IBM hopes new utility coalition can boost grid computing

By ComputerWorld


Protective Relay Training - Basic

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
IBM and CenterPoint Energy Houston Electric LLC unveiled plans to create a coalition of energy firms that would use Web 2.0 tools to share information about major projects.

IBM said that it hopes the Intelligent Utility Network (IUN) coalition effort will help boost the adoption of grid computing within the energy sector.

IBM is working with CenterPoint on a $750 million, five-year project to automate its entire operation. The effort includes construction of an IUN, an information architecture that allows for the automated real-time monitoring of assets like meters, power lines and customer usage to improve service and reliability, CenterPoint officials said.

The CenterPoint IUN includes a grid that will provide data, information and analytics to help workers improve outage detection and restoration times along with ongoing operations. CenterPoint is using IBM's integration middleware, information management software and enterprise portal to create the IUN.

"The products that consume electricity today are increasingly digital, but the delivery system for electricity is still mostly analog," said Georgianna Nichols, group president of CenterPoint Houston Electric Operations. "We're deploying an intelligent grid infrastructure to digitize the electric grid."

For example, the project with IBM includes the implementation of an Advanced Meter Infrastructure to allow remote connection and disconnection of service and automated meter reads for their Houston customers.

"A year ago we were very optimistic... about automated meter reading," Nichols said. "Within 12 months, this has grown so much bigger that it is a discussion around almost revolutionizing the whole electric utility industry. We were dreaming about it a year ago. Today, it is a reality and we are testing equipment."

IBM plans to provide companies that join the coalition with access to its portal and to other collaboration tools like wikis and blogs to help them to work together at various levels from executive management down to IT developers, said Brad Gammons, vice president of IBM's global energy and utilities industry.

"Think of social networking at a solution development level," he said. "What is different here is allowing a group of utilities to collaborate in really making real things that have been tested. This is about moving to operational deployment."

IBM said it expects to add one or two more members to the coalition in the next three months and to have seven onboard by the end of the year.

Related News

Alberta creates fund to help communities hit by coal phase-out

Alberta Coal Community Transition Fund backs renewables, natural gas, and economic diversification, offering grants, workforce retraining, and community development to municipalities and First Nations as Alberta phases out coal-fired power by 2030.

 

Key Points

A provincial grant helping coal-impacted communities diversify, retrain workers, and transition to renewables by 2030.

✅ Grants for municipalities and First Nations

✅ Supports diversification and job retraining

✅ Focus on renewables, natural gas, and new sectors

 

The Coal Community Transition Fund is open to municipalities and First Nations affected as Alberta phases out coal-fired electricity by 2030 under the federal coal plan to focus on renewables and natural gas.

Economic Development Minister Deron Bilous says the government wants to ensure these communities thrive through the transition, aligning with views that fossil-fuel workers support the energy transition across the economy.

“Residents in our communities have concerns about the transition away from coal, even as discussions about phasing out fossil fuels in B.C. unfold nationally,” Rod Shaigec, mayor of Parkland County, said.

“They also have ideas on how we can mitigate the impacts on workers and diversify our economy, including clean energy partnerships to create new employment opportunities for affected workers. We are working to address those concerns and support their ideas. This funding means we can make those ideas a reality in various economic sectors of opportunity.”

The coal-mining town of Hanna, northeast of Calgary, has already received $450,000 through the program to work on economic diversification, exploring options like bridging the Alberta-B.C. electricity gap that could support new industries.

The application deadline for the coal transition fund is the end of November.

A provincial advisory panel is also expected to report back this fall on ways to create new jobs and retrain workers during the coal phase-out.

 

Related News

View more

The Collapse of Electric Airplane Startup Eviation

Eviation Collapse underscores electric aviation headwinds, from Alice aircraft battery limits to FAA/EASA certification hurdles, funding shortfalls, and leadership instability, reshaping sustainability roadmaps for regional airliners and future zero-emission flight.

 

Key Points

Eviation Collapse is the 2025 shutdown of Eviation Aircraft, revealing battery, certification, and funding hurdles.

✅ Battery energy density limits curtailed Alice's range

✅ FAA/EASA certification timelines delayed commercialization

✅ Funding gaps and leadership churn undermined execution

 

The electric aviation industry was poised to revolutionize the skies through an aviation revolution with startups like Eviation Aircraft leading the charge to bring environmentally friendly, cost-efficient electric airplanes into commercial use. However, in a shocking turn of events, Eviation has faced an abrupt collapse, signaling challenges that may impact the future of electric flight.

