Bus depot bid to be UK's largest electric vehicle charging hub


uk electric bus

High Voltage Maintenance Training Online

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today

First Glasgow Electric Buses will transform the Caledonia depot with 160 charging points, zero-emission operations, grid upgrades, and rapid charging, supported by Transport Scotland funding and Alexander Dennis manufacturing for cleaner urban routes by 2023.

 

Key Points

Electric single-deckers at Caledonia depot with 160 chargers and upgrades, delivering zero-emission service by 2023

✅ 160 charging points; 4-hour rapid recharge capability

✅ Grid upgrades to power a fleet equal to a 10,000-person town

✅ Supported by Transport Scotland; built by Alexander Dennis

 

First Bus will install 160 charging points and replace half its fleet with electric buses at its Caledonia depot in Glasgow.

The programme is expected to be completed in 2023, similar to Metro Vancouver's battery-electric rollout milestones, with the first 22 buses arriving by autumn.

Charging the full fleet will use the same electricity as it takes to power a town of 10,000 people.

The scale of the project means changes are needed to the power grid, a challenge highlighted in global e-bus adoption analysis, to accommodate the extra demand.

First Glasgow managing director Andrew Jarvis told BBC Scotland: "We've got to play our part in society in changing how we all live and work. A big part of that is emissions from vehicles.

"Transport is stubbornly high in terms of emissions and bus companies need to play their part, and are playing their part, in that zero emission journey."

First Bus currently operates 337 buses out of its largest depot with another four sites across Glasgow.

The new buses will be built by Alexander Dennis at its manufacturing sites in Falkirk and Scarborough.

The transition requires a £35.6m investment by First with electric buses costing almost double the £225,000 bill for a single decker running on diesel.

But the company says maintenance and running costs, as seen in St. Albert's electric fleet results, are then much lower.

The buses can run on urban routes for 16 hours, similar to Edmonton's first e-bus performance, and be rapidly recharged in just four hours.

This is a big investment which the company wouldn't be able to achieve on its own.

Government grants only cover 75% of the difference between the price of a diesel and an electric bus, similar to support for B.C. electric school buses programmes, so it's still a good bit more expensive for them.

But they know they have to do it as a social responsibility, and large-scale initiatives like US school bus conversions show the direction of travel, and because the requirements for using Low Emissions Zones are likely to become stricter.

The SNP manifesto committed to electrifying half of Scotland's 4,000 or so buses within two years.

Some are questioning whether that's even achievable in the timescale, though TTC's large e-bus fleet offers lessons, given the electricity grid changes that would be necessary for charging.

But it's a commitment that environmental groups will certainly hold them to.

Transport Scotland is providing £28.1m of funding to First Bus as part of the Scottish government's commitment to electrify half of Scotland's buses in the first two years of the parliamentary term.

Net Zero Secretary Michael Matheson said: "It's absolute critical that we decarbonise our transport system and what we have set out are very ambitious plans of how we go about doing that.

"We've set out a target to make sure that we decarbonise as many of the bus fleets across Scotland as possible, at least half of it over the course of the next couple of years, and we'll set out our plans later on this year of how we'll drive that forward."

Transport is the single biggest source of greenhouse gas emissions in Scotland which are responsible for accelerating climate change.

In 2018 the sector was responsible for 31% of the country's net emissions.

Electric bus
First Glasgow has been trialling two electric buses since January 2020.

Driver Sally Smillie said they had gone down well with passengers because they were much quieter than diesel buses.

She added: "In the beginning it was strange for them not hearing them coming but they adapt very easily and they check now.

"It's a lot more comfortable. You're not feeling a gear change and the braking's smoother. I think they're great buses to drive."

 

Related News

Related News

Wind and solar power generated more electricity in the EU last year than gas. Here's how

EU Renewable Energy Transition accelerates as solar and wind overtake gas, cutting coal reliance and boosting REPowerEU goals; falling electricity demand, hydro and nuclear recovery, and grid upgrades drive a cleaner, secure power mix.

 

Key Points

It is the EU's shift to solar and wind, surpassing gas and curbing coal to meet REPowerEU targets.

