grid capacity, and debates free-market tax cuts versus targeted relief and long-term policies.

 

Key Points

Policy to subsidize power for energy-intensive industry, preserving competitiveness during the energy transition.

✅ SPD backs 5-7 cents per kWh for 10-15 years

✅ FDP prefers tax cuts and free-market pricing

✅ Scholz urges cheap renewables and grid expansion first

 

Germany’s three-party coalition is debating whether electricity prices for energy-intensive industries should be subsidised in a market where rolling back European electricity prices can be tougher than it appears, to prevent companies from moving production abroad.

Calls to reduce the electricity bill for big industrial producers are being made by leading politicians, who, like others in Germany, fear the country could lose its position as an industrial powerhouse as it gradually shifts away from fossil fuel-based production, amid historic low energy demand and economic stagnation concerns.

“It is in the interest of all of us that this strong industry, which we undoubtedly have in Germany, is preserved,” Lars Klingbeil, head of Germany’s leading government party SPD (S&D), told Bayrischer Rundfunk on Wednesday.

To achieve this, Klingbeil is advocating a reduced electricity price for the industry of about 5 to 7 cents per Kilowatt hour, which the federal government would subsidise. This should be introduced within the next year and last for about 10 to 15 years, he said.

Under the current support scheme, which was financed as part of the €200 billion “rescue shield” against the energy crisis, energy-intensive industries already pay 13 cents per Kilowatt hour (KWh) for 70% of their previous electricity needs, which is substantially lower than the 30 to 40 cents per KWh that private consumers pay.

“We see that the Americans, for example, are spending $450 billion on the Inflation Reduction Act, and we see what China is doing in terms of economic policy,” Klingbeil said.

“If we find out in 10 years that we have let all the large industrial companies slip away because the investments are not being made here in Germany or Europe, and jobs and prosperity and growth are being lost here, then we will lose as a country,” he added.

However, not everyone in the German coalition favours subsidising electricity prices.

Finance Minister Christian Lindner of the liberal FDP (Renew), for example, has argued against such a step, instead promoting free-market principles and, amid rising household energy costs, reducing taxes on electricity for all.

“Privileging industrial companies would only be feasible at the expense of other electricity consumers and taxpayers, for example, private households or the small trade sector,” Lindner wrote in an op-ed for Handelsblatt on Tuesday.

“Increasing competitiveness for some would mean a loss of competitiveness for others,” he added.

Chancellor Olaf Scholz, himself a member of SPD, was more careful with his words, amid ongoing EU electricity reform debates in Brussels.

Asked about a subsidised electricity price for the industry at a town hall event on Monday, Scholz said he does not “want to make any promises now”.

“First of all, we have to make sure that we have cheap electricity in Germany in the first place,” Scholz said, promoting the expansion of renewable energy such as wind and solar, as local utilities cry for help, as well as more electricity grid infrastructure.

“What we will not be able to do as an economy, even as France’s new electricity pricing scheme advances, is to subsidise everything that takes place in normal economic activity,” Scholz said. “We should not get into the habit of doing that,” he added.

 

Related News

View more

Bruce Power cranking out more electricity after upgrade

Bruce Power Capacity Uprate boosts nuclear output through generator stator upgrades, turbine and transformer enhancements, and cooling pump improvements at Bruce A and B, unlocking megawatts and efficiency gains from legacy heavy water design capacity.

 

Key Points

Upgrades that raise Bruce Power capacity via stator, turbine, transformer, and cooling enhancements.

✅ Generator stator replacement increases electrical conversion efficiency

✅ Turbine and transformer upgrades enable higher MW output

✅ Cooling pump enhancements optimize plant thermal performance

 

Bruce Power’s Unit 3 nuclear reactor will squeeze out an extra 22 megawatts of electricity, thanks to upgrades during its recent planned outage for refurbishment.

Similar gains are anticipated at its three sister reactors at Bruce A generating station, which presents the opportunity for the biggest efficiency gains and broader economic benefits for Ontario, due to a design difference over Bruce B’s four reactors, Bruce Power spokesman John Peevers said.

Bruce A reactor efficiency gains stem mainly from the fact Bruce A’s non-nuclear side, including turbines and the generator, was sized at 88 per cent of the nuclear capacity, Peevers said, while early Bruce C exploration work advances.