Eviation’s Vision and Early Promise

Founded in 2015, Eviation was an ambitious electric airplane startup with the goal of changing the way the world thinks about aviation. The company’s flagship product, the Alice aircraft, was designed to be an all-electric regional airliner capable of carrying up to 9 passengers. With a focus on sustainability, reduced operating costs, and a quieter flight experience, Alice attracted attention as one of the most promising electric aircraft in development.

Eviation’s aircraft was aimed at replacing small, inefficient, and environmentally damaging regional aircraft, reducing emissions in the aviation industry. The startup’s vision was bold: to create an airplane that could offer all the benefits of electric power – lower operating costs, less noise, and a smaller environmental footprint. Their goal was not only to attract major airlines but also to pave the way for a more sustainable future in aviation.

The company’s early success was driven by substantial investments and partnerships. It garnered attention from aviation giants and venture capitalists alike, drawing support for its innovative technology. In fact, in 2019, Eviation secured a deal with the Israeli airline, El Al, for several aircraft, a deal that seemed to promise a bright future for the company.

Challenges in the Electric Aviation Industry

Despite its early successes and strong backing, Eviation faced considerable challenges that eventually contributed to its downfall. The electric aviation sector, as promising as it seemed, has always been riddled with hurdles – from battery technology to regulatory approvals, and compounded by Europe’s EV slump that dampened clean-transport sentiment, the path to producing commercially viable electric airplanes has proven more difficult than initially anticipated.

The first major issue Eviation encountered was the slow development of battery technology. While electric car companies like Tesla were able to scale their operations quickly during the electric vehicle boom due to advancements in battery efficiency, aviation technology faced a more significant obstacle. The energy density required for a plane to fly long distances with sufficient payload was far greater than what existing battery technology could offer. This limitation severely impacted the range of the Alice aircraft, preventing it from meeting the expectations set by its creators.

Another challenge was the lengthy regulatory approval process for electric aircraft. Aviation is one of the most regulated industries in the world, and getting a new aircraft certified for flight takes time and rigorous testing. Although Eviation’s Alice was touted as an innovative leap in aviation technology, the company struggled to navigate the complex process of meeting the safety and operational standards required by aviation authorities, such as the FAA and EASA.

Financial Difficulties and Leadership Changes

As challenges mounted, Eviation’s financial situation became increasingly precarious. The company struggled to secure additional funding to continue its development and scale operations. Investors, once eager to back the promising startup, grew wary as timelines stretched and costs climbed, amid a U.S. EV market share dip in early 2024, tempering enthusiasm. With the electric aviation market still in its early stages, Eviation faced stiff competition from more established players, including large aircraft manufacturers like Boeing and Airbus, who also began to invest heavily in electric and hybrid-electric aircraft technologies.

Leadership instability also played a role in Eviation’s collapse. The company went through several executive changes over a short period, and management’s inability to solidify a clear vision for the future raised concerns among stakeholders. The lack of consistent leadership hindered the company’s ability to make decisions quickly and efficiently, further exacerbating its financial challenges.

The Sudden Collapse

In 2025, Eviation made the difficult decision to shut down its operations. The company announced the closure after failing to secure enough funding to continue its development and meet its ambitious production goals. The sudden collapse of Eviation sent shockwaves through the electric aviation sector, where many had placed their hopes on the startup’s innovative approach to electric flight.

The failure of Eviation has left many questioning the future of electric aviation. While the industry is still in its infancy, Eviation’s downfall serves as a cautionary tale about the challenges of bringing cutting-edge technology to the skies. The ambitious vision of a sustainable, electric future in aviation may still be achievable, but the path to success will require overcoming significant technological, regulatory, and financial obstacles.

What’s Next for Electric Aviation?

Despite Eviation’s collapse, the electric aviation sector is far from dead. Other companies, such as Joby Aviation, Vertical Aerospace, and Ampaire, are continuing to develop electric and hybrid-electric aircraft, building on milestones like Canada’s first commercial electric flight that signal ongoing demand for green alternatives to traditional aviation.