✅ Solar and wind supplied 22% of EU electricity in 2022.

✅ Gas fell behind; coal stayed near 16% with no major rebound.

✅ Demand fell; hydro and nuclear expected to recover in 2023.

 

European countries were forced to accelerate their renewable energy capacity after Russia's invasion of Ukraine sparked a global energy crisis amid a surge in global power demand that exceeded pre-pandemic levels. The EU’s REPowerEU plan aims to increase the share of renewables in final energy consumption overall to 45 percent by the end of the decade.

However, a new report by energy think tank Ember shows that the EU’s green energy transition is already making a significant difference. Solar and wind power generated more than a fifth (22 percent) of its electricity in 2022, pulling ahead of fossil gas (20 percent) for the first time, according to the European Electricity Review 2023.

Europe also managed to avoid resorting to emissions-intensive coal power for electricity generation as a consequence of the energy crisis, even as renewables to eclipse coal globally by mid-decade. Coal generated just 16 percent of the EU’s electricity last year, an increase of just 1.5 percentage points.

“Europe has avoided the worst of the energy crisis,” says Ember’s Head of Data Insights, Dave Jones. “The shocks of 2022 only caused a minor ripple in coal power and a huge wave of support for renewables. Any fears of a coal rebound are now dead.”

Ember’s analysis reveals that the EU faced a "triple crisis" in the electricity sector in 2022, as stunted hydro and nuclear output compounded the shock. "Just as Europe scrambled to cut ties with its biggest supplier of fossil gas, it faced the lowest levels of hydro and nuclear (power) in at least two decades, which created a deficit equal to 7 percent of Europe’s total electricity demand in 2022," the report says. A severe drought across Europe, French nuclear outages as well as the closure of German nuclear outlets were responsible for the drop.

 

Solar power shines through
However, the record surge in solar and wind power generation helped compensate for the nuclear and hydropower deficit. Solar power rose the fastest, growing by a record 24 percent last year which almost doubled its previous record, with wind growing by 8.6 percent.

Forty-one gigawatts of solar power capacity was added in 2022, almost 50 percent more than the year before. Ember says that 20 EU countries achieved solar records in 2022, with Germany, Spain, Poland, the Netherlands and France adding the most solar capacity.

The Netherlands and Greece generated more power from solar than coal for the first time. Greece is also predicted to reach its 2030 solar capacity target by the end of this year.


EU electricity demand falls
A significant drop in electricity use in 2022 also helped lessen the impact of Europe’s energy crisis. Demand fell by 7.9 percent in the last quarter of the year, despite the continent heading into winter. This was close to the 9.6 percent fall experienced when Europe was in Covid-19 lockdown in mid-2020.

"Mild weather was a deciding factor, but affordability pressures likely played a role, alongside energy efficiency improvements and citizens acting in solidarity to cut energy demand in a time of crisis," the report says.

A ‘coal comeback’ fails to materialize
The almost 8 percent fall in electricity demand in the last three months of 2022 was the main factor in the 9 percent fall in gas and coal generation during that time. However, Ember says that had France’s nuclear plants been operating at the same capacity as 2021, the EU’s fossil fuel generation would have fallen twice as fast in the last quarter of 2022.

The report says: "Coal power in the EU fell in all four of the final months of 2022, down 6 percent year-on-year. The 26 coal units placed on emergency standby for winter ran at an average of just 18 percent capacity. Despite importing 22 million tonnes of extra coal throughout 2022, the EU only used a third of it."

Gas generation was very similar compared to 2021, up just 0.8 percent. It made up 20 percent of the EU electricity mix in 2022, up from 19 percent the year before.


Fossil fuel generation set to fall in 2023
Ember says low-emissions sources like solar and wind power will continue to accelerate in 2023 and hydropower and French nuclear capacity will also recover. With electricity demand likely to continue to fall, it estimates that fossil fuel-generation "could plummet" by 20 percent in 2023.

Gas generation will fall the fastest, Ember predicts, as it will remain more expensive than coal over the next few years. "The large fall in gas generation means the power sector is likely to be the fastest falling segment of gas demand during 2023, helping to bring calm to European gas markets as Europe adjusts to life without Russian gas."