This allowed 12 per cent of the energy, in the form of steam, to be used for heavy water production, which was discontinued at the plant years ago. Heavy water, or deuterium, is used to moderate the reactors.

That design difference left a potential excess capacity that Bruce Power is making use of through various non-nuclear enhancements. But the nuclear operator, which also made major PPE donations during the pandemic, will be looking at enhancements at Bruce B as well, Peevers said.

Bruce Power’s efficiency gain came from “technology advancements,” including a “generator-stator improvement project that was integral to the uprate,” and contributed to an operating record at the site, a Bruce Power news release said July 11.

Peevers said the stationary coils and the associated iron cores inside the generator are referred to as the stator. The stator acts as a conductor for the main generator current, while the turbine provides the mechanical torque on the shaft of the generator.

“Some of the other things we’re working on are transformer replacement and cooling pump enhancements, backed by recent manufacturing contracts, which also help efficiency and contribute to greater megawatt output,” Peevers said.

The added efficiency improvements raised the nuclear operator’s peak generating capacity to 6,430 MW, as projects like Pickering life extensions continue across Ontario.

 

Related News

View more

End of an Era: UK's Last Coal Power Station Goes Offline

UK Coal-Free Energy Transition highlights the West Burton A closure, accelerating renewable energy, wind, solar, nuclear, energy storage, smart grid upgrades, decarbonization, and net-zero goals while ensuring reliability, affordability, and a just transition for workers.

 

Key Points

A nationwide shift from coal power to renewables, storage, and nuclear to meet net-zero while maintaining reliability.

✅ West Burton A closure ends UK coal-fired generation

✅ Wind, solar, nuclear, storage strengthen grid resilience

✅ Government backs a just transition and worker retraining

 

The United Kingdom marks a historic turning point in its energy transition with the closure of the West Burton A Power Station in Nottinghamshire. This coal-fired power plant, once a symbol of the nation's industrial might, has now delivered its final watts of electricity to the grid, signalling the end of coal power generation in the UK.


A Landmark Shift Towards Clean Energy

The closure of West Burton A reflects a dramatic shift in the UK's energy landscape. Coal, the backbone of the UK's power generation for decades, is being phased out in favour of renewable energy sources like wind, solar, and nuclear. This transition aligns with the UK's ambitious net-zero emissions target, which aims to radically decarbonize the country's economy by 2050, though progress can falter, as when low-carbon generation stalled in 2019 amid changing market conditions.


Changing Energy Landscape

In the past, coal-fired power plants provided reliable, on-demand power. However, growing awareness of their significant environmental impact, particularly their contribution to climate change,  has accelerated the move away from coal. The UK government has set clear targets for eliminating coal power generation, and the industry has seen a steady decline as the share of coal fell to record lows in the electricity system.


Renewables Fill the Gap

The remarkable growth of renewable energy sources has enabled the transition away from coal. Wind and solar power, in particular, have experienced rapid development and falling costs, and in 2016 wind generated more electricity than coal for the first time. The UK now boasts substantial offshore and onshore wind farms and extensive solar installations. Additionally, investments in nuclear power and emerging energy storage technologies are increasing the reliability and diversity of the UK's power grid.


Economic and Social Impacts

The closure of the last coal-fired power station carries both economic and social impacts. While this change represents a victory for environmentalists, marked by milestones like a full week without coal power in Britain, the end of coal mining and power generation will lead to job losses in communities traditionally reliant on these industries.  The government has committed to supporting affected regions and facilitating a "just transition" for workers by retraining and creating new opportunities in the clean energy sector.


Global Implications

The UK's commitment to a coal-free future serves as a powerful example for other nations seeking to decarbonize their energy systems, including peers where Alberta's last coal plant closed recently. The nation's experience demonstrates that a transition to renewable energy sources is both possible and necessary. However, it also highlights the importance of careful planning and addressing the social and economic impacts of such a rapid energy revolution.


The Road Ahead

While the closure of West Burton A Power Station marks a historic milestone, the UK's transition to clean energy is far from complete. Maintaining a reliable and affordable energy supply, even as coal-free power records raise questions about energy bills, will require continued investment in renewable energy sources, energy storage, and advanced grid technologies.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.