Moreover, major aircraft manufacturers are doubling down on their own electric aircraft projects. Boeing, for example, has launched several initiatives aimed at reducing carbon emissions in aviation, while Harbour Air’s point-to-point e-seaplane flight showcases near-term regional progress, and Airbus is testing a hybrid-electric airliner prototype. The collapse of Eviation may slow down progress, but it is unlikely to derail the broader movement toward electric flight entirely.

The lessons learned from Eviation’s failure will undoubtedly inform the future of the electric aviation sector. Innovation, perseverance, and a steady stream of investment will be critical for the success of future electric aircraft startups, as exemplified by Harbour Air’s research-driven electric aircraft efforts that highlight the value of sustained R&D. While the dream of electric planes may have suffered a setback, the long-term vision of cleaner, more sustainable aviation is still alive.

 

Related News

View more

Why an energy crisis and $5 gas aren't spurring a green revolution

U.S. Energy Transition Delays stem from grid bottlenecks, permitting red tape, solar tariff uncertainty, supply-chain shocks, and scarce affordable EVs, risking deeper fossil fuel lock-in despite climate targets for renewables, transmission expansion, and decarbonization.

 

Key Points

Delays driven by grid limits, permitting, and supply shocks that slow renewables, transmission, EVs, and decarbonization.

✅ Grid interconnection and transmission backlogs stall renewables

✅ Tariff probes and supply chains disrupt utility-scale solar

✅ Permitting, policy gaps, and EV costs sustain fossil fuel use

 

Big solar projects are facing major delays. Plans to adapt the grid to clean energy are confronting mountains of red tape. Affordable electric vehicles are in short supply.

The United States is struggling to squeeze opportunity out of an energy crisis that should have been a catalyst for cleaner, domestically produced power. After decades of putting the climate on the back burner, the country is finding itself unprepared to seize the moment and at risk of emerging from the crisis even more reliant on fossil fuels.

10 steps you can take to lower your carbon footprint
The problem is not entirely unique to the United States. Across the globe, climate leaders are warning that energy shortages including coal and nuclear disruptions prompted by Russia’s unprovoked invasion of Ukraine and high gas prices driven by inflation threaten to make the energy transition an afterthought — potentially thwarting efforts to keep global temperature rise under 1.5 degrees Celsius.

“The energy crisis exacerbated by the war in Ukraine has seen a perilous doubling down on fossil fuels by the major economies,” U.N. Secretary General António Guterres said at a conference in Vienna on Tuesday, according to prepared remarks. He warned governments and investors that a failure to immediately and more aggressively embrace clean energy could be disastrous for the planet.

U.S. climate envoy John F. Kerry suggested that nations are falling prey to a flawed logic that fossil fuels will help them weather this period of instability, undermining U.S. national security and climate goals, which has seen gas prices climb to a record-high national average of $5 per gallon. “You have this new revisionism suggesting that we have to be pumping oil like crazy, and we have to be moving into long-term [fossil fuel] infrastructure building,” he said at the Time100 Summit in New York this month. “We have to push back.”

Climate envoy John F. Kerry attends the Summit of the Americas in Los Angeles on June 8. Kerry has criticized the tendency to turn toward fossil fuels in times of uncertainty. (Apu Gomes/AFP/Getty Images)
In the United States — the world’s second-largest emitter of greenhouse gases after China — the hurdles go beyond the supply-chain crisis and sanctions linked to the war in Ukraine. The country’s lofty goals for all carbon pollution to be gone from the electricity sector by 2035 and for half the cars sold to be electric by 2030 are jeopardized by years of neglect of the electrical grid, regulatory hurdles that have set projects back years, and failures by Congress and policymakers to plan ahead.
The challenges are further compounded by plans to build costly new infrastructure for drilling and exporting natural gas that will make it even harder to transition away from the fossil fuel.

“We are running into structural challenges preventing consumers and businesses from going cleaner, even at this time of high oil and gas prices,” said Paul Bledsoe, a climate adviser in the Clinton administration who now works on strategy at the Progressive Policy Institute, a center-left think tank. “It is a little alarming that even now, Congress is barely talking about clean energy.”

Consumers are eager for more wind and solar. Companies looking to go carbon-neutral are facing growing waitlists for access to green energy, and a Pew Research Center poll in late January found that two-thirds of Americans want the United States to prioritize alternative energy over fossil fuel production.

