Connecticut Seeks to Shut Off Cross-Sound Cable (Again)

By New York Times


Substation Relay Protection Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
Skirmishing over an underwater electrical wire is fast becoming a rite of spring between Long Island and Connecticut.

Last year, Senator Charles E. Schumer of New York asked the federal government to energize the Cross-Sound Cable, an underwater power line that carries electricity and political acrimony back and forth across Long Island Sound.

In 2004, it's Connecticut's turn, and the state attorney general is demanding that the cable be shut off.

Recently, the attorney general, Richard Blumenthal, asked a federal appeals court to rescind an emergency order that has kept the cable on since the August blackout. Supporters of the cable derided his plea, saying the line benefited both Long Island and Connecticut.

The cable had long been kept from operating by various court decisions, but in August, the federal Department of Energy ordered that it be powered up because of the electrical emergency created by the blackout. Mr. Blumenthal says that the emergency has subsided and that the cable is now operating illegally.

Richard Kessel, the chairman of the Long Island Power Authority, dismissed that claim. "Now that spring is here and the birds are chirping and the buds are blooming, it's time for Blumenthal to come back and make a political issue out of a serious energy issue," he said. Mr. Kessel and most New York politicians have been supporters of the 24-mile cable, which runs from Shoreham, N.Y., to New Haven, Conn., and can carry 330 megawatts of power. They have argued that the cable is a benign and necessary link between Long Island's isolated power grid and that of New England. Mr. Blumenthal and other Connecticut politicians have fought the cable just as vigorously. They say that it was not buried as deeply as required by law and that it siphons power from the grid in southwest Connecticut. In asking that the court order be lifted, Mr. Blumenthal wrote that the cable "will likely have massive, adverse rate impacts on Connecticut's electric consumers." He said redcently that the cable would cost the state about $34 million a year in lost electricity. The cable is owned by the Cross-Sound Cable Company and leased by the Long Island Power Authority for about $20 million per year. Though power can flow either way, 475,061 megawatt-hours of power flowed to Long Island on the cable in March 2004, while 6,341 megawatt-hours went to Connecticut, figures from Mr. Blumenthal's office show. Various groups had opposed the cable for environmental reasons, but a study commissioned by the Cross Sound Cable Company released in March 2004 found that the cable had not affected underwater life around it. Mr. Blumenthal said the study was barely credible because it had been financed by the cable's owners. "We will take it with as many grains of salt as there are in the sea," he said.

Related News

Criminals posing as Toronto Hydro are sending out fraudulent messages

Toronto Hydro Scam Warning urges customers to spot phishing emails, fraudulent texts, fake bills, and door-to-door threats demanding bitcoin or prepaid cards, with disconnection threats; report scams to the Canadian Anti-Fraud Centre.

 

Key Points

Advisory on phishing, fake bills, and payment scams posing as Toronto Hydro, with steps to avoid fraud and report.

✅ Hang up suspicious calls; never pay via bitcoin or prepaid cards.

✅ Do not click links in emails or texts; compare bills and account numbers.

✅ Report fraud to the Canadian Anti-Fraud Centre: 1-888-495-8501.

 

Toronto Hydro has sent out a notice that criminals posing as Toronto Hydro are sending out fraudulent texts, letters and emails, similar to a recent BC Hydro scam reported in British Columbia.

The warning comes in a tweet, along with suggestions on how to protect yourself from fraud, especially as policy debates like an NDP public hydro plan can generate confusing messages.

According to Toronto Hydro, fraudsters are contacting people by phone, text, email, fake electricity bills, and even travelling door-to-door.

They threaten to disconnect the power unless an immediate payment is made, even though legitimate utilities must follow proper disconnection notices processes. The website states that in some cases, criminals request payment via pre-paid credit card or bitcoin.

It’s written on the website that Toronto Hydro does not accept these methods of payment, and they do not threaten to immediately disconnect power, a reminder that stories about power theft abroad are not a model for local billing.

If you suspect you are being targeted, you should immediately hang up any suspicious phone calls. Don’t click on any links in emails or texts asking you to accept electronic transfers, as scammers may impersonate well-known utilities during high-profile news such as Hydro One profit changes to appear credible.

Avoid sharing any personal information over the phone or in-person, and do not make any payments related to Smart Meter Deposits, as this fee does not exist and rate-setting is overseen by the Ontario Energy Board in Ontario.

