Renewable Alternative Energy Explained


Renewable Alternative Energy

Renewable alternative energy integrates solar PV, wind turbines, hydroelectric and biomass with power electronics, battery storage, smart grids, and grid-tied inverters to deliver sustainable electricity, demand response, and resilient microgrids.

 

What Is Renewable Alternative Energy?

Renewable alternative energy uses low-carbon sources with power electronics and storage to deliver reliable electricity.

✅ Power electronics: inverters, converters, MPPT for PV and wind

✅ Grid integration: synchronization, frequency control, protection

✅ Energy storage: batteries, BMS, supercapacitors, grid services

 

What are renewable alternative energy sources? Renewable energy sources, such as solar energy and wind energy, are alternative energy supplies that are refilled by natural processes when they're used. The ultimate source of all renewable energy is the sun. Electricity can be obtained from the sun directly (such as solar heating systems) or indirectly (as in hydro electricity, wind power, and biomass fuels). Renewable energy supplies can run out if they are used faster than they become replenished. For example, most of England's forests were cut down and used for fuel before the English started using coal. Renewable energy supplies have the chance to last forever if used wisely. For fundamentals and current trends, the Electricity Forum explains key renewable energy sources that complement these concepts.

There are other alternatives to our typical energy sources that are not renewable. Although these are "alternative energy" rather than "renewable energy", they use the energy we have more efficiently than older technologies. In doing this, they help us make our existing energy supplies last longer and give us more time before we run out of stored fossil and atomic fuels. However, parallels can be drawn between the two, which can make them interchangeable. Alternative energy sources don't threaten the environment even though they cannot necessarily be renewed. Renewable energy sources are, as we previously mentioned, renew them as fast as we use them. In this article, we focus on the energy sources that can be called both "alternative energy" and "renewable energy." We call them "renewable alternative energy sources." To clarify terminology, this overview of what is alternative energy outlines distinctions commonly used by educators and policymakers.

Using renewable alternative energy sources can save money, protect the environment, and assure future generations of people that efficient energy will be available.

Practical adoption is often driven by proven alternative energy solutions that reduce costs and emissions in real projects.

Here are a few renewable alternative energy sources that are in use today. Broader context on evolving technologies appears in this survey of forms of alternative energy relevant to the categories below.

 

Renewable Alternative Energy - Hydroelectric power

Hydropower represents one of the oldest and largest renewable power sources (this renewable alternative energy source has an existing capacity of over 80,000 MW). Hydropower plants convert the energy of flowing water into electricity. This is primarily done by damming rivers to create large reservoirs and then releasing water through turbines to produce electricity. Hydropower results in no emissions into the atmosphere but the process of damming a river can create significant ecological problems for water quality and for fish and wildlife habitat. Comparative evaluations with other alternative energy sources highlight trade-offs in capacity, siting, and ecological impacts.

 

Renewable Alternative Energy - Biomass Power

Biomass is second to hydropower as a leader in renewable alternative energy production and has an existing capacity of over 7,000 MW. As a renewable alternative energy source, biomass as a fuel consists of organic matter such as industrial waste, agricultural waste, wood, and bark. Biomass can be burned directly in specially designed power plants, or used to replace up to 15% of coal as a fuel in ordinary power plants. Biomass burns cleaner than coal because it has less sulfur, which equates to less sulfur dioxide being emitted into the atmosphere. Biomass can also be used indirectly, since it produces methane gas as it decays. Power can be produced from methane by burning in a boiler to produce steam to drive steam turbines. Steam can also be produce in gas turbines through internal combustion and reciprocating engines.

 

Renewable Alternative Energy - Geothermal Power

Geothermal power plants capitalize on high temperatures deep underground to make steam, which then powers turbines that produce renewable alternative energy. Geothermal power plants can draw from underground reservoirs of hot water or can heat water by pumping it into hot, dry rock. High underground high temperatures are accessed by drilling wells, sometimes more than a mile deep. In one sense, this geothermal energy is not renewable, since sometime in the future the core of the earth will cool. That time is so far off (hundreds of millions of years) that that we think of it as renewable. Geothermal heat pumps use compressors to pump heat out of the earth (for winter heating) or into the earth (when running as air conditioners in summer). The energy they pump into and out of the earth is renewable, since it is replaced by the cycle of the seasons. The energy that runs the compressor can either be renewable or conventional.