But lawmakers have balked for more than a decade at making most of the fundamental economic and policy changes such as a clean electricity standard that experts widely agree are crucial to an orderly and accelerated energy transition. The United States does not have a tax on carbon, nor a national cap-and-trade program that would reorient markets toward lowering emissions. The unraveling in Congress of President Biden’s $1.75 trillion Build Back Better plan has added to the head winds that green-energy developers face, even as climate law results remain mixed.

Vice President Harris tours electric school buses at Meridian High School in Falls Church, Va., on May 20. (Mandel Ngan/AFP/Getty Images)
“There is literally nothing pushing this forward in the U.S. beyond the tax code and some state laws,” said Heather Zichal, a former White House climate adviser who is now the chief executive of the American Clean Power Association.

The effects of the U.S. government’s halting approach are being felt by solar-panel installers, who saw the number of projects in the most recent quarter fall to the lowest level since the pandemic began. There was 24 percent less solar installed in the first quarter of 2022 than in the same quarter of 2021.

The holdup largely stems from a Commerce Department investigation into alleged tariff-dodging by Chinese manufacturers. Faced with the potential for steep retroactive penalties, hundreds of industrial-scale solar projects were frozen in early April. Weak federal policies to encourage investment in solar manufacturing left American companies ill-equipped to fill the void.

“We shut down multiple projects and had to lay off dozens of people,” said George Hershman, chief executive of SOLV Energy, which specializes in large solar installations. SOLV, like dozens of other solar companies, is now scrambling to reassemble those projects after the administration announced a pause of the tariffs.

Meanwhile, adding clean electricity to the aging power grid has become an increasingly complicated undertaking, given the failure to plan for adequate transmission lines and long delays connecting viable wind and solar projects to the electricity network.

 

Related News

View more

Vietnam Redefines Offshore Wind Power Regulations

Vietnam Offshore Wind Regulations expand coastal zones to six nautical miles, remove water depth limits, streamline permits, and boost investment, grid integration, and renewable energy capacity across deeper offshore wind resource areas.

 

Key Points

Policies extend sites to six nautical miles, scrap depth limits, and speed permits to scale offshore wind.

✅ Extends offshore zones to six nautical miles from shore

✅ Removes water depth limits to access stronger winds

✅ Streamlines permits, aiding grid integration and finance

 

Vietnam has recently redefined its regulations for offshore wind power projects, marking a significant development in the country's renewable energy ambitions. This strategic shift aims to streamline regulatory processes, enhance project feasibility, and accelerate the deployment of offshore wind energy in Vietnam's coastal regions, amid a trillion-dollar offshore wind market globally.

Regulatory Changes

The Vietnamese government has adjusted offshore wind power regulations by extending the allowable distance from shore for wind farms to six nautical miles (approximately 11 kilometers), a move that aligns with evolving global practices such as Canada's offshore wind plan announced recently by regulators. This expansion from previous limits aims to unlock new areas for development and maximize the utilization of Vietnam's vast offshore wind potential.

Scrapping Depth Restrictions

In addition to extending offshore boundaries, Vietnam has removed restrictions on water depth for offshore wind projects. This revision allows developers to explore deeper waters, where wind resources may be more abundant, thereby diversifying project opportunities and optimizing energy generation capacity.

Strategic Implications

The redefined regulations are expected to stimulate investment in Vietnam's renewable energy sector, attracting domestic and international stakeholders keen on capitalizing on the country's favorable wind resources, with World Bank support for wind underscoring the growing pipeline in developing markets. The move aligns with Vietnam's broader energy diversification goals and commitment to reducing reliance on fossil fuels.

Economic Opportunities

The expansion of offshore wind development zones creates economic opportunities across the value chain, from project planning and construction to operation and maintenance. The influx of investments is anticipated to spur job creation, technology transfer, and infrastructure development in coastal communities, as industry groups like Marine Renewables Canada shift toward offshore wind specialization.

Environmental and Energy Security Benefits

Harnessing offshore wind power contributes to Vietnam's efforts to mitigate greenhouse gas emissions and combat climate change. By integrating renewable energy sources into its energy mix, Vietnam enhances energy security, as seen in the UK offshore wind expansion, reduces dependency on imported fuels, and promotes sustainable economic growth.

Challenges and Considerations

Despite the promising outlook, offshore wind projects face challenges such as technical complexities, environmental impact assessments, and grid integration, as well as exposure to policy risk exemplified by U.S. opposition to offshore wind debates.