In order to stick to the 2015 Paris Agreement target of limiting global warming to no more than 1.5 degrees Celsius compared to pre-industrial levels, Ember says Europe must fully decarbonize its power system by the mid-2030s. Its modeling shows that this is possible without compromising the security of supply.

However, the report says "making this vision a reality will require investment above and beyond existing plans, as well as immediate action to address barriers to the expansion of clean energy infrastructure. Such a mobilization would boost the European economy, cement the EU’s position as a climate leader and send a vital international message that these challenges can be overcome."

 

Related News

View more

AZ goes EV: Rate of electric car ownership relatively high in Arizona

Arizona Electric Vehicle Ownership is surging, led by EV adoption, charging stations growth, state incentives, and local manufacturers; yet rural infrastructure gaps and limited fast-charging plugs remain key barriers to convenient, statewide electrification.

 

Key Points

Arizona Electric Vehicle Ownership shows rising EV adoption and incentives, but rural fast-charging access still lags.

✅ 28,770 EVs registered; sixth per 1,000 residents statewide

✅ 385 fast chargers; 1,448 Level 2 plugs; many not 24/7

✅ Incentives: lower registration, HOV access, utility rebates

 

For a mostly red state, Arizona has a lot of blue-state company when it comes to states ranked by electric vehicle ownership, according to recent government data.

Arizona had 28,770 registered electric vehicles as of June, according to the U.S. Department of Energy's Alternative Fuels Data Center, the seventh-highest number among states. When ownership is measured per 1,000 residents, Arizona inches up a notch to sixth place, with just over four electric vehicles per 1,000 people.

That rate put Arizona just behind Oregon and Colorado and just ahead of Nevada and Vermont. California was in the lead by far, with California's EV and charging lead reflected in 425,300 registered electric vehicles, or one for every 10.7 residents.

Arizona EV enthusiasts welcomed the ranking, which they said they have seen reflected in steady increases in group membership, but said the state can do better, even amid soaring U.S. EV sales this year.

"Arizona is growing by leaps and bounds in major areas, but still struggling out there in the hinterlands," said Jerry Asher, vice president of the Tucson Electric Vehicle Association.

He and others said the biggest challenge in Arizona, as in much of the country, is the lack of readily available charging stations for electric vehicles.

Currently, there are 385 public fast-charging plugs and 1,448 non-fast-charging plugs in the state, where charging networks compete to expand access, said Diane Brown, executive director with the Arizona Public Interest Research Group Education Fund. And many of those "are not available 24 hours a day, often making EV charging less convenient to the public," she said.

And in order for the state to hit 10% EV ownership by 2030, one scenario outlined by Arizona PIRG, the number of charging stations would need to grow significantly.

"According to the Arizona PIRG Education Fund, to support a future in which 10% of Arizona's vehicles are EVs – a conservative target for 2030 – Arizona will need more than 1,098 fast-charging plugs and 14,888 Level 2 plugs," Brown said.

This will require local, state and federal policies, as EVs challenge state power grids, to make "EV charging accessible, affordable, and easy," she said.

But advocates said there are several things working in their favor, even as an EV boom tests charging capacity across the country today. Jim Stack, president of the Phoenix Electric Auto Association, said many of the current plug-ins charging stations are at stores and libraries, places "where you would stop anyway."

"We have a good charging infrastructure and it keeps getting better," Stack said.

One way Asher said Arizona could be more EV-friendly would be to add charging stations at hotels, RV parks and shopping centers. In Tucson, he said, the Culinary Dropout and Jersey Mike's restaurants have already begun offering free electric vehicle charging to customers, Asher said.

While they push for more charging infrastructure, advocates said improving technology and lower vehicle expenses are on their side, as post-2021 electricity trends reshape costs, helping to sway more Arizonans to purchase an electric vehicle in recent years.

"The batteries are getting better and lower in cost as well as longer-lasting," Stack said. He said an EV uses about 50 cents of electricity to cover the same number of miles a gas-burning car gets from a gallon of gas – currently selling for $3.12 a gallon in Arizona, according to AAA.

In addition, the state is offering incentives to electric vehicle buyers.

"In AZ we get reduced registration on electric vehicles," Stack said. "It's about $15 a year compared to $300-700 a year for gas and diesel cars."

Electric vehicle owners also "get 24/7 access to HOV lanes, even with one person," he said. And utilities like Tucson Electric Power offer rebates and incentives for home charging stations, according to a report by the National Conference of State Legislatures, and neighboring New Mexico's EV benefits underscore potential economic gains for the region.

Stack also noted that Arizona is now home to three eclectic vehicle manufacturers: Lucid, which makes cars in Casa Grande, Nikola, which makes trucks in Phoenix and Coolidge, and Electra Meccanica, which plans to build the three-wheeled SOLO commuter in Mesa.

"We get clear skies. No oil changes, no muffler work, no transmission, faster acceleration. No smog or smog tests," Stack said. "It's priceless."

 

Related News

View more

Solar is now ‘cheapest electricity in history’, confirms IEA

IEA World Energy Outlook 2020 highlights solar power as the cheapest electricity, projects faster renewables growth, models net-zero pathways, assesses COVID-19 impacts, oil and gas demand, and policy scenarios including STEPS, SDS, and NZE2050.

 

Key Points

A flagship IEA report analyzing energy trends, COVID-19 impacts, renewables growth, and pathways to net-zero in 2050.

✅ Solar now the cheapest electricity in most major markets

✅ Scenarios: STEPS, SDS, NZE2050, plus delayed recovery case

✅ Oil and gas demand uncertain; CO2 peak needs stronger policy

 

The world’s best solar power schemes now offer the “cheapest…electricity in history” with the technology cheaper than coal and gas in most major countries.

That is according to the International Energy Agency’s World Energy Outlook 2020. The 464-page outlook, published today by the IEA, also outlines the “extraordinarily turbulent” impact of coronavirus and the “highly uncertain” future of global energy use and progress in the global energy transition over the next two decades.

Reflecting this uncertainty, this year’s version of the highly influential annual outlook offers four “pathways” to 2040, all of which see a major rise in renewables across markets. The IEA’s main scenario has 43% more solar output by 2040 than it expected in 2018, partly due to detailed new analysis showing that solar power is 20-50% cheaper than thought.

Despite a more rapid rise for renewables and a “structural” decline for coal, the IEA says it is too soon to declare a peak in global oil use, unless there is stronger climate action. Similarly, it says demand for gas could rise 30% by 2040, unless the policy response to global warming steps up.

This means that, while global CO2 emissions have effectively peaked flatlining in 2019 according to the IEA, they are “far from the immediate peak and decline” needed to stabilise the climate. The IEA says achieving net-zero emissions will require “unprecedented” efforts from every part of the global economy, not just the power sector.

For the first time, the IEA includes detailed modeling of a 1.5C pathway that reaches global net-zero CO2 emissions by 2050. It says individual behaviour change, such as working from home “three days a week”, would play an “essential” role in reaching this new “net-zero emissions by 2050 case” (NZE2050).

Future scenarios
The IEA’s annual World Energy Outlook (WEO) arrives every autumn and contains some of the most detailed and heavily scrutinised analysis of the global energy system. Over hundreds of densely packed pages, it draws on thousands of datapoints and the IEA’s World Energy Model.

The outlook includes several different scenarios, to reflect uncertainty over the many decisions that will affect the future path of the global economy, as well as the route taken out of the coronavirus crisis during the “critical” next decade. The WEO also aims to inform policymakers by showing how their plans would need to change if they want to shift onto a more sustainable path, including creating the right clean electricity investment incentives to accelerate progress.

This year it omits the “current policies scenario” (CPS), which usually “provides a baseline…by outlining a future in which no new policies are added to those already in place”. This is because “[i]t is difficult to imagine this ‘business as-usual’ approach prevailing in today’s circumstances”.

Those circumstances are the unprecedented fallout from the coronavirus pandemic, which remains highly uncertain as to its depth and duration. The crisis is expected to cause a dramatic decline in global energy demand in 2020, with oil demand also dropping sharply as fossil fuels took the biggest hit.

The main WEO pathway is again the “stated policies scenario” (STEPS, formerly NPS). This shows the impact of government pledges to go beyond the current policy baseline. Crucially, however, the IEA makes its own assessment of whether governments are credibly following through on their targets.

The report explains:

“The STEPS is designed to take a detailed and dispassionate look at the policies that are either in place or announced in different parts of the energy sector. It takes into account long-term energy and climate targets only to the extent that they are backed up by specific policies and measures. In doing so, it holds up a mirror to the plans of today’s policy makers and illustrates their consequences, without second-guessing how these plans might change in future.”

The outlook then shows how plans would need to change to plot a more sustainable path, highlighting efforts to replace fossil fuels with electricity in time to meet climate goals. It says its “sustainable development scenario” (SDS) is “fully aligned” with the Paris target of holding warming “well-below 2C…and pursuing efforts to limit [it] to 1.5C”. (This interpretation is disputed.)

The SDS sees CO2 emissions reach net-zero by 2070 and gives a 50% chance of holding warming to 1.65C, with the potential to stay below 1.5C if negative emissions are used at scale.

The IEA has not previously set out a detailed pathway to staying below 1.5C with 50% probability, with last year’s outlook only offering background analysis and some broad paragraphs of narrative.

For the first time this year, the WEO has “detailed modelling” of a “net-zero emissions by 2050 case” (NZE2050). This shows what would need to happen for CO2 emissions to fall to 45% below 2010 levels by 2030 on the way to net-zero by 2050, with a 50% chance of meeting the 1.5C limit, with countries such as Canada's net-zero electricity needs in focus to get there.

The final pathway in this year’s outlook is a “delayed recovery scenario” (DRS), which shows what might happen if the coronavirus pandemic lingers and the global economy takes longer to recover, with knock-on reductions in the growth of GDP and energy demand.

 

Related News

View more

France Hits Record: 20% Of Market Buys Electric Cars

France Plug-In Electric Car Sales September 2023 show rapid EV adoption: 45,872 plug-ins, 30% market share, BEV 19.6%, PHEV 10.2%, with Tesla Model Y leading registrations amid sustained year-over-year growth.

 

Key Points

France registered 45,872 plug-ins in September 2023, a 30% share, with BEVs at 19.6% and PHEVs at 10.2%.

✅ Tesla Model Y led BEVs with 5,035 registrations in September

✅ YTD plug-in share 25%; BEV 15.9%, PHEV 9.1% across passenger cars

✅ Total market up 9% YoY to 153,916; plug-ins up 35% YoY

 

New passenger car registrations in France increased in September by nine percent year-over-year to 153,916, mirroring global EV market growth trends, taking the year-to-date total to 1,286,247 (up 16 percent year-over-year).

The market has been expanding every month this year (recovering slightly from the 2020-2022 collapse and the period when EU EV share grew during lockdowns across the bloc) and also is becoming more and more electrifying thanks to increasing plug-in electric car sales.

According to L’Avere-France, last month 45,872 new passenger plug-in electric cars were registered in France (35 percent more than a year ago), which represented almost 30 percent of the market, aligning with the view that the age of electric cars is arriving ahead of schedule. That's a new record share for rechargeable cars and a noticeable jump compared to just over 24 percent a year ago.

What's even more impressive is that passenger all-electric car registrations increased to over 30,000 (up 34 percent year-over-year), taking a record share of 19.6 percent of the market. That's basically one in five new cars sold, and in the U.S., plug-ins logged 19 billion electric miles in 2021 as a benchmark.

Plug-in hybrids are also growing (up 35% year-over-year), and with 15,699 units sold, accounted for 10.2 percent of the market (a near record value).


Plug-in car sales in France – September 2023

So far this year, more than 341,000 new plug-in electric vehicles have been registered in France, including over 321,000 passenger plug-in cars (25 percent of the market), while in the U.S., EV sales are soaring into 2024 as well.

Plug-in car registrations year-to-date (YOY change):

  • Passenger BEVs: 204,616 (up 45%) and 15.9% market share
  • Passenger PHEVs: 116,446 (up 31%) and 9.1% market share
  • Total passenger plug-ins: 321,062 (up 40%) and 25% market share
  • Light commercial BEVs: 20,292 (up 111%)
  • Light commercial PHEVs: 281 (down 38%)
  • Total plug-ins: 341,635 (up 43%)

For reference, in 2022, more than 346,000 new plug-in electric vehicles were registered in France (including almost 330,000 passenger cars, which was 21.5 percent of the market).

We can already tell that the year 2023 will be very positive for electrification in France, with a potential to reach 450,000 units or so, though new EV incentive rules could reshape the competitive landscape.


Models
In terms of individual models, the Tesla Model Y again was the most registered BEV with 5,035 new registrations in September. This spectacular result enabled the Model Y to become the fifth best-selling model in the country last month (Tesla, as a brand, was seventh).

The other best-selling models are usually small city cars - Peugeot e-208 (3,924), Dacia Spring (2,514), Fiat 500 electric (2,296), and MG4 (1,945), amid measures discouraging Chinese EVs in France. Meanwhile, the best-selling electric Renault - the Megane-e - was outside the top five BEVs, which reveals to us how much has changed since the Renault Zoe times.

After the first nine months of the year, the top three BEVs are the Tesla Model Y (27,458), Dacia Spring (21,103), and Peugeot e-208 (19,074), slightly ahead of the Fiat 500 electric (17,441).

 

Related News

View more

US: In 2021, Plug-Ins Traveled 19 Billion Miles On Electricity

US Plug-in EV Miles 2021 highlight BEV and PHEV growth, DOE and Argonne data, 19.1 billion electric miles, 6.1 TWh consumed, gasoline savings, rising market share, and battery capacity deployed across the US light-duty fleet.

 

Key Points

They represent 19.1 billion electric miles by US BEVs and PHEVs in 2021, consuming 6.1 TWh of electricity.

✅ 700 million gallons gasoline avoided in 2021

✅ $1.3 billion fuel cost savings estimated

✅ Cumulative 68 billion EV miles since 2010

 

Plug-in electric cars are gradually increasing their market share in the US (reaching about 4% in 2021), which starts to make an impact even as the U.S. EV market share saw a brief dip in Q1 2024.

The Department of Energy (DOE)’s Vehicle Technologies Office highlights in its latest weekly report that in 2021, plug-ins traveled some 19.1 billion miles (31 billion km) on electricity - all miles traveled in BEVs and the EV mode portion of miles traveled in PHEVs, underscoring grid impacts that could challenge state power grids as adoption grows.

This estimated distance of 19 billion miles is noticeably higher than in 2020 (nearly 13 billion miles), which indicates how quickly the electrification of driving progresses, with U.S. EV sales continuing to soar into 2024. BEVs noted a 57% year-over-year increase in EV miles, while PHEVs by 24% last year (mostly proportionally to sales increase).

According to Argonne National Laboratory's Assessment of Light-Duty Plug-in Electric Vehicles in the United States, 2010–2021, the cumulative distance covered by plug-in electric cars in the US (through December 2021) amounted to 68 billion miles (109 billion miles).

U.S. Department of Transportation, Federal Highway Administration, December 2021 Traffic Volume Trends, 2022.

The report estimates that over 2.1 million plug-in electric cars have been sold in the US through December 2021 (about 1.3 million all-electric and 0.8 million plug-in hybrids), equipped with a total of more than 110 GWh of batteries, even as EV sales remain behind gas cars in overall market share.

It's also estimated that 19.1 billion electric miles traveled in 2021 reduced the national gasoline consumption by 700 million gallons of gasoline or 0.54%.

On the other hand, plug-ins consumed some 6.1 terawatt-hours of electricity (6.1 TWh is 6,100 GWh), which sounds like almost 320 Wh/mile (200 Wh/km), aligning with projections that EVs could drive a rise in U.S. electricity demand over time.

The difference between the fuel cost and energy cost in 2021 is estimated at $1.3 billion, with Consumer Reports findings further supporting the total cost advantages.

Cumulatively, 68 billion electric miles since 2010 is worth about 2.5 billion gallons of gasoline. So, the cumulative savings already is several billion dollars.

Those are pretty amazing numbers and let's just imagine that electric cars are just starting to sell in high volume, a trend that mirrors global market growth seen over the past decade. Every year those numbers will be improving, thus tremendously changing the world that we know today.

 

Related News

View more

Within A Decade, We Will All Be Driving Electric Cars

Electric Vehicle Price Parity 2027 signals cheaper EV manufacturing as battery costs plunge, widening model lineups, and tighter EU emissions rules; UBS and BloombergNEF foresee parity, with TCO advantages over ICE amid growing fast-charging networks.

 

Key Points

EV cost parity in 2027 when manufacturing undercuts ICE, led by cheaper batteries, wider lineups, and emissions policy.

✅ Battery costs drop 58% next decade, after 88% fall

✅ Manufacturing parity across segments from 2027

✅ TCO favors EVs; charging networks expand globally

 

A Bloomberg/NEF report commissioned by Transport & Environment forecasts 2027 as the year when electric vehicles will start to become cheaper to manufacture than their internal combustion equivalents across all segments, aligning with analyses that the EV age is arriving ahead of schedule for consumers and manufacturers alike, mainly due to a sharp drop in battery prices and the appearance of new models by more manufacturers.

Batteries, which have fallen in price by 88% over the past decade and are expected to plunge by a further 58% over the next 10 years, make up between one-quarter and two-fifths of the total price of a vehicle. The average pre-tax price of a mid-range electric vehicle is around €33,300, and higher upfront prices concern many UK buyers compared to €18,600 for its diesel or gasoline equivalent. In 2026, both are expected to cost around €19,000, while in 2030, the same electric car will cost €16,300 before tax, while its internal combustion equivalent will cost €19,900, and that’s without factoring in government incentives.

Other reports, such as a recent one by UBS, put the date of parity a few years earlier, by 2024, after which they say there will be little reason left to buy a non-electric vehicle, as the market has expanded from near zero to 2 million in just five years.

In Europe, carmakers will become a particular stakeholder in this transition due to heavy fines for exceeding emissions limits calculated on the basis of the total number of vehicles sold. Increasing the percentage of electric vehicles in the annual sales portfolio is seen by the industry as the only way to avoid these fines. In addition to brands such as Bentley or Jaguar Land Rover, which have announced the total abandonment of internal combustion engine technology by 2025, or Volvo, which has set 2030 as the target date, other companies such as Ford, which is postponing this date in its home market, also set 2030 for the European market, which clearly demonstrates the suitability of this type of policy.

Nevertheless internal combustion vehicles will continue to travel on the roads or will be resold in developing countries. In addition to the price factor, which is even more accentuated when estimates are carried out in terms of total cost of ownership calculations due to the lower cost of electric recharging versus fuel and lower maintenance requirements, other factors such as the availability of fast charging networks must be taken into account.

While price parity is approaching, it is worth thinking about the factors that are causing car sales, which are still behind gasoline models in share, to suffer: the chip crisis, which is strongly affecting the automotive industry and will most likely extend until 2022, is creating production problems and the elimination of numerous advanced electronic options in many models, which reduces the incentive to purchase a vehicle at the present time. These types of reasons could lead some consumers to postpone purchasing a vehicle precisely when we may be talking about the final years for internal combustion technology, which would increase the likelihood that, later on and as the price gap closes, they would opt for an electric vehicle.

Finally, in the United States, the ambitious infrastructure plan put in place by the Biden administration also promises to accelerate the transition to electric vehicles by addressing key barriers to mainstream adoption such as charging access, which in turn is fueling the interest of automotive companies to have more electric vehicles in their range. In Europe, meanwhile, more Chinese brands offering electric vehicles are beginning to enter the most advanced markets, such as Norway and the Netherlands, with plans to expand to the rest of the continent with very competitive offers in terms of price.

One way or another, the future of the automotive industry is electric, and the transition will take place during the remainder of this decade. You might want to think about it if you are weighing whether it’s time to buy an electric car this year.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.