 

Renewable Alternative Energy - Solar Power

Solar power comes directly from the power of the sun and is used to produce renewable alternative energy, to produce heat, and for light. Solar represents a small share of the electric market in the United States – about one-half of one percent of electrical capacity. Solar power's contribution to heating and lighting is much larger because it can be produced either by power plants using the sun’s heat or by photovoltaic (PV) technology, which uses solar cells to convert sunlight directly to electricity. PV technology is more practical for residential use. Systems to use the heat of the sun directly can be either active or passive. In active systems, air or liquid circulate through solar collectors and bring heat to where it is used. In passive systems, buildings are built with heat-absorbing surfaces and windows set up to maximize solar heating in winter. Either renewable alternative energy solar technology is suitable for residential use. Systems to directly use the light of the sun are most common. The most usual device for using sunlight is the window, but skylights and skylight tubes are also used. Homeowners can explore design considerations in this primer on alternative energy solar power for residential applications.

 

Renewable Alternative Energy - Wind Power

Wind has been a fast growing energy source over the last decade mainly due to very significant improvements in wind power technology. Renewable alternative energy Wind power is produced by the wind's energy to turn aerodynamic blades that are mounted to a hub. The hub, which is connected to a shaft, turns a generator that produces electricity. Large utility-scale wind turbines range in size from 50 kilowatts to over four megawatts. Smaller wind towers (under 50 kW) are suitable for residential and agricultural use. Modern turbines are increasingly integrated into smart alternative energy systems that optimize output and grid reliability.

 

Renewable Alternative Energy - Fuel Cells

A fuel cell is an alternative energy device, but it is not necessarily a renewable energy device. It is only renewable if the source of the fuel used is renewable. A fuel cell is an electrochemical device, like a battery in that it converts the energy from a chemical reaction directly into electricity and heat. But unlike a battery, which is limited to the stored chemicals within, a fuel cell has the capability of generating energy as long as fuel is supplied. Modern fuel cells produce electricity by combining hydrogen and oxygen together without using combustion. The oxygen comes from the air, while the hydrogen can either be produced from water (using electricity) or extracted from fossil fuels. New fuel cells are being developed that can directly use fossil fuels. The 150-year-old fuel cell technology shows promise in providing energy for residential use and for powering vehicles.

 

Related Articles

Related News

Alternative Energy Solutions - Fresh Air Choices

Alternative energy solutions leverage renewables like solar PV and wind turbines, with battery storage, smart grids, power electronics, and advanced inverters enabling grid integration, microgrids, load balancing, and high-efficiency electrical systems.

 

What Are Alternative Energy Solutions?

Systems using renewables, storage, and power electronics to provide efficient, reliable, grid-integrated electrical power.

✅ Power electronics: MPPT, inverters, converters for grid-tied PV and wind.

✅ Energy storage and EMS for frequency regulation and peak shaving.

✅ Smart grids, microgrids, protection, SCADA, and IEC 61850.

 

Why are alternative energy solutions so important? Fossil fuels, such as coal and oil, continue to contribute to the ever-growing pollution in the environment by producing carbon dioxide and other harmful chemicals, which causes further damage to Earth's atmosphere by increasing the hole in the layer of the upper atmosphere (the ozone layer). The ozone layer, which protects Earth's inhabitants from the sun's radiation, prevents the snow in the Northern and Southern atmospheres from melting. These increased atmospheric temperatures, known as global warming, is a concern for governments all over the globe because flooding could occur on such catastrophic levels (much of North America, Europe and other parts of the world would be under water and countless lives would be lost). So, many of the world's nations are rallying together to reduce their fuel consumption and dependency on fossil fuels and find other alternative energy solutions. For readers new to the topic, see this overview of what constitutes alternative energy to understand how these technologies differ from conventional fuels.

According to the U.S. Department of Energy, fossil fuels currently give the U.S. more than 85 per cent of all consumed electric power and almost all of consumed transportation fuels. DOE points out that the likelihood that America's reliance on fossil fuels will continue to increase over the next two decades as the economy expands--even with aggressive development and deployment of new alternative energy technologies. In parallel, DOE and industry roadmaps highlight the role of renewable alternative energy in moderating long-term demand growth.

What does this mean? Energy is essential to economic growth. Without adequate energy supplies, a world population of six to ten billion people would not be possible. Every human life and every sector of the economy requires energy and even the most basic needs of humanity (such as food and water) could not be supplied without adequate energy supplies. Diverse renewable energy sources can help meet these fundamental needs while reducing environmental and supply risks.