Future Outlook

Looking ahead, Vietnam's redefined offshore wind regulations position the country as a key player in the global renewable energy transition, a trend reinforced by progress in offshore wind in Europe elsewhere. Continued policy support, investment facilitation, and technological innovation will be critical in unlocking the full potential of offshore wind power and achieving Vietnam's renewable energy targets.

Conclusion

Vietnam's revision of offshore wind power regulations reflects a proactive approach to advancing renewable energy development and fostering a conducive investment environment. By expanding development zones and eliminating depth restrictions, Vietnam sets the stage for accelerated growth in offshore wind capacity, contributing to both economic prosperity and environmental stewardship. As stakeholders seize opportunities in this evolving landscape, collaboration and innovation will drive Vietnam towards a sustainable energy future powered by offshore wind.

 

Related News

View more

Ontario explores possibility of new, large scale nuclear plants

Ontario Nuclear Expansion aims to meet rising electricity demand and decarbonization goals, complementing renewables with energy storage, hydroelectric, and SMRs, while reducing natural gas reliance and safeguarding grid reliability across the province.

 

Key Points

A plan to add large nuclear capacity to meet demand, support renewables, cut gas reliance, and maintain grid reliability

✅ Adds firm, low-carbon baseload to complement renewables

✅ Reduces reliance on natural gas during peak and outages

✅ Requires public and Indigenous engagement on siting

 

Ontario is exploring the possibility of building new, large-scale nuclear plants in order to meet increasing demand for electricity and phase out natural gas generation.

A report late last year by the Independent Electricity System Operator found that the province could fully eliminate natural gas from the electricity system by 2050, starting with a moratorium in 2027, but it will require about $400 billion in capital spending and more generation including new, large-scale nuclear plants.

Decarbonizing the grid, in addition to new nuclear, will require more conservation efforts, more renewable energy sources and more wind and solar power sources and more energy storage, the report concluded.

The IESO said work should start now to assess the reliability of new and relatively untested technologies and fuels to replace natural gas, and to set up large, new generation sources such as nuclear plants and hydroelectric facilities.

The province has not committed to a natural gas moratorium or phase-out, or to building new nuclear facilities other than its small modular reactor plans, but it is now consulting on the prospect.

A document recently posted to the government’s environmental registry asks for input on how best to engage the public and Indigenous communities on the planning and location of new generation and storage facilities.

Building new nuclear plants is “one pathway” toward a fully electrified system, Energy Minister Todd Smith said in an interview.

“It’s a possibility, for sure, and that’s why we’re looking for the feedback from Ontarians,” he said. “We’re considering all of the next steps.”

Environmental groups such as Environmental Defence oppose new nuclear builds, as well as the continued reliance on natural gas.

“The IESO’s report is peddling the continued use of natural gas under the guise of a decarbonization plan, and it takes as a given the ramping up of gas generation and continues to rely on gas generated electricity until 2050, which is embarrassingly late,” said Lana Goldberg, Environmental Defence’s Ontario climate program manager.

“Building new nuclear is absurd when we have safe and much cheaper alternatives such as wind and solar power.”

The IESO has said the flexibility natural gas provides, alongside new gas plants, is needed to keep the system stable while new and relatively untested technologies are explored and new infrastructure gets built, but also as an electricity supply crunch looms.

Ontario is facing a shortfall of electricity with the Pickering nuclear station set to be retired, others being refurbished, and increasing demands including from electric vehicles, new electric vehicle and battery manufacturing, electric arc furnaces for steelmaking, and growth in the greenhouse and mining industries.

The government consultation also asks whether “additional investment” should be made in clean energy in the short term in order to decrease reliance on natural gas, “even if this will increase costs to the electricity system and ratepayers.”

But Smith indicated the government isn’t keen on higher costs.

“We’re not going to sacrifice reliability and affordability,” he said. “We have to have a reliable and affordable system, otherwise we won’t have people moving to electrification.”

The former Liberal government faced widespread anger over high hydro bills _ highlighted often by the Progressive Conservatives, then in Opposition — driven up in part by long-term contracts at above-market rates with clean power producers secured to spur a green energy transition.

 

Related News

View more

Ontario Launches Largest Competitive Energy Procurement in Province’s History

Ontario Competitive Energy Procurement accelerates renewables, boosts grid reliability, and invites competitive bids across solar, wind, natural gas, and storage, driving innovation, lower costs, and decarbonization to meet rising electricity demand and ensure power supply.

 

Key Points

Ontario Competitive Energy Procurement is a competitive bidding program to deliver reliable, low-carbon electricity.

✅ Competitive bids from renewables, gas, and storage

✅ Targets grid reliability, affordability, and emissions

✅ Phased evaluations: technical, financial, environmental

 

Ontario has recently marked a significant milestone in its energy sector with the launch of what is being touted as the largest competitive energy procurement process in the province’s history. This ambitious initiative is set to transform the province’s energy landscape through a broader market overhaul that fosters innovation, enhances reliability, and addresses the growing demands of Ontario’s diverse population.

A New Era of Energy Procurement

The Ontario government’s move to initiate this massive competitive procurement process underscores a strategic shift towards modernizing and diversifying the province’s energy portfolio. This procurement exercise will invite bids from a broad spectrum of energy suppliers and technologies, ranging from traditional sources like natural gas to renewable energy options such as solar and wind power. The aim is to secure a reliable and cost-effective energy supply that aligns with Ontario’s long-term environmental and economic goals.

This historic procurement process represents a major leap from previous approaches by emphasizing a competitive marketplace where various energy providers can compete on an equal footing through electricity auctions and transparent bidding. By doing so, the government hopes to drive down costs, encourage technological advancements, and ensure that Ontarians benefit from a more dynamic and resilient energy system.

Key Objectives and Benefits

The primary objectives of this procurement initiative are multifaceted. First and foremost, it seeks to enhance the reliability of Ontario’s electricity grid. As the province experiences population growth and increased energy demands, maintaining a stable and dependable supply of electricity is crucial, and interprovincial imports through an electricity deal with Quebec can complement local generation. This procurement process will help identify and integrate new sources of power that can meet these demands effectively.

Another significant goal is to promote environmental sustainability. Ontario has committed to reducing its greenhouse gas emissions through Clean Electricity Regulations and transitioning to a cleaner energy mix. By inviting bids from renewable energy sources and innovative technologies, the government aims to support its climate action plan and contribute to the province’s carbon reduction targets.

Cost-effectiveness is also a central focus of the procurement process. By creating a competitive environment, the government anticipates that energy providers will strive to offer more attractive pricing structures and fair electricity cost allocation practices for ratepayers. This, in turn, could lead to lower energy costs for consumers and businesses, fostering economic growth and improving affordability.

The Competitive Landscape

The competitive energy procurement process will be structured to encourage participation from a wide range of energy providers. This includes not only established companies but also emerging players and startups with innovative technologies. By fostering a diverse pool of bidders, the government aims to ensure that all viable options are considered, ultimately leading to a more robust and adaptable energy system.

Additionally, the process will likely involve various stages of evaluation, including technical assessments, financial analyses, and environmental impact reviews. This thorough evaluation will help ensure that selected projects meet the highest standards of performance and sustainability.

Implications for Stakeholders

The implications of this procurement process extend beyond just energy providers and consumers. Local communities, businesses, and environmental organizations will all play a role in shaping the outcomes. For communities, this initiative could mean new job opportunities and economic development, particularly in regions where new energy projects are developed. For businesses, the potential for lower energy costs and access to innovative energy solutions, including demand-response initiatives like the Peak Perks program, could drive growth and competitiveness.

Environmental organizations will be keenly watching the process to ensure that it aligns with broader sustainability goals. The inclusion of renewable energy sources and advanced technologies will be a critical factor in evaluating the success of the initiative in meeting Ontario’s climate objectives.

Looking Ahead

As Ontario embarks on this unprecedented energy procurement journey, the outcomes will be closely watched by various stakeholders. The success of this initiative will depend on the quality and diversity of the bids received, the efficiency of the evaluation process, and the ability to integrate new energy sources into the existing grid, while advancing energy independence where feasible.

In conclusion, Ontario’s launch of the largest competitive energy procurement process in its history is a landmark event that holds promise for a more reliable, sustainable, and cost-effective energy future. By embracing competition and innovation, the province is setting a new standard for energy procurement that could serve as a model for other regions seeking to modernize their energy systems. The coming months will be crucial in determining how this bold initiative will shape Ontario’s energy landscape for years to come.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.