And remember to always compare bills to previous ones, including the amount and account number, since major accounting decisions like a BC Hydro deferral report can fuel confusing narratives.

To report fraudulent activity, please contact:
Canadian Anti-Fraud Centre at 1-888-495-8501; quote file number 844396

 

Related News

View more

Green energy could drive Covid-19 recovery with $100tn boost

Renewable Energy Economic Recovery drives GDP gains, job growth, and climate targets by accelerating clean energy investment, green hydrogen, and grid modernization, delivering high ROI and a resilient, low-carbon transition through stimulus and policy alignment.

 

Key Points

A strategy to boost GDP and jobs by accelerating clean power and green hydrogen while meeting climate goals.

✅ Adds $98tn to global GDP by 2050; $3-$8 return per $1 invested

✅ Quadruples clean energy jobs to 42m; improves health and welfare

✅ Cuts CO2 70% by 2050; enables net-zero via green hydrogen

 

Renewable energy could power an economic recovery from Covid-19 through a green recovery that spurs global GDP gains of almost $100tn (£80tn) between now and 2050, according to a report.

The International Renewable Energy Agency’s new IRENA report found that accelerating investment in renewable energy could generate huge economic benefits while helping to tackle the global climate emergency.

The agency’s director general, Francesco La Camera, said the global crisis ignited by the coronavirus outbreak exposed “the deep vulnerabilities of the current system” and urged governments to invest in renewable energy to kickstart economic growth and help meet climate targets.

The agency’s landmark report found that accelerating investment in renewable energy would help tackle the climate crisis and would in effect pay for itself.

Investing in renewable energy would deliver global GDP gains of $98tn above a business-as-usual scenario by 2050, as clean energy investment significantly outpaces fossil fuels, by returning between $3 and $8 on every dollar invested.

It would also quadruple the number of jobs in the sector to 42m over the next 30 years, and measurably improve global health and welfare scores, according to the report.

“Governments are facing a difficult task of bringing the health emergency under control while introducing major stimulus and recovery measures, as a US power coalition demands action,” La Camera said. “By accelerating renewables and making the energy transition an integral part of the wider recovery, governments can achieve multiple economic and social objectives in the pursuit of a resilient future that leaves nobody behind.”

The report also found that renewable energy could curb the rise in global temperatures by helping to reduce the energy industry’s carbon dioxide emissions by 70% by 2050 by replacing fossil fuels, with measures like a fossil fuel lockdown hastening the shift.

Renewables could play a greater role in cutting carbon emissions from heavy industry and transport to reach virtually zero emissions by 2050, particularly by investing in green hydrogen.

The clean-burning fuel, which can replace the fossil fuel gas in steel and cement making, could be made by using vast amounts of clean electricity to split water into hydrogen and oxygen elements.

Andrew Steer, chief executive of the World Resources Institute, said: “As the world looks to recover from the current health and economic crises, we face a choice: we can pursue a modern, clean, healthy energy system, or we can go back to the old, polluting ways of doing business. We must choose the former.”

The call for a green economic recovery from the coronavirus crisis comes after a warning from Dr Fatih Birol, head of the International Energy Agency, that government policies must be put in place to avoid an investment hiatus in the energy transition, even as the solar and wind industry faces Covid-19 disruptions.

“We should not allow today’s crisis to compromise the clean energy transition, even as wind power growth persists despite Covid-19,” he said. “We have an important window of opportunity.”

Ignacio Galán, the chairman and CEO of the Spanish renewables giant Iberdrola, which owns Scottish Power, said the company would continue to invest billions in renewable energy as well as electricity networks and batteries to help integrate clean energy in the electricity.

“A green recovery is essential as we emerge from the Covid-19 crisis. The world will benefit economically, environmentally and socially by focusing on clean energy,” he said. “Aligning economic stimulus and policy packages with climate goals is crucial for a long-term viable and healthy economy.”

 

Related News

View more

Ontario Power Generation's Commitment to Small Modular Reactors

OPG Small Modular Reactors advance clean energy with advanced nuclear, baseload power, renewables integration, and grid reliability; factory built, scalable, and cost effective to support Ontario energy security and net zero goals.

 

Key Points

Factory built nuclear units delivering reliable, low carbon power to support Ontario's grid, renewables, climate goals.

✅ Factory built modules cut costs and shorten schedules

✅ Provides baseload power to balance wind and solar

✅ Enhances grid reliability with advanced safety and waste reduction

 

Ontario Power Generation (OPG) is at the forefront of Canada’s energy transformation, demonstrating a robust commitment to sustainable energy solutions. One of the most promising avenues under exploration is the development of Small Modular Reactors (SMRs), as OPG broke ground on the first SMR at Darlington to launch this next phase. These innovative technologies represent a significant leap forward in the quest for reliable, clean, and cost-effective energy generation, aligning with Ontario’s ambitious climate goals and energy security needs.

Understanding Small Modular Reactors

Small Modular Reactors are advanced nuclear power plants that are designed to be smaller in size and capacity compared to traditional nuclear reactors. Typically generating up to 300 megawatts of electricity, SMRs can be constructed in factories and transported to their installation sites, offering flexibility and scalability that larger reactors do not provide. This modular approach reduces construction time and costs, making them an appealing option for meeting energy demands.

One of the key advantages of SMRs is their ability to provide baseload power—energy that is consistently available—while simultaneously supporting intermittent renewable sources like wind and solar. As Ontario continues to increase its reliance on renewables, SMRs could play a crucial role in ensuring that the energy supply remains stable and secure.

OPG’s Initiative

In its commitment to advancing clean energy technologies, OPG has been a strong advocate for the adoption of SMRs. The province of Ontario has announced plans to develop three additional small modular reactors, part of its plans for four Darlington SMRs that would further enhance the region’s energy portfolio. This initiative aligns with both provincial and federal climate objectives, and reflects a collaborative provincial push on nuclear innovation to accelerate clean energy.

The deployment of SMRs in Ontario is particularly strategic, given the province’s existing nuclear infrastructure, including the continued operation of Pickering NGS that supports grid reliability. OPG operates a significant portion of Ontario’s nuclear fleet, and leveraging this existing expertise can facilitate the integration of SMRs into the energy mix. By building on established operational frameworks, OPG can ensure that new reactors are deployed safely and efficiently.

Economic and Environmental Benefits

The introduction of SMRs is expected to bring substantial economic benefits to Ontario. The construction and operation of these reactors will create jobs, including work associated with the Pickering B refurbishment across the province, stimulate local economies, and foster innovation in nuclear technology. Additionally, SMRs have the potential to attract investment from both domestic and international stakeholders, positioning Ontario as a leader in advanced nuclear technology.

From an environmental perspective, SMRs are designed with enhanced safety features and lower waste production compared to traditional reactors, complementing life-extension measures at Pickering that bolster system reliability. They can significantly contribute to Ontario’s goal of achieving net-zero emissions by 2050. By providing a reliable source of clean energy, SMRs will help mitigate the impacts of climate change while supporting the province's transition to a sustainable energy future.

Community Engagement and Collaboration

Recognizing the importance of community acceptance and stakeholder engagement, OPG is committed to an open dialogue with local communities and Indigenous groups. This collaboration is essential to addressing concerns and ensuring that the deployment of SMRs is aligned with the values and priorities of the residents of Ontario. By fostering a transparent process, OPG aims to build trust and support for this innovative energy solution.

Moreover, the development of SMRs will involve partnerships with various stakeholders, including government agencies, research institutions, and private industry, such as the OPG-TVA partnership to advance new nuclear technology. These collaborations will not only enhance the technical aspects of SMR deployment but also ensure that Ontario can capitalize on shared expertise and resources.

Looking Ahead

As Ontario Power Generation moves forward with plans for three additional Small Modular Reactors, the province stands at a critical juncture in its energy evolution. The integration of SMRs into Ontario’s energy landscape promises a sustainable, reliable, and economically viable solution to meet growing energy demands while addressing climate change challenges.

With the support of government initiatives, community collaboration, and continued innovation in nuclear technology, Ontario is poised to become a leader in the advancement of Small Modular Reactors. The successful implementation of these projects could serve as a model for other jurisdictions seeking to transition to cleaner energy sources, highlighting the role of nuclear power in a balanced and sustainable energy future.

In conclusion, OPG's commitment to developing Small Modular Reactors not only reinforces Ontario’s energy security but also demonstrates a proactive approach to addressing the pressing challenges of climate change and environmental sustainability. The future of energy in Ontario looks promising, driven by innovation and a commitment to clean energy solutions.

 

Related News

View more

Scotland’s Wind Farms Generate Enough Electricity to Power Nearly 4.5 Million Homes

Scotland Wind Energy delivered record renewable power as wind turbines and farms generated 9,831,320 MWh in H1 2019, supplying clean electricity for every home twice and supporting northern England, according to WWF data.

 

Key Points

Term for Scotland's wind power output, highlighting 2019 records, clean electricity, and progress on decarbonization.

✅ 9,831,320 MWh generated Jan-Jun 2019 by wind farms

✅ Enough to power 4.47 million homes twice in that period

✅ Advances decarbonization and 2030 renewables, 2050 net-zero goals

 

Wind turbines in Scotland produced enough electricity in the first half of 2019, reflecting periods when wind led the power mix across the UK, to power every home in the country twice over, according to new data by the analytics group WeatherEnergy. The wind farms generated 9,831,320 megawatt-hours between January and June, as the UK set a wind generation record in comparable periods, equal to the total electricity consumption of 4.47 million homes during that same period.

The electricity generated by wind in early 2019 is enough to power all of Scotland’s homes, as well as a large portion of northern England’s, highlighting how wind and solar exceeded nuclear in the UK in recent milestones as well, and events such as record UK output during Storm Malik underscore this capacity.

“These are amazing figures,” Robin Parker, climate and energy policy manager at WWF, which highlighted the new data, said in a statement. “Scotland’s wind energy revolution is clearly continuing to power ahead, as wind became the UK’s main electricity source in a recent first. Up and down the country, we are all benefitting from cleaner energy and so is the climate.”

Scotland currently has a target of generating half its electricity from renewables by 2030, a goal buoyed by milestones like more UK electricity from wind than coal in 2016, and decarbonizing its energy system almost entirely by 2050. Experts say the latest wind energy data shows the country could reach its goal far sooner than originally anticipated, especially with complementary technologies such as tidal power in Scottish waters gaining traction.

 

Related News

View more

Toronto Cleans Up After Severe Flooding

Toronto Flood Cleanup details the citywide response to storm damage after heavy rain, stressing drainage system upgrades, emergency services, transit disruptions, infrastructure repair, financial aid, insurance claims, and climate resilience planning for future weather.

 

Key Points

Toronto Flood Cleanup is the city's flood response, restoring infrastructure, aiding residents, and upgrading drainage.

✅ Emergency services and public works lead debris removal.

✅ Repairs to roads, bridges, transit, and utilities underway.

✅ Aid, insurance claims, and drainage upgrades prioritized.

 

Toronto is grappling with significant cleanup efforts following severe storms that unleashed heavy rains and caused widespread flooding across the city. The storms, which hit the area over the past week, have left a trail of damage and disruption, prompting both immediate response measures and longer-term recovery plans.

The intense rainfall began with a powerful storm system that moved through southern Ontario, with Sudbury Hydro crews working to reconnect service as the system pressed toward the GTA, delivering an unprecedented volume of water in a short period. The resulting downpours overwhelmed the city's drainage systems, leading to severe flooding in multiple neighborhoods. Streets, basements, and parks were inundated, with many areas experiencing water levels not seen in recent memory.

Emergency services were quickly mobilized to address the immediate impact of the floods. Toronto’s Fire Services, along with other first responders and skilled utility teams, as Ontario recently sent 200 workers to Florida to help restore power, were deployed to assist residents affected by the rising waters. Rescue operations were carried out to help people trapped in their homes or vehicles, and temporary shelters were set up for those displaced by the flooding.

The storm's impact was felt across various sectors of the city. Public transportation services were disrupted, as strong gusts led to significant power outages in parts of the region, with numerous subway stations and bus routes affected by the high water levels. Major roads were closed due to flooding, causing significant traffic delays and affecting daily commutes for many residents. Local businesses also faced challenges, with some forced to close their doors as a result of the water damage.

The city's infrastructure bore the brunt of the storm's fury. Several key infrastructure components, including roads, bridges, and utilities, suffered damage. The city's water treatment plants and sewage systems were stressed by the volume of water, raising concerns about potential contamination and the need for extensive maintenance and repair work.

In the wake of the flooding, the Toronto Municipal Government has launched a comprehensive cleanup and recovery effort. The city's Public Works Department is spearheading the operation, focusing on clearing debris, repairing damaged infrastructure, and restoring essential services, as Hydro One crews restore power to hundreds of thousands across Ontario. Teams of workers are diligently addressing the damage to roads and bridges, ensuring that they are safe for use and functioning properly.

Efforts are also underway to assist residents and businesses affected by the flooding. Financial aid and support programs are being implemented to help those who have suffered property damage or loss, including customers affected by Toronto power outages as repairs continue. The city is working closely with insurance companies to facilitate claims and provide relief to those in need.

In addition to the immediate cleanup, there is a heightened focus on evaluating and improving the city's flood management systems. The recent storms have highlighted vulnerabilities in Toronto’s infrastructure, prompting calls for enhanced flood prevention measures. City officials and urban planners are assessing the current drainage systems and exploring ways to bolster their capacity to handle future extreme weather events.

The storms have also sparked discussions about the broader implications of climate change and its impact on urban areas. Experts suggest that increasingly severe weather events, including heavy rainfall and flooding, may become more common, as seen with Houston's extended power outage after severe storms, as global temperatures rise. This has led to a call for more resilient and adaptable infrastructure to better withstand such events.

Community organizations and volunteers have played a vital role in the recovery process. Local groups have come together to support their neighbors, providing assistance with cleanup efforts, distributing supplies, and offering emotional support to those affected by the disaster. Their contributions underscore the importance of community solidarity in times of crisis.

As Toronto works towards recovery, there is a clear recognition of the need for a comprehensive strategy to address both the immediate and long-term challenges posed by severe weather events. The city’s response will involve not only repairing the damage caused by this storm but also investing in infrastructure improvements, drawing lessons from London power outage disruption cases to harden critical systems, and adopting measures to mitigate the impact of future floods.

In summary, the severe storms that recently struck Toronto have led to widespread flooding and significant disruption across the city. The immediate response has involved extensive cleanup efforts, damage assessment, and support for affected residents and businesses. Looking ahead, Toronto faces the challenge of enhancing its flood management systems and preparing for the potential impacts of climate change. The collective efforts of emergency services, city officials, and community members will be crucial in ensuring a swift recovery and building resilience against future storms.

 

Related News

View more

Kenya on Course for $5 Billion Nuclear Plant to Power Industry

Kenya Nuclear Power Plant Project advances with environmental impact assessment, selecting Tana River County under a build-operate-transfer model to boost grid capacity, support manufacturing growth, and assess reactor technology for reliable baseload energy.

 

Key Points

A $5B BOT nuclear facility in Tana River to expand Kenya's grid, aiming to start operations in about seven years.

✅ Environmental impact study published for public review by NEMA

✅ Preferred site: Tana River County near coast; grid integration

✅ BOT concession; reactor tech under evaluation for baseload

 

Kenya’s nuclear agency submitted impact studies for a $5 billion power plant, and said it’s on course to build and start operating the facility in about seven years, as markets like China's nuclear program continue steady expansion.

The government plans to expand its nuclear-power capacity fourfold by 2035, mirroring policy steps in India to revive the sector, the Nuclear Power and Energy Agency said in a report on the National Environment Management Authority’s website. The document is set for public scrutiny before the environmental watchdog can approve it, aligning with global green industrial strategies that weigh nuclear in decarbonization, and pave the way for the project to continue.

President Uhuru Kenyatta wants to ramp up installed generation capacity from 2,712 megawatts as of April to boost manufacturing in East Africa’s largest economy, noting milestones such as Barakah Unit 1 reaching 100% power as indicators of nuclear readiness. Kenya expects peak demand to top 22,000 megawatts by 2031, and other jurisdictions, such as Ontario's exploration of new nuclear, are weighing similar large-scale options, partly due to industrial expansion, a component in Kenyatta’s Big Four Agenda. The other three are improving farming, health care and housing.

The nuclear agency is assessing technologies “to identify the ideal reactor for the country,” it said in the report, including next-gen nuclear designs now being evaluated.

A site in Tana River County, near the Kenyan coast was preferred after studies across three regions, according to the report. The plant will be developed with a concessionaire under a build, operate and transfer model, with innovators such as mini-reactor concepts informing vendor options.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.