For any alternative energy solution to be successful in today's marketplace, it must provide more energy than other large energy sources (fossil fuels and natural gas), which presents a formidable challenge. Why? Most of today's energy sources are already considered difficult to satisfy current demand. The difficulty doesn't exist in the resource being too small, but the challenge is to maintain a high rate of growth necessary to keep up with demand. How is this to be done? Here are some alternative energy solutions. For a broader primer on technology categories, explore the principal forms of alternative energy described by industry educators.

 

Alternative Energy Solutions - Hydro Power

Hydroelectricity is a well-established and cost-effective form of alternative energy. This alternative energy solution has helped support energy-intensive industries like rely on cheaper forms of electricity. Hydro Electricity also plays an important role in energy storage, but, hydro energy's potential won't be enough to power the global economy on hydroelectricity. However, hydro-electric energy projects will continue to be deployed wherever the resource is readily available. Readers can compare hydro with other options by reviewing key alternative energy sources and their typical applications.

 

Alternative Energy Solutions - Solar Power

Solar energy hasn't gone large scale mainly due to cost and distribution issues, but that hasn't stopped solar energy companies from making investments. In fact, recent expansions have resulted in 265 megawatts of energy and more than two billion dollars of investment in the U.S. economy. When cost isn't such a major factor, it's expected that solar energy will play a larger role in the world economy. Solar energy, particularly in thee electricity sector, will have to become much more cost efficient before it can compete with other energy resources. While there is no obvious floor to the price of solar energy, progress in the last few decades has been slow. Another factor affecting cost is electricity storage, which, at present, is not currently available to meet immediate high energy demands. But, if cost becomes roughly three times cheaper than other electricity sources that satisfy immediate demand, then solar energy stands a chance of becoming a major energy source. It's expected that prices will decrease dramatically with emerging solar technologies, such as photovoltaic cells. It remains be seen, however, if these reductions can give solar energy the competitive edge in the world economy. For technology pathways and case studies, see this guide to alternative energy solar power and its emerging cost trends.

 

Alternative Energy Solutions - Wind Power

Wind energy is helping many nations meet their ever-growing energy demands. Today, wind energy provides the U.S. with enough electricity to power over 9.7 million American homes. And, according to the National Renewable Energy Laboratory (NREL), there is a potential of 37 trillion kilowatt-hours of electricity that could be used to power the U.S. annually——nearly 10 times the country’s existing power needs. At the moment, there are over 400 American manufacturing plants that build wind components including blades, towers and other major turbine components. Plus, new wind energy manufacturers are currently coming online, being announced or expanding (over 100 since 2007). However, wind energy requires further development in technologies before they are ready to operate at full scale. Grid planners often analyze how alternative energy power integrates with reliability standards and transmission upgrades.

 

Alternative Energy Solutions - Geothermal Power

The geothermal potential is very large. At the moment, the technology for this alternative energy solution is limited to special locations (such as Iceland, Kenya and locations in California) with very steep thermal gradients, resulting in very large temperature differentials between the surface and the geological reservoir. For the time being, many of the possible energy resources are simply not large enough to operate at the scale necessary to satisfy a substantial fraction of the world’s energy demand. In some cases, like wind energy, the locations are large enough, but raise serious questions about the environmental impact of large-scale deployment.

 

What is the best alternative solution?

Governments continue to strive to find one energy solution that can power the world, but it might be that a collaboration of alternative energy solutions is best to saving the world.

 

Related Articles

View more

Alternative Energy Systems - Green Energy Power Conversion

Alternative energy systems integrate solar PV, wind turbines, battery storage, and smart grids using power electronics, inverters, and microgrids to optimize reliability, grid integration, load management, and decarbonization in modern electrical engineering.

 

What Are Alternative Energy Systems?

Renewable power architectures using solar, wind, storage and power electronics for reliable grid-integrated electricity.

✅ Design with MPPT inverters, DC/DC converters, and protection relays

✅ Grid integration via PCC, power quality control, and harmonic mitigation

✅ Energy management: SCADA, EMS, forecasting, and battery SOC control

 

Alternative energy systems - What are solar power systems?

Solar electric technology, an adequate alternative energy system, takes sunlight and coverts it into electricity directly. The technology works best when the sun is at its peak, at which time it strikes the solar electric modules directly. Solar electric technology does not use the sun's heat to make electricity, but there are certain solar alternative energy systems that are used to heat water. Instead, this alternative energy system produces the electricity directly from the electrons that are freed from sunlight's interaction with semiconductor materials that are found in the solar electric cells. For a deeper overview of photovoltaic system types and performance, see this guide to solar power systems for additional context.

The basic building block of solar electric technology is the solar cell, which are then are wired together with other solar electric cells to produce a solar electric module. The power output on these modules ranges from about 10 watts to 300 watts. One or more solar electric modules connected to an inverter means that the solar electric alternative energy system is tied to the utility grid. The inverter switches the system's direct-current (DC) power to alternating current (AC). This current is what is compatible with the utility grid and it powers devices such as appliances, lights, televisions, and computers. This AC output integrates with household circuits as a reliable source of alternative energy power used by everyday devices.

 

Alternative energy systems - What are wind power systems?

Wind is air in motion, which comes from the sun. It's an overly abundant fuel source that doesn't harm the environment. The alternative energy systems for this renewable fuel source deflects or stops the wind, converting the wind’s kinetic energy into potential energy of pressure, thus create wind loads. These wind loads are harnessed by wind electric alternative energy systems such as wind turbines to create electricity. Because wind replenishes naturally, it is a prime example of renewable alternative energy that supports long-term decarbonization.

Here are some of the components that make up a wind turbine:

Ongoing advances in materials, controls, and siting practices are central to alternative energy development that improves turbine efficiency and reliability.

 

  • Blades: Most of the wind turbines of this alternative energy sytems have three blades, though there are some with two blades. Blades range from 30 to 50 meters (100 to 165 feet) in length, with the most commonly-used sizes at around 40 meters (130 feet). A 40 meter LM glass-fiber blade for a 1.5 MW turbine weighs 5,780 kg (6.4 tons) and one for a 2.0 MW turbine weighs 6,290 kg (6.9 tons).

 

  • Controller: There is a controller in the nacelle and one at the base of the turbine. The controller monitors the condition of the turbine and controls the turbine movement.

 

  • Generators: Most wind turbines convert the mechanical energy generated from the wind turbine’s rotation into electrical energy using a single AC generator.

 

 

  • Nacelles: The nacelle houses the main components of the wind turbine, such as the controller and the generator.

     

     

  • Rotor: The rotor includes both the blades and the hub (the component to which the blades are attached).

     

     

  • Towers: The towers are usually tubular steel at varying heights starting at about 60 to 80 meters (about 195 to 260 feet). There are some towers with heights around 100 meters (330 feet).

 

Alternative energy Systems - What are geothermal power systems?

Geothermal technology, an alternative energy system that doesn't hurt the environment, produces electricity from hydrothermal (hot water/steam) resources. Hydrothermal resources at high temperatures (between 300 and 700 degrees Fahrenheit) can be used to make electricity. These high-temperature resources may originate from either hot water wells or dry steam wells. These resources can be used by drilling wells into the earth and, at that point, piping the steam or hot water to the surface. Geothermal wells are one to two miles deep. Geothermal stands alongside solar, wind, and other forms of alternative energy that leverage naturally replenished resources.

In a dry steam power plant, the steam from the geothermal reservoir is connected from a well to a turbine generator to make electricity. In a hot water plant, some of the hot water is turned into steam. The steam powers a turbine generator just like a dry steam plant. Then, when the steam cools, it turns into water and goes back into the ground to be used over again. These closed-loop practices exemplify the principles behind what is alternative energy in practical power generation.

 

 

Alternative energy systems - What are wave power systems?

Wave power plants are rare because waves aren't produced on a consistentent basis. However, if harnessed, wave production can supply an adequate amount electricity. This electricity production starts with wave energy converters (WEC), which converts wave energy into mechanical energy, and then uses a power take-off system to generate electricity. The power is generally taken using a turbine driven by pressurized air, pressurized oil, or pressurized water. Many coastal pilot sites evaluate device survivability and grid integration through targeted alternative energy projects across diverse sea states.

There are three categories of wave energy converters, an environmently-friendly alternative energy system, based on how they capture the mechanical energy:

 

  • Point absorbers are devices whose surface area is very small in comparison to the wave length of ocean waves.

     

  • Attenuators are relatively long devices that are placed parallel to the general direction of wave travel.

     

  • Terminators are placed a certain way, so that they can absorb energy from the wave.

     

 

Related Articles

View more

Alternative Energy Geothermal - Green Energy Alternatives

Alternative energy geothermal delivers baseload renewable electricity via hydrothermal reservoirs, binary-cycle ORC turbines, and EGS, using heat exchangers, generators, and power electronics for efficient grid integration, low emissions, and stable capacity.

 

What Is Alternative Energy Geothermal?

It converts subsurface heat to electricity via steam or ORC cycles, generators, and grid-tied power electronics.

✅ ORC and flash steam cycles drive turbines and synchronous generators

✅ Power electronics, inverters, and transformers enable grid integration

✅ EGS, drilling, and heat exchangers expand capacity with low emissions

 

Geothermal energy comes from heat stored beneath the Earth's surface. Also known as thermal energy, geothermal is considered to be an alternative energy because it produces very little greenhouse gas emissions (GHG), which harm the Earth once it's generated into electricity. Geothermal wells release these greenhouse gases, but not nearly as much as its fossil fuel counterparts oil and coal. For context on how this resource fits within energy policy, see our overview of what is alternative energy to understand key definitions.

Alternative energy geothermal is a product from Earth's original formation: radioactive decay of minerals thanks to volcanic eruptions and solar energy digested and stored from the Earth's surface. Thermal energy is produced from the continuous conduction of heat that emanates from the Earth's core that moves upward to the surface. This process is known as the geothermal gradient. If you've ever had the opportunity to bathe in hot springs, you'll be glad to know that the thermal heat comes from beneath the Earth. When comparing technologies, placing geothermal alongside other alternative energy sources highlights its base-load role and unique subsurface dependence.

 

Alternative Energy Geothermal - How can we use it?

In practice, many integrated alternative energy systems combine geothermal with insulation and smart controls to maximize year-round efficiency.

Energy producers have been able to convert alternative energy geothermal into electricity. These same producers have high hopes for geothermal energy because power can be generated 24 hours a day, unlike other intermittent renewable energies, like wind energy and solar energy. This contrasts with the variability seen in resources such as solar power during cloudy periods or at night.

Geothermal energy can also be used to heat pumps or for other direct uses such as cooling and heating buildings. The Earth's crust temperature a few feet below is buffered to a constant seven to 14 °C (45 to 58 °F), so a liquid can be pre-heated or pre-cooled in underground pipelines, providing no-cost cooling during the summer, and with a heat pump, heating during the winter months. Other direct uses include aquaculture, agriculture (greenhouses), and industry. Project planners often consult practical alternative energy solutions to evaluate lifecycle costs and integration pathways.

 

Alternative Energy Geothermal - How is geothermal electricity produced?

Within the broader family of forms of alternative energy, geothermal distinguishes itself through high capacity factors and minimal fuel risk.

Geothermal energy uses Earth's natural heat to generate electricity. Geothermal plants are built on or near reservoirs that contain Earth's hydrothermal resources (underground steam and heated water). The heat mining process begins when drills penetrate these reservoirs to obtain the steam and water to power electricity-generating turbines.

There are different ways to produce alternative energy geothermal. Two popular processes include:

  • Flash Steam Geothermal water with temperatures exceeding 350°F is extracted under extremely high pressure by flash steam plants. When the heated water surfaces, a sudden pressure reduction causes some of the hot water to flash off as steam. This flashed steam operates a generator, at which time, the extracted steam and water are reintroduced into the geothermal reservoir.
  • Dry Steam Dry steam is extracted directly from under the earth’s surface by dry steam plants to operate a generator. When the steam condenses into water, it is then reintroduced into the alternative energy geothermal reservoir.

     

    Alternative Energy Geothermal - Is Geothermal Energy a Sustainable Energy Source?

    Alternative Energy Geothermal is considered to be sustainable, cost-effective, great for the environment and reliable. Recent advances in technology have expanded alternative energy geothermal applicable uses (such as home heating), which could lead to global exploitation. However, advances in technology, cost, government incentives and implementation of geothermal power projects will determine if alternative energy geothermal will become a viable global competitor.

    Alternative Energy Geothermal - Is Geothermal Energy a Renewable Energy Source?

    Scientific evidence shows that geothermal sites can provide heat for many decades, but eventually these specific locations cool down, which brings into question if alternative energy geothermal truly is a renewable energy source, since renewables are defined as green energy sources that never deplete. Understanding how geothermal fits into renewable alternative energy frameworks can help policymakers set realistic targets.

 

Related Articles

View more

Alternative Energy Sources – Clean Electric Power Options

Alternative energy sources encompass solar PV, wind, hydroelectric, and geothermal generation, leveraging power electronics, inverters, HVDC, storage, and smart grid integration to deliver efficient, low-carbon electricity and resilient microgrids and stable operation.

 

What Are Alternative Energy Sources?

Technologies that convert renewables to electricity using power electronics, storage, and advanced grid control.

✅ Includes solar PV, wind turbines, hydroelectric, and geothermal

✅ Uses inverters, MPPT, converters, HVDC, and protection relays

✅ Integrates storage, microgrids, smart grid controls, and V2G

 

Are there other alternative energy sources besides renewables? There are other alternative energy sources that are used instead of conventional energy sources, such as oil and coal, that produce (or hardly produce) greenhouse gas emissions (GHG) that are harmful for the environment. For a broader definition of the term, see this overview at what is alternative energy to understand key concepts.

 

Alternative Energy Sources – Nuclear Energy

Nuclear energy is one of the few alternative energy sources that can generate a lot of electricity from very little fuel, which makes it a very abundant energy source. Nuclear energy is generated when atoms are either split (fission) or merged (fusion) to create energy from the reaction. It’s a clean energy because, unlike coal or oil, nuclear energy doesn’t introduce harmful gases, such as carbon dioxide, into the environment. However, nuclear energy becomes harmful during the production stage. The leftover waste is highly radioactive (unstable continuously decaying elements with high-energy particles or rays that penetrate and damage anything that it touches), which makes it hard to contain. Nuclear waste has to be stored in a secure location until alternative containing options are determined. Nuclear energy is used to generate electricity, launch space ships, and to power weapons. Comparative context across non-fossil options is outlined in forms of alternative energy for additional perspective.

For contrast with resources that naturally replenish, explore renewable energy sources to see how they differ in fuel cycles and emissions profiles.

 

Alternative Energy Sources – Natural Gas

Natural gas is considered a nonrenewable fossil fuel, but it’s considered clean because it doesn’t produce the greenhouse gas, carbon dioxide. Natural gas’s main ingredient is methane, with all other core elements filtered through an extensive filtering process. Advantages of natural gas include its global abundance, low cost and ease of use (natural gas plants can come online very quickly). However, isolating methane is quite a complex process, which makes it a disadvantage. And, even though natural gas doesn’t introduce carbons into the air, it still produces greenhouse gases. Natural gas can also be used to make electricity. Energy industry experts believe that natural gas will have a bigger role in electricity production as future demand for electricity increases. Within the broader mix of alternative energy fuels, natural gas is often positioned as a transitional option.

Grid planners evaluate flexible generation, storage, and demand-side measures among various alternative energy solutions to integrate resources efficiently.

 

Alternative Energy Sources – Hydrogen Fuel

Hydrogen hasn’t become a money-making venture, unlike other alternative energy sources, because the energy return on hydrogen isn’t very high. In other words, more energy is needed during the manufacturing process than the amount of hydrogen that is actually produced. At this point, hydrogen has proven to be an environment-friendly fuel source for vehicles. Hydrogen fuel is used mostly in batteries, by combining oxygen and hydrogen to produce power. The only waste factor is water vapor, which is a lot friendlier than the greenhouse gas, carbon dioxide. Ultimately, advancements in technology are required in hydrogen production in order for this form of alternative energy to become profitable. Renewable electricity from sources such as solar power can drive electrolysis to lower hydrogen's lifecycle emissions.

For a strategic view of how renewables complement low-carbon options, review renewable alternative energy to understand deployment pathways and tradeoffs.

 

 

Related Articles

View more

Alternative Energy Projects - Home Energy Systems

Alternative energy projects integrate solar PV, wind turbines, battery storage, and smart grid controls, using power electronics, inverters, and HVDC to optimize grid integration, reliability, and decarbonization in electrical engineering applications.

 

What Are Alternative Energy Projects?

Projects deploying renewables and storage with power electronics to ensure efficient, reliable grid integration.

✅ Solar PV, wind, and storage integrated via power converters

✅ Smart inverters, MPPT, and grid-forming control strategies

✅ HVDC links, microgrids, and protection coordination

 

Alternative energy projects are technologies that use alternative energy sources (wind energy, solar energy, among others) instead of conventional fossil fuels that damage the environment with toxic greenhouse (GHG) emissions. Natural Resources Canada (NRCAN) and the Department of Energy (DOE) are among some of the North American governmental organizations looking for ways to use alternative energy sources. While using the alternative energy source is important, so is educating the public about ways that they can someday use future alternative energy projects. Here are some energy systems the government is working on for your home: For a concise primer on definitions and policy context, see what alternative energy means to better frame the technologies discussed below.

 

Alternative Energy Projects - Home Solar Photovoltaic (PV) Systems

As one of several major categories, the forms of alternative energy place solar alongside wind, geothermal, and hydrogen options for residential planning.

This alternative energy project is a great way to preserve Earth's fossil-fuel resources and an efficient way to reduce air pollution. Another benefit of home PV systems is that it reduces the amount of power bought from local utilities thus making the residence less vulnerable to fluctuating price increases. A drawback to a home PV system are the extremely high installation costs, however, funding could be available from governments as an incentive to invest in alternative power. Unobstructed and clear access to the sun’s rays for most or all of the day is required throughout the year for well-designed PV systems. Location affects performance meaning that the roof of a house must be facing south (best option), east or west. Flat roofs are great options for solar electric systems because the PV modules are flat on the roof facing the sky or mounted on frames on an optimal angle facing south. One option for commercial application includes building structures that can create provide shade (such as window awnings) or covered parking. For homeowners evaluating PV feasibility, a detailed guide to solar power clarifies system sizing, orientation, and incentive considerations.

 

Alternative Energy Projects - Solar Concentrator System

Solar concentrators are alternative energy projects that track and focus the sun's energy; the sun's energy is then converted to hot water and space heat for day-to-day consumption. These alternative energy projects also have thermal storage, so it can distribute the sun's energy during the night or during a cloudy day. In addition to thermal applications, alternative energy power resources explain how concentrators integrate with broader energy management strategies.

 

Alternative Energy Projects - Hydrogen Electrolyzer

Hydrogen could be a valuable energy source in the future, so alternative energy projects are being funded by governments to heat residential homes. One such project, the hybrid hydrogen electrolyzer/high efficiency furnace system works by generating hydrogen from water using electricity. The generated hydrogen is then used to replace the natural gas that is conventionally used in furnaces. These hybrid energy systems can be installed in a variety of houses, including single detached houses. For system comparisons and component basics, an overview of alternative energy systems outlines how electrolyzers interface with storage and heating equipment.

 

Alternative Energy Projects - Geo Power

Geothermal Energy is also being used to provide heat to residential homes. One such alternative energy project, known as the Geo Power System, takes heat from the ground and sends it into the house. This tube-in-tube ground heat exchanger, made from polyethylene and aluminum is inserted vertically into a bore-hole in the ground either in the basement or crawlspace of a house. The alternative energy project is supposed to contribute energy during the winter months and absorb energy during the summer months in the ground. For site assessment and retrofit pathways, these alternative energy solutions highlight best practices for efficient geothermal installations.

 

Alternative Energy Projects - Solid-Oxide Fuel Cells

Fuel-cell combined heat and power (CHP) systems are alternative energy projects that can heat houses and provide hot water while electricity is sent to and from the electricity grid. The continued issues this residential alternative energy project faces include grid connection, thermal storage and proper fuel-cell size. To see how residential CHP fits within the wider clean energy mix, a primer on renewable and alternative energy offers context on adoption trends and grid impacts.

 

Related Articles

View more

Forms Of Alternative Energy Explored

Forms of alternative energy span solar, wind, hydro, geothermal, and biomass, engineered with power electronics, inverters, and grid-tied systems for efficient generation, storage, and distribution across smart grids and microgrids.

 

What Are Forms of Alternative Energy?

They include solar PV, wind, hydro, geothermal, and biomass, converted via generators, inverters, and grid storage.

✅ Solar PV: MPPT inverters convert DC modules to AC for the grid.

✅ Wind: variable-speed turbines use converters to regulate frequency and voltage.

✅ Hydro, geothermal, biomass: dispatchable sources aid grid stability and storage.

 

Forms of Alternative Energy - Solar Energy

The sun is one gigantic star that constantly radiates an enormous amount of energy (solar energy). How much is "enormous?" Well, let's just say that the sun sends out more energy in one second than Earth has used since the beginning of time. Like most stars, the sun is a huge ball of gas made up mostly of helium gas and hydrogen. As a primer on solar technologies, the resource at solar power fundamentals offers context for how these systems scale.

The Earth, being the third planet from the sun, only receives a small portion of the sun's solar energy, however, that amount is more than enough to supply all our electric power needs. For comparisons across resources, see renewable energy sources to understand how solar's potential relates to wind, hydro, and more.

Two ways to make electricity from solar power are photovoltaic and solar thermal systems. Photovoltaic electric generation is produced using photovoltaic (PV) cells: the sunlight hits the solar cell and converts sunlight into electricity instantly and silently--without the hassle of wearing out any mechanical parts. These solar systems are mainly used to generate power in areas that are a long distance from electric power lines. For configurations and component choices, alternative energy systems guidance explains typical PV setups used off-grid and in hybrid applications.

Solar thermal systems (or concentrated solar power) use a solar collector with a mirrored surface to focus sunlight onto a receiver that heats a liquid into steam and then turned into electric power. The process is in the same vain as coal plants: coal is burned into steam, which is then turned into electricity. Deployment considerations are explored in alternative energy solutions that compare CSP with other utility-scale options.

Solar power is expected to be a global supplier of electricity between 2015 and 2020. Solar power's benefits are phenomenal: it's free, its supply can never deplete, it doesn't pollute, and it doesn't damage the environment. These benefits underpin broader renewable alternative energy strategies that accelerate decarbonization across sectors.

 

Forms Of Alternative Energy - Wind Energy

The sun’s heat reaching the planet earth creates winds, which makes wind a form of solar energy. How does it work? Well, as the sun's rays heat the Earth’s air is heated by the sun, it expands and regions of high and low pressure are formed, these high and low movements create wind energy. For context on definitions and categories, what is alternative energy clarifies how wind fits within the broader mix.

Harnessing wind energy is done using contraptions such as wind turbines. Large wind turbines are built close together to operate on wind farms to produce large amounts of power for electrical utilities. Smaller small wind turbines can be used by homeowners and remote villages who want to generate their own electricity.

Generated Wind power, like other forms of alternative energy, can also be used for charging batteries, pumping water, or grinding grain. All of this can be done without causing greenhouse gas emissions which damage the environment. This form of alternative energy also uses minimal land area, but intermittent wind patterns make it difficult for this form of alternative energy to be a constant and reliable energy source.

 

Forms of Alternative Energy - Biomass Energy

Biomass energy is a way to turn your food waste into electricity. Biomass is any kind of organic matter (anything that was once alive) that can be used as an energy source. Besides food waste, crops, wood, animal and yard waste are examples of biomass. People have used this form of alternative energy for thousands of years - longer than any other energy source.

Biomass feedstock (farm animal wastes, crops and residues, etc.) is the main ingredient of biomass energy. The heat in this form of alternative energy is used to generate power, fuels and other energy options. The biomass fuels (or biofuels), which comes from biomass feedstock, can be used in a solid, liquid, or gas state. Disposed food, paper, sewage, lawn clippings and sawdust, are some available biomass energy resources used for power production.

 

Forms of Alternative Energy - Geothermal Energy

Geothermal is a Greek word: geo (earth) and therme (heat). This form of alternative energy comes from the heat, which is from the earth's core (almost 4,000 miles beneath the earth’s surface). Earth's double-layered core is made from melted rock (hot magma), which surrounds a solid iron center. The heat comes from the slow decay of radioactive particles produce high temperatures that constantly rise to the earth's surface. Geothermal electricity is created by pumping a fluid (oil or water) into the Earth, allowing it to evaporate and using the hot gases vented from the earth's crust to run turbines linked to electrical generators. Further technical detail is summarized in geothermal energy basics for readers interested in plant designs and resource types.

In some areas on the planet (such as Iceland), there is very hot water or steam that is close enough to the surface where this alternative energy resource can be reached economically with a drill. When obtained, the steam, or hot water flashed to steam, turns a turbine, which then, turns a generator that produces electricity. Many experts believe that geothermal energy only be a minor contributor to the global energy supply because of the scarcity of geothermal sites in the world.

 

Related Articles

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified