Alternative Energy Geothermal - Green Energy Alternatives


Alternative Energy Geothermal

Alternative energy geothermal delivers baseload renewable electricity via hydrothermal reservoirs, binary-cycle ORC turbines, and EGS, using heat exchangers, generators, and power electronics for efficient grid integration, low emissions, and stable capacity.

 

What Is Alternative Energy Geothermal?

It converts subsurface heat to electricity via steam or ORC cycles, generators, and grid-tied power electronics.

✅ ORC and flash steam cycles drive turbines and synchronous generators

✅ Power electronics, inverters, and transformers enable grid integration

✅ EGS, drilling, and heat exchangers expand capacity with low emissions

 

Geothermal energy comes from heat stored beneath the Earth's surface. Also known as thermal energy, geothermal is considered to be an alternative energy because it produces very little greenhouse gas emissions (GHG), which harm the Earth once it's generated into electricity. Geothermal wells release these greenhouse gases, but not nearly as much as its fossil fuel counterparts oil and coal. For context on how this resource fits within energy policy, see our overview of what is alternative energy to understand key definitions.

Alternative energy geothermal is a product from Earth's original formation: radioactive decay of minerals thanks to volcanic eruptions and solar energy digested and stored from the Earth's surface. Thermal energy is produced from the continuous conduction of heat that emanates from the Earth's core that moves upward to the surface. This process is known as the geothermal gradient. If you've ever had the opportunity to bathe in hot springs, you'll be glad to know that the thermal heat comes from beneath the Earth. When comparing technologies, placing geothermal alongside other alternative energy sources highlights its base-load role and unique subsurface dependence.

 

Alternative Energy Geothermal - How can we use it?

In practice, many integrated alternative energy systems combine geothermal with insulation and smart controls to maximize year-round efficiency.

Energy producers have been able to convert alternative energy geothermal into electricity. These same producers have high hopes for geothermal energy because power can be generated 24 hours a day, unlike other intermittent renewable energies, like wind energy and solar energy. This contrasts with the variability seen in resources such as solar power during cloudy periods or at night.

Geothermal energy can also be used to heat pumps or for other direct uses such as cooling and heating buildings. The Earth's crust temperature a few feet below is buffered to a constant seven to 14 °C (45 to 58 °F), so a liquid can be pre-heated or pre-cooled in underground pipelines, providing no-cost cooling during the summer, and with a heat pump, heating during the winter months. Other direct uses include aquaculture, agriculture (greenhouses), and industry. Project planners often consult practical alternative energy solutions to evaluate lifecycle costs and integration pathways.

 

Alternative Energy Geothermal - How is geothermal electricity produced?

Within the broader family of forms of alternative energy, geothermal distinguishes itself through high capacity factors and minimal fuel risk.

Geothermal energy uses Earth's natural heat to generate electricity. Geothermal plants are built on or near reservoirs that contain Earth's hydrothermal resources (underground steam and heated water). The heat mining process begins when drills penetrate these reservoirs to obtain the steam and water to power electricity-generating turbines.

There are different ways to produce alternative energy geothermal. Two popular processes include:

  • Flash Steam Geothermal water with temperatures exceeding 350°F is extracted under extremely high pressure by flash steam plants. When the heated water surfaces, a sudden pressure reduction causes some of the hot water to flash off as steam. This flashed steam operates a generator, at which time, the extracted steam and water are reintroduced into the geothermal reservoir.
  • Dry Steam Dry steam is extracted directly from under the earth’s surface by dry steam plants to operate a generator. When the steam condenses into water, it is then reintroduced into the alternative energy geothermal reservoir.

     

    Alternative Energy Geothermal - Is Geothermal Energy a Sustainable Energy Source?

    Alternative Energy Geothermal is considered to be sustainable, cost-effective, great for the environment and reliable. Recent advances in technology have expanded alternative energy geothermal applicable uses (such as home heating), which could lead to global exploitation. However, advances in technology, cost, government incentives and implementation of geothermal power projects will determine if alternative energy geothermal will become a viable global competitor.

    Alternative Energy Geothermal - Is Geothermal Energy a Renewable Energy Source?

    Scientific evidence shows that geothermal sites can provide heat for many decades, but eventually these specific locations cool down, which brings into question if alternative energy geothermal truly is a renewable energy source, since renewables are defined as green energy sources that never deplete. Understanding how geothermal fits into renewable alternative energy frameworks can help policymakers set realistic targets.

 

Related Articles

Related News

Alternative Energy Systems - Green Energy Power Conversion

Alternative energy systems integrate solar PV, wind turbines, battery storage, and smart grids using power electronics, inverters, and microgrids to optimize reliability, grid integration, load management, and decarbonization in modern electrical engineering.

 

What Are Alternative Energy Systems?

Renewable power architectures using solar, wind, storage and power electronics for reliable grid-integrated electricity.

✅ Design with MPPT inverters, DC/DC converters, and protection relays

✅ Grid integration via PCC, power quality control, and harmonic mitigation

✅ Energy management: SCADA, EMS, forecasting, and battery SOC control

 

Alternative energy systems - What are solar power systems?

Solar electric technology, an adequate alternative energy system, takes sunlight and coverts it into electricity directly. The technology works best when the sun is at its peak, at which time it strikes the solar electric modules directly. Solar electric technology does not use the sun's heat to make electricity, but there are certain solar alternative energy systems that are used to heat water. Instead, this alternative energy system produces the electricity directly from the electrons that are freed from sunlight's interaction with semiconductor materials that are found in the solar electric cells. For a deeper overview of photovoltaic system types and performance, see this guide to solar power systems for additional context.

The basic building block of solar electric technology is the solar cell, which are then are wired together with other solar electric cells to produce a solar electric module. The power output on these modules ranges from about 10 watts to 300 watts. One or more solar electric modules connected to an inverter means that the solar electric alternative energy system is tied to the utility grid. The inverter switches the system's direct-current (DC) power to alternating current (AC). This current is what is compatible with the utility grid and it powers devices such as appliances, lights, televisions, and computers. This AC output integrates with household circuits as a reliable source of alternative energy power used by everyday devices.

 

Alternative energy systems - What are wind power systems?

Wind is air in motion, which comes from the sun. It's an overly abundant fuel source that doesn't harm the environment. The alternative energy systems for this renewable fuel source deflects or stops the wind, converting the wind’s kinetic energy into potential energy of pressure, thus create wind loads. These wind loads are harnessed by wind electric alternative energy systems such as wind turbines to create electricity. Because wind replenishes naturally, it is a prime example of renewable alternative energy that supports long-term decarbonization.

Here are some of the components that make up a wind turbine:

Ongoing advances in materials, controls, and siting practices are central to alternative energy development that improves turbine efficiency and reliability.

 

  • Blades: Most of the wind turbines of this alternative energy sytems have three blades, though there are some with two blades. Blades range from 30 to 50 meters (100 to 165 feet) in length, with the most commonly-used sizes at around 40 meters (130 feet). A 40 meter LM glass-fiber blade for a 1.5 MW turbine weighs 5,780 kg (6.4 tons) and one for a 2.0 MW turbine weighs 6,290 kg (6.9 tons).

 

  • Controller: There is a controller in the nacelle and one at the base of the turbine. The controller monitors the condition of the turbine and controls the turbine movement.

 

  • Generators: Most wind turbines convert the mechanical energy generated from the wind turbine’s rotation into electrical energy using a single AC generator.

 

 

  • Nacelles: The nacelle houses the main components of the wind turbine, such as the controller and the generator.

     

     

  • Rotor: The rotor includes both the blades and the hub (the component to which the blades are attached).

     

     

  • Towers: The towers are usually tubular steel at varying heights starting at about 60 to 80 meters (about 195 to 260 feet). There are some towers with heights around 100 meters (330 feet).

 

Alternative energy Systems - What are geothermal power systems?

Geothermal technology, an alternative energy system that doesn't hurt the environment, produces electricity from hydrothermal (hot water/steam) resources. Hydrothermal resources at high temperatures (between 300 and 700 degrees Fahrenheit) can be used to make electricity. These high-temperature resources may originate from either hot water wells or dry steam wells. These resources can be used by drilling wells into the earth and, at that point, piping the steam or hot water to the surface. Geothermal wells are one to two miles deep. Geothermal stands alongside solar, wind, and other forms of alternative energy that leverage naturally replenished resources.

In a dry steam power plant, the steam from the geothermal reservoir is connected from a well to a turbine generator to make electricity. In a hot water plant, some of the hot water is turned into steam. The steam powers a turbine generator just like a dry steam plant. Then, when the steam cools, it turns into water and goes back into the ground to be used over again. These closed-loop practices exemplify the principles behind what is alternative energy in practical power generation.

 

 

Alternative energy systems - What are wave power systems?

Wave power plants are rare because waves aren't produced on a consistentent basis. However, if harnessed, wave production can supply an adequate amount electricity. This electricity production starts with wave energy converters (WEC), which converts wave energy into mechanical energy, and then uses a power take-off system to generate electricity. The power is generally taken using a turbine driven by pressurized air, pressurized oil, or pressurized water. Many coastal pilot sites evaluate device survivability and grid integration through targeted alternative energy projects across diverse sea states.

There are three categories of wave energy converters, an environmently-friendly alternative energy system, based on how they capture the mechanical energy:

 

  • Point absorbers are devices whose surface area is very small in comparison to the wave length of ocean waves.

     

  • Attenuators are relatively long devices that are placed parallel to the general direction of wave travel.

     

  • Terminators are placed a certain way, so that they can absorb energy from the wave.

     

 

Related Articles

View more

Renewable Alternative Energy Explained

Renewable alternative energy integrates solar PV, wind turbines, hydroelectric and biomass with power electronics, battery storage, smart grids, and grid-tied inverters to deliver sustainable electricity, demand response, and resilient microgrids.

 

What Is Renewable Alternative Energy?

Renewable alternative energy uses low-carbon sources with power electronics and storage to deliver reliable electricity.

✅ Power electronics: inverters, converters, MPPT for PV and wind

✅ Grid integration: synchronization, frequency control, protection

✅ Energy storage: batteries, BMS, supercapacitors, grid services

 

What are renewable alternative energy sources? Renewable energy sources, such as solar energy and wind energy, are alternative energy supplies that are refilled by natural processes when they're used. The ultimate source of all renewable energy is the sun. Electricity can be obtained from the sun directly (such as solar heating systems) or indirectly (as in hydro electricity, wind power, and biomass fuels). Renewable energy supplies can run out if they are used faster than they become replenished. For example, most of England's forests were cut down and used for fuel before the English started using coal. Renewable energy supplies have the chance to last forever if used wisely. For fundamentals and current trends, the Electricity Forum explains key renewable energy sources that complement these concepts.

There are other alternatives to our typical energy sources that are not renewable. Although these are "alternative energy" rather than "renewable energy", they use the energy we have more efficiently than older technologies. In doing this, they help us make our existing energy supplies last longer and give us more time before we run out of stored fossil and atomic fuels. However, parallels can be drawn between the two, which can make them interchangeable. Alternative energy sources don't threaten the environment even though they cannot necessarily be renewed. Renewable energy sources are, as we previously mentioned, renew them as fast as we use them. In this article, we focus on the energy sources that can be called both "alternative energy" and "renewable energy." We call them "renewable alternative energy sources." To clarify terminology, this overview of what is alternative energy outlines distinctions commonly used by educators and policymakers.

Using renewable alternative energy sources can save money, protect the environment, and assure future generations of people that efficient energy will be available.

Practical adoption is often driven by proven alternative energy solutions that reduce costs and emissions in real projects.

Here are a few renewable alternative energy sources that are in use today. Broader context on evolving technologies appears in this survey of forms of alternative energy relevant to the categories below.

 

Renewable Alternative Energy - Hydroelectric power

Hydropower represents one of the oldest and largest renewable power sources (this renewable alternative energy source has an existing capacity of over 80,000 MW). Hydropower plants convert the energy of flowing water into electricity. This is primarily done by damming rivers to create large reservoirs and then releasing water through turbines to produce electricity. Hydropower results in no emissions into the atmosphere but the process of damming a river can create significant ecological problems for water quality and for fish and wildlife habitat. Comparative evaluations with other alternative energy sources highlight trade-offs in capacity, siting, and ecological impacts.

 

Renewable Alternative Energy - Biomass Power

Biomass is second to hydropower as a leader in renewable alternative energy production and has an existing capacity of over 7,000 MW. As a renewable alternative energy source, biomass as a fuel consists of organic matter such as industrial waste, agricultural waste, wood, and bark. Biomass can be burned directly in specially designed power plants, or used to replace up to 15% of coal as a fuel in ordinary power plants. Biomass burns cleaner than coal because it has less sulfur, which equates to less sulfur dioxide being emitted into the atmosphere. Biomass can also be used indirectly, since it produces methane gas as it decays. Power can be produced from methane by burning in a boiler to produce steam to drive steam turbines. Steam can also be produce in gas turbines through internal combustion and reciprocating engines.

 

Renewable Alternative Energy - Geothermal Power

Geothermal power plants capitalize on high temperatures deep underground to make steam, which then powers turbines that produce renewable alternative energy. Geothermal power plants can draw from underground reservoirs of hot water or can heat water by pumping it into hot, dry rock. High underground high temperatures are accessed by drilling wells, sometimes more than a mile deep. In one sense, this geothermal energy is not renewable, since sometime in the future the core of the earth will cool. That time is so far off (hundreds of millions of years) that that we think of it as renewable. Geothermal heat pumps use compressors to pump heat out of the earth (for winter heating) or into the earth (when running as air conditioners in summer). The energy they pump into and out of the earth is renewable, since it is replaced by the cycle of the seasons. The energy that runs the compressor can either be renewable or conventional.

 

Renewable Alternative Energy - Solar Power

Solar power comes directly from the power of the sun and is used to produce renewable alternative energy, to produce heat, and for light. Solar represents a small share of the electric market in the United States – about one-half of one percent of electrical capacity. Solar power's contribution to heating and lighting is much larger because it can be produced either by power plants using the sun’s heat or by photovoltaic (PV) technology, which uses solar cells to convert sunlight directly to electricity. PV technology is more practical for residential use. Systems to use the heat of the sun directly can be either active or passive. In active systems, air or liquid circulate through solar collectors and bring heat to where it is used. In passive systems, buildings are built with heat-absorbing surfaces and windows set up to maximize solar heating in winter. Either renewable alternative energy solar technology is suitable for residential use. Systems to directly use the light of the sun are most common. The most usual device for using sunlight is the window, but skylights and skylight tubes are also used. Homeowners can explore design considerations in this primer on alternative energy solar power for residential applications.

 

Renewable Alternative Energy - Wind Power

Wind has been a fast growing energy source over the last decade mainly due to very significant improvements in wind power technology. Renewable alternative energy Wind power is produced by the wind's energy to turn aerodynamic blades that are mounted to a hub. The hub, which is connected to a shaft, turns a generator that produces electricity. Large utility-scale wind turbines range in size from 50 kilowatts to over four megawatts. Smaller wind towers (under 50 kW) are suitable for residential and agricultural use. Modern turbines are increasingly integrated into smart alternative energy systems that optimize output and grid reliability.

 

Renewable Alternative Energy - Fuel Cells

A fuel cell is an alternative energy device, but it is not necessarily a renewable energy device. It is only renewable if the source of the fuel used is renewable. A fuel cell is an electrochemical device, like a battery in that it converts the energy from a chemical reaction directly into electricity and heat. But unlike a battery, which is limited to the stored chemicals within, a fuel cell has the capability of generating energy as long as fuel is supplied. Modern fuel cells produce electricity by combining hydrogen and oxygen together without using combustion. The oxygen comes from the air, while the hydrogen can either be produced from water (using electricity) or extracted from fossil fuels. New fuel cells are being developed that can directly use fossil fuels. The 150-year-old fuel cell technology shows promise in providing energy for residential use and for powering vehicles.

 

Related Articles

View more

Alternative Energy Grants - Sustainable Energy Development

Alternative energy grants fund renewable energy R&D, power systems upgrades, and grid modernization, supporting solar, wind, microgrids, battery storage, high-efficiency inverters, and electrification projects for utilities, manufacturers, and engineers, focused on decarbonization and smart grid.

 

What Are Alternative Energy Grants?

Grants that fund renewable power systems, grid upgrades, and storage for electrical engineering projects.

✅ Funds power electronics, inverters, and grid-integration R&D

✅ Supports microgrids, DERs, and smart grid reliability projects

✅ Covers feasibility studies, prototypes, and pilot deployments

 

Alternative energy grants - Wind, solar, geothermal and other alternative energy soures are the new "in" to replace forms of energy that harm the environment such as fossil fuels, so both Canadian and the U.S. governments are giving alternative energy grants (free conditional money) to individuals, businesses and local governments to promote the use and development of alternative energy sources. Here are three alternative energy grants currently offered by the U.S. government. For broader context on the field, the overview at what is alternative energy explains key terms and categories clearly.

 

Alternative Energy Grants - Energy Efficiency and Conservation Block Grant (EECBG) Program

These alternative energy grants help eligible entities in beginning their conservation and energy efficiency strategies. For those interested in applying for these alternative energy grants, they must have reduced their fossil fuel emissions, reduced total energy usage and improved energy efficiency within the company. Furthermore, those eligible must develop and implement an energy efficiency and conservation strategy with the assistance of a third-party technical consultant. Also, eligible entities must conduct regular residential and commercial building energy audits to monitor results and financial incentive programs (loan programs, rebate programs, waive permit fees) with the goal of improving energy efficiency must be in place. Other requirements are also required to be eligible for this alternative energy grant. To identify complementary rebates and policy tools, agencies can review alternative energy incentives relevant to their jurisdiction for alignment with EECBG goals.

 

Alternative Energy Grants - State Energy Program

Ultimately, provinces and states are expected to lower their overall fossil fuel carbon emissions so that the use of alternative energy sources can become more prevalent. Financial support, in whole or in part, may be provided for salaries, materials, and supplies, equipment, travel, publication costs, and services required for deployment of alternative energy activities and initiatives. The states energy program goes to competing states for funding to implement activities relating to a number of programmatic areas such as building codes and standards, alternative fuels, industrial efficiency, building efficiency, and alternative energy technologies. Many states layer alternative energy tax credits on top of SEP funds to catalyze private investment.

 

Alternative Energy Grants - Rural Energy for America Program (REAP)

The REAP program provides alternative energy grants to rural small businesses & agricultural producers for the purchase & installation of alternative energy systems in rural areas. Alternative energy grants are limited to 25 per cent of the project cost or $500,000 – whichever is less. Alternative energy grant applications of $20,000 or less are greatly favored in the competitive, selection process. Projects needing larger grants can improve their chances by simultaneously seeking a REAP guaranteed loan. For the loan seekers, the details are the same as the aforementioned alternative energy grant, but provides 60 to 85% per cent loan guarantees to commercial lenders financing such projects. Loans up to $25 million can be guaranteed. Combination grant and guaranteed loan assistance up to 75 per cent of total project cost; such “combo” proposals may improve a project’s access to grant assistance and speed approvals. Prospective applicants can benchmark typical capital and O&M figures using resources on alternative energy cost to prepare stronger pro formas.

Case studies of farm-scale solar, wind, and efficiency upgrades in the alternative energy projects library illustrate successful REAP financing structures.

 

Alternative Energy Grants - State Energy Special Projects

The State Energy Program aims to develop and deploy energy efficiency and alternative energy technologies and practices. The State Energy Program (SEP) makes it possible for states in the U.S. to design and carry out energy efficiency and alternative energy programs tailored to their State-specific needs, while contributing to national energy priorities. The State Energy Program enables the States to address both national energy initiatives and local energy priorities through two funding mechanisms: alterntive energy formula grants and Special Projects grants. States utilize these funds to design and implement energy projects tailored to meet community needs, economic conditions, individual energy situations, and climactic variations. SEP Special Projects funds are awarded on a competitive basis to States from each of the four end-use sectors (buildings, industrial, power technologies, and transportation) and the Federal Energy Management Program (FEMP) for cost-shared technology projects. Special Projects often accelerate alternative energy development by targeting pre-commercial demonstrations and regional testbeds.

For program designers seeking cross-sector approaches, curated alternative energy solutions can inform competitive proposals and stakeholder engagement plans.

 

Related Articles

View more

Alternative Energy Projects - Home Energy Systems

Alternative energy projects integrate solar PV, wind turbines, battery storage, and smart grid controls, using power electronics, inverters, and HVDC to optimize grid integration, reliability, and decarbonization in electrical engineering applications.

 

What Are Alternative Energy Projects?

Projects deploying renewables and storage with power electronics to ensure efficient, reliable grid integration.

✅ Solar PV, wind, and storage integrated via power converters

✅ Smart inverters, MPPT, and grid-forming control strategies

✅ HVDC links, microgrids, and protection coordination

 

Alternative energy projects are technologies that use alternative energy sources (wind energy, solar energy, among others) instead of conventional fossil fuels that damage the environment with toxic greenhouse (GHG) emissions. Natural Resources Canada (NRCAN) and the Department of Energy (DOE) are among some of the North American governmental organizations looking for ways to use alternative energy sources. While using the alternative energy source is important, so is educating the public about ways that they can someday use future alternative energy projects. Here are some energy systems the government is working on for your home: For a concise primer on definitions and policy context, see what alternative energy means to better frame the technologies discussed below.

 

Alternative Energy Projects - Home Solar Photovoltaic (PV) Systems

As one of several major categories, the forms of alternative energy place solar alongside wind, geothermal, and hydrogen options for residential planning.

This alternative energy project is a great way to preserve Earth's fossil-fuel resources and an efficient way to reduce air pollution. Another benefit of home PV systems is that it reduces the amount of power bought from local utilities thus making the residence less vulnerable to fluctuating price increases. A drawback to a home PV system are the extremely high installation costs, however, funding could be available from governments as an incentive to invest in alternative power. Unobstructed and clear access to the sun’s rays for most or all of the day is required throughout the year for well-designed PV systems. Location affects performance meaning that the roof of a house must be facing south (best option), east or west. Flat roofs are great options for solar electric systems because the PV modules are flat on the roof facing the sky or mounted on frames on an optimal angle facing south. One option for commercial application includes building structures that can create provide shade (such as window awnings) or covered parking. For homeowners evaluating PV feasibility, a detailed guide to solar power clarifies system sizing, orientation, and incentive considerations.

 

Alternative Energy Projects - Solar Concentrator System

Solar concentrators are alternative energy projects that track and focus the sun's energy; the sun's energy is then converted to hot water and space heat for day-to-day consumption. These alternative energy projects also have thermal storage, so it can distribute the sun's energy during the night or during a cloudy day. In addition to thermal applications, alternative energy power resources explain how concentrators integrate with broader energy management strategies.

 

Alternative Energy Projects - Hydrogen Electrolyzer

Hydrogen could be a valuable energy source in the future, so alternative energy projects are being funded by governments to heat residential homes. One such project, the hybrid hydrogen electrolyzer/high efficiency furnace system works by generating hydrogen from water using electricity. The generated hydrogen is then used to replace the natural gas that is conventionally used in furnaces. These hybrid energy systems can be installed in a variety of houses, including single detached houses. For system comparisons and component basics, an overview of alternative energy systems outlines how electrolyzers interface with storage and heating equipment.

 

Alternative Energy Projects - Geo Power

Geothermal Energy is also being used to provide heat to residential homes. One such alternative energy project, known as the Geo Power System, takes heat from the ground and sends it into the house. This tube-in-tube ground heat exchanger, made from polyethylene and aluminum is inserted vertically into a bore-hole in the ground either in the basement or crawlspace of a house. The alternative energy project is supposed to contribute energy during the winter months and absorb energy during the summer months in the ground. For site assessment and retrofit pathways, these alternative energy solutions highlight best practices for efficient geothermal installations.

 

Alternative Energy Projects - Solid-Oxide Fuel Cells

Fuel-cell combined heat and power (CHP) systems are alternative energy projects that can heat houses and provide hot water while electricity is sent to and from the electricity grid. The continued issues this residential alternative energy project faces include grid connection, thermal storage and proper fuel-cell size. To see how residential CHP fits within the wider clean energy mix, a primer on renewable and alternative energy offers context on adoption trends and grid impacts.

 

Related Articles

View more

Alternative Energy Cost - Green Energy Premiums

Alternative energy cost analyzes LCOE, CAPEX, OPEX, and grid parity across solar PV, wind turbines, and battery storage, considering efficiency, load factors, and grid integration to optimize system design and lifecycle economics.

 

What Is Alternative Energy Cost?

Alternative energy cost is LCOE-based pricing for solar, wind, and storage, reflecting CAPEX, OPEX, and grid impacts.

✅ Uses LCOE comparing PV, wind, and storage across duty cycles.

✅ Includes CAPEX, OPEX, maintenance, and financing assumptions.

✅ Evaluates grid integration, curtailment, and reliability metrics.

 

Alternative energy cost is determined by how utilities typically set their rates and account for the cost differential between alternative energy and conventional energy sources. Basically, cost recovery of a utility’s investments and operating expenses determine electricity rates. For background on definitions and resource types, see this overview of what is renewable energy to align terminology across programs.

These alternative energy costs include:

Understanding the breadth of technologies captured under renewable alternative energy helps clarify why cost components vary by resource.

  • owning generation
  • owning transmission and distribution assets
  • a return on owned assets
  • purchased power contracts
  • recovery of various operating expenses, including fuel costs, maintenance, and administration.

    Costs for generating, transmitting, and distributing electricity are in a utility’s rate. Because utility costs are bundled together, all generation resources are combined to create a utility “system mix” of generation. In other words, utilities do not normally distinguish between individual generation sources for their customers. Therefore, an equivalent mix of the utility’s generation resources and purchased power is provided to each customer. In practice, product structures for alternative energy power are designed to work within this system mix paradigm.

    For alternative energy cost determination, utilities and regulators are interested in separating the specific alternative energy costs related to securing green power. In this way, green power products are unique, differentiated electricity products. Since customer participation is voluntary, only those customers that choose to sign up for these programs pay the incremental costs. Alternative energy power program participants typically pay the higher alternative energy cost in the form of a premium on their monthly bill. In some jurisdictions, available alternative energy incentives help offset premiums for early adopters.

    Four Main Components In Determinating Alternative Energy Cost

  • 1. The cost of the alternative energy source. This includes the total cost of electricity and/or environmental attributes from all alternative energy resources used in the product, whether from wind, solar, geothermal, biomass, or another source, and whether owned by the utility or acquired through a power purchase contract. For example, cost trajectories for alternative energy solar power have declined sharply in recent years due to technology improvements.
  • 2. Program implementation costs. Any additional alternative energy costs attributed to implementing the alternative energy program, including administration and marketing. Utilities sometimes leverage alternative energy grants to defray outreach and administration expenses.
  • 3. Ancillary services costs. The additional costs incurred to integrate variable output resources, particularly wind, into a utility’s system.
  • 4. Displaced utility generation (and capacity) resource costs. The renewable resource displaces electricity that the utility would otherwise have generated or purchased.

     

    In conclusion, alternative energy costs can be represented as: Alternative energy premium = (1) + (2) + (3) – (4)

    Alternative Energy Cost Determination

    Alternative energy costs are captured through the specific power purchase agreements for alternative energy (in this case, the term alternative energy is interchanged with renewable energy) or RECs (renewable energy contracts), or through the regulatory approval process for utility-owned renewable projects. As long as these are tracked separately from the rest of the generation mix, the appropriate alternative generation costs can be determined. However, generation costs are hard to determine because it's uncertain how many customers plan to enroll in the program and how long they plan to participate. In electric markets that have not gone through restructuring from the electric industry, contracts for generation are typically long-term (10 years or more), and investment in owned facilities is generally considered to be for the life of the facility (20 years or more). For readers new to key terms and market structures, this primer on renewable energy facts provides helpful context for interpreting contract and REC pricing.

    The long-term nature of the resource commitment severely contrasts with the program subscription commitment required of most customers. Most alternative energy programs do not require that customers enroll for a specific term, much less sign up for 10 or 20 years to match the facility or contract life of the renewable power supply source. Therefore, while the annual cost of renewable energy is straightforward to determine, the utility faces some level of risk that will likely be reflected in the product pricing.

    However, if the utility is also subject to a renewable portfolio standard and is therefore required to procure a certain fraction of renewable energy for its overall load, there may be less risk, because the utility has greater flexibility in managing its overall renewable portfolio between its compliance and voluntary program obligations.

 

Related Articles

View more

Alternative Energy Fuels - Future Fuel Choices

Alternative energy fuels drive renewable power systems, integrating hydrogen, biofuels, and electricity with power electronics, smart grids, and energy storage for efficient conversion, decarbonization, and resilient distribution across modern electrical networks.

 

What Are Alternative Energy Fuels?

Alternative energy fuels are renewables—hydrogen, biofuels, electricity—supporting conversion and smart grid integration

✅ Power electronics convert DC/AC and manage grid-tied renewables.

✅ Fuel cells and hydrogen storage integrate with microgrids.

✅ Battery systems and EMS stabilize variable solar and wind.

 

Alternative energy fuels can help reduce harmful greenhouse gas emissions produced from traditional gasoline or diesel fuels. Using alternative energy fuels means that you might have to change your conventional vehicle in for a more environmentally-friendly ride. Is this true? Let's find out. To start, a quick primer on what alternative energy is can clarify terms and set expectations in practical terms.

 

Alternative Energy Fuels - Battery-electric Vehicles

Your first option is battery-electric vehicles (BEVs), which powered by motors that draw electricity from on-board storage batteries. These batteries act as an engine to propel the motor. Using electric vehicles presents a great potential to reduce greenhouse gas (GHG) emissions and smog-forming pollutants because pollution isn't produced from the tailpipe or through fuel evaporation. The vehicles can also have low overall (life-cycle) GHG emissions depending on the electricity source used to recharge the batteries. This option would require you to say goodbye to your conventional vehicle. When charged from renewable energy sources, BEVs can further minimize lifecycle emissions and operating costs.

 

Alternative Energy Fuels - Hybrid-electric Vehicles

If you don't necessarily want to give up your conventional vehicle, but still want the environmental and energy benefits of electric vehicles, then hybrid electric vehicles (HEVs) are your best option. HEVs are made up of a battery powered electric motor with combined with a conventional internal combustion engine. Instead of paying outrageous gas prices every time your gas tank nears the empty mark, a rapid refueling option recharges your conventional vehicle. If this alternative energy fuel option appeals to you then you'll be glad to know that many hybrid vehicle models are already widely available on the market, with many more manufacturers planning on introducing new hybrid electric/gasoline vehicles in the next few years. Many buyers also view HEVs as pragmatic alternative energy solutions that ease the transition away from full reliance on gasoline.

 

Alternative Energy Fuels - Fuel Cells and Hydrogen

If you are using a portable or a stationary power device, then fuel cells might be the ideal option for you. Electricity is generated in fuel cells electrochemically when hydrogen and oxygen are combined. Fuel Cells can produce zero or very low emissions depending on the source of the hydrogen. These energy-conversion devices can also utilize hydrogen and other fuels and, in the future, might be used for transportation applications. This alternative energy fuel source is also an option for vehicles and prototypes for hydrogen fuel cell vehicles that are currently in the works. But, unfortunately, barriers exist. A lack of a hydrogen distribution infrastructure has made it difficult for this alternative energy fuel source to move ahead. Also, costs are high for fuel cells and hydrogen-production technologies and there are challenges related to hydrogen storage. However, fuel cells are a viable energy technology that can offer significant environmental, supply, economic and energy efficiency benefits because of the variety of fuels available for conversion to hydrogen. This pathway fits within the spectrum of alternative energy sources, each with distinct infrastructure and cost considerations.

For a broader perspective on where hydrogen, electricity, and fuels like bioenergy fit, explore the major forms of alternative energy and how they complement one another across sectors.

 

Alternative Energy Fuels - Ethanol

When scientist Dr. Emmett "Doc" Brown used food to add fuel to his gas tank in the famous ‘80s flick, Back To The Future 2, he must have been thinking of ethanol, a liquid alcohol made of oxygen, hydrogen and carbon obtained from the fermentation of sugar or converted starch contained in grains and other agricultural or agri-forest feedstocks. Using fuel ethanol (or gasohol, which means that the alternative energy fuel source is distilled and dehydrated to create a high-octane, water-free alcohol) might one day be a viable alternative energy fuel source. However, oral consumption is unadvised because this alternative energy fuel is made unfit for drinking when a small amount of a noxious substance such as gasoline is added. In order for fuel ethanol to work as an effective alternative energy fuel source, all traces of water must be removed because water and alcohol combined cannot dissolve in gasoline. Further research into technology to produce ethanol from non-food sources is quickly moving this alternative energy fuel source toward commercialization. Because many feedstocks derive from crops and residues, ethanol often intersects with biomass energy pathways and agricultural policy.

 

Alternative Energy Fuels - Biodiesel

Conventional diesel combustion harms the environment, but biodiesel combusts better with a higher cetane rating that produces fewer life cycle greenhouse gas emissions (GHG). This alternative energy fuel source is a non-toxic and biodegradable fuel that comes from vegetable oils, animal fats, waste cooking oil, or tall oil (a by-product from pulp and paper processing). Biodiesel is made from these feedstocks through transesterification, a process that reacts the oil with an alcohol (methanol is usually used, but so can ethanol) and a catalyst (eg. sodium hydroxide). Glycerine, an ester called biodiesel, is produced from this chemical reaction. Most biodiesel is generated using this method. In practice, successful biodiesel programs are often part of broader renewable alternative energy strategies that leverage regional feedstocks and local distribution.

 

Related Articles

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified