Coal is the elephant in our dining room — impossible to ignore. Because we depend on coal for 45 percent of our electricity, we will never be able to replace it entirely. So how can we make coal a "good neighbor" to the environment?
Carbon capture and sequestration (CCS) is a technique that removes CO2 in flue gas from power plant smokestacks and buries it in deep geologic formations. CCS is ready for use now, despite the protestations of grant-hungry researchers. The Shady Point power plant in eastern Oklahoma has been removing CO2 from flue gases and pumping it into depleting oil wells for years. CO2 emissions from a cement plant in Montana are pipelined to oilfields in Canada for sequestration. A busy market buying and selling CO2 operates today in the petroleum industry.
Thirty years of experience in finding, transporting and injecting CO2 into geologic formations to move more oil out of a reservoir to the surface demonstrates that CCS is a viable, secure way to dispose of CO2.
Until recently, the only source of CO2 for oil recovery lay in naturally occurring geologic traps in New Mexico and Colorado, secure in rocks more than 60 million years old. That ancient leak-proof sequestration history should satisfy even the most skeptical critic.
Trapping mechanisms — porous rocks capped by sealing rocks like salt or shale — are common round the world. Norway says its saltwater aquifer used in sequestration in the North Sea can provide enough disposal space for all the CO2 Europe will produce in the next 100 years. Injection of CO2 works in west Texas; in Oklahoma; in Alberta, Canada; and off Norway in the North Sea. How can we doubt that CCS represents a solution for disposing of CO2 from coal-fired power plants today? Now comes the sticking point: cost. The equipment for removing CO2 from flue gases is specialized and therefore expensive. However, when a huge market develops at coal-fired plants, the price for mass-producing the equipment will come down. The result: a bonanza of new manufacturing jobs in the United States.
Geologic studies near the plants will be required to locate one or more sealed saltwater aquifers in which to inject the CO2. In many states, enough wells drilled for oil and gas can provide reliable information about subsurface conditions.
Some concern has been raised about injecting CO2 near populated areas. In west Texas, the cities of Midland and Odessa, with some 250,000 residents, are surrounded by many CO2 injection wells with no escaping CO2 detected for 30 years. A new technology, coal conversion to synthetic gas, or syngas, which is composed of hydrogen, CO2 and carbon monoxide, provides a further boon. This almost inexhaustible supply of hydrogen can power fuel cells, while the carbon gases can be sequestered.
Consumers deserve to have an estimate of the costs such activities might entail. Initial units may increase electricity costs as much as 50 percent, though eventually installations will add only about 30 percent. Other than mandating huge conservation efforts or imposing carbon taxes, we have few alternatives to carbon capture and sequestration.
European Energy Crisis shocks markets as Russia slashes gas via Nord Stream, spiking prices and triggering rationing, LNG imports, storage shortfalls, and emergency measures to secure energy security before a harsh winter.
Key Points
Europe-wide gas shock from reduced Russian flows drives price spikes, rationing risk, LNG reliance, and emergency action.
✅ Nord Stream cuts deepen supply insecurity and storage gaps
✅ LNG imports rise but terminal capacity and shipping are tight
As Russian gas cutoffs upend European energy security, the continent is struggling to cope with what experts say is one of its worst-ever energy crises—and it could still get much worse.
For months, European leaders have been haunted by the prospect of losing Russia’s natural gas supply, which accounts for some 40 percent of European imports and has been a crucial energy lifeline for the continent. That nightmare is now becoming a painful reality as Moscow slashes its flows in retaliation for Europe’s support for Ukraine, dramatically increasing energy prices and forcing many countries to resort to emergency plans, including emergency measures to limit electricity prices in some cases, and as backup energy suppliers such as Norway and North Africa are failing to step up.
“This is the most extreme energy crisis that has ever occurred in Europe,” said Alex Munton, an expert on global gas markets at Rapidan Energy Group, a consultancy. “Europe [is] looking at the very real prospect of not having sufficient gas when it’s most needed, which is during the coldest part of the year.”
“Prices have shot through the roof,” added Munton, who noted that European natural gas prices—nearly $50 per MMBTu—have eclipsed U.S. price rises by nearly tenfold, and that rolling back electricity prices is tougher than it appears in the current market. “That is an extraordinarily high price to be paying for natural gas, and really there is no immediate way out from here.”
Many officials and energy experts worry that the crisis will only deepen after Nord Stream 1, the largest gas pipeline from Russia to Europe, is taken down for scheduled maintenance this week. Although the pipeline is supposed to be under repair for only 10 days, the Kremlin’s history of energy blackmail and weaponization has stoked fears that Moscow won’t turn it back on—leaving heavily reliant European countries in the lurch. (Russia’s second pipeline to Germany, Nord Stream 2, was killed in February as Russian President Vladimir Putin prepared to invade Ukraine, leaving Nord Stream 1 as the biggest direct gas link between Russia and Europe’s biggest economy.)
“Everything is possible. Everything can happen,” German economy minister Robert Habeck told Deutschlandfunk on Saturday. “It could be that the gas flows again, maybe more than before. It can also be the case that nothing comes.”
That would spell trouble for the upcoming winter, when demand for energy surges and having sufficient natural gas is necessary for heating. European countries typically rely on the summer months to refill their gas storage facilities. And at a time of war, when the continent’s future gas supply is uncertain, having that energy cushion is especially crucial.
If Russia’s prolonged disruptions continue, experts warn of a difficult winter: one of potential rationing, industrial shutdowns, and even massive economic dislocation. British officials, who just a few months ago warned of soaring power bills for consumers, are now warning of even worse, despite a brief fall to pre-Ukraine war levels in gas prices earlier in the year.
Europe could face a “winter of discontent,” said Helima Croft, a managing director at RBC Capital Markets. “Rationing, industrial shut-ins—all of that is looming.”
Unrest has already been brewing, with strikes erupting across the continent as households struggle under the pressures of spiraling costs of living and inflationary pressures. Some of this discontent has also had knock-on effects in the energy market. In Norway, the European Union’s biggest supplier of natural gas after Russia, mass strikes in the oil and gas industries last week forced companies to shutter production, sending further shockwaves throughout Europe.
European countries are at risk of descending into “very, very strong conflict and strife because there is no energy,” Frans Timmermans, the vice president of the European Commission, told the Guardian. “Putin is using all the means he has to create strife in our societies, so we have to brace ourselves for a very difficult period.”
The pain of the crisis, however, is perhaps being felt most clearly in Germany, which has been forced to turn to a number of energy-saving measures, including rationing heated water and closing swimming pools. To cope with the crunch, Berlin has already entered the second phase of its three-stage emergency gas plan; last week, it also moved to bail out its energy giants amid German utility troubles that have been financially slammed by Russian cutoffs.
But it’s not just Germany. “This is happening all across Europe,” said Olga Khakova, an expert on European energy security at the Atlantic Council, who noted that France has also announced plans to nationalize the EDF power company as it buckles under mounting economic losses, and the EU outlines gas price cap strategies to temper volatility. “The challenging part is how much can these governments provide in support to their energy consumers, to these companies? And what is that breaking point?”
The situation has also complicated many countries’ climate goals, even as some call it a wake-up call to ditch fossil fuels for Europe. In late June, Germany, Italy, Austria, and the Netherlands announced they would restart old coal power plants as they grapple with shrinking supplies.
The potential outcomes that European nations are grappling with reveal how this crisis is occurring on a scale that has only been seen in times of war, Munton said. In the worst-case scenario, “we’re talking about rationing gas supplies, and this is not something that Europe has had to contend with in any other time than the wartime,” he said. “That’s essentially where things have got to now. This is an energy war.”
They also underscore the long and painful battle that Europe will continue to face in weaning itself off Russian gas. Despite the continent’s eagerness to leave Moscow’s supply behind, experts say Europe will likely remain trapped in this spiraling crisis until it can develop the infrastructure for greater energy independence—and that could take years. U.S. gas, shipped by tanker, is one option, but that requires new terminals to receive the gas and U.S. energy impacts remain a factor for policymakers. New pipelines take even longer to build—and there isn’t a surfeit of eligible suppliers.
Until then, European leaders will continue to scramble to secure enough supplies—and can only hope for mild weather. The “worst-case scenario is people having to choose between eating and heating come winter,” Croft said.
Boeing 787 More-Electric Architecture replaces pneumatics with bleedless pressurization, VFSG starter-generators, electric brakes, and heated wing anti-ice, leveraging APU, RAT, batteries, and airport ground power for efficient, redundant electrical power distribution.
Key Points
An integrated, bleedless electrical system powering start, pressurization, brakes, and anti-ice via VFSGs, APU and RAT.
✅ VFSGs start engines, then generate 235Vac variable-frequency power
✅ Bleedless pressurization, electric anti-ice improve fuel efficiency
✅ Electric brakes cut hydraulic weight and simplify maintenance
The 787 Dreamliner is different to most commercial aircraft flying the skies today. On the surface it may seem pretty similar to the likes of the 777 and A350, but get under the skin and it’s a whole different aircraft.
When Boeing designed the 787, in order to make it as fuel efficient as possible, it had to completely shake up the way some of the normal aircraft systems operated. Traditionally, systems such as the pressurization, engine start and wing anti-ice were powered by pneumatics. The wheel brakes were powered by the hydraulics. These essential systems required a lot of physical architecture and with that comes weight and maintenance. This got engineers thinking.
What if the brakes didn’t need the hydraulics? What if the engines could be started without the pneumatic system? What if the pressurisation system didn’t need bleed air from the engines? Imagine if all these systems could be powered electrically… so that’s what they did.
Power sources
The 787 uses a lot of electricity. Therefore, to keep up with the demand, it has a number of sources of power, much as grid operators track supply on the GB energy dashboard to balance loads. Depending on whether the aircraft is on the ground with its engines off or in the air with both engines running, different combinations of the power sources are used.
Engine starter/generators
The main source of power comes from four 235Vac variable frequency engine starter/generators (VFSGs). There are two of these in each engine. These function as electrically powered starter motors for the engine start, and once the engine is running, then act as engine driven generators.
The generators in the left engine are designated as L1 and L2, the two in the right engine are R1 and R2. They are connected to their respective engine gearbox to generate electrical power directly proportional to the engine speed. With the engines running, the generators provide electrical power to all the aircraft systems.
APU starter/generators
In the tail of most commercial aircraft sits a small engine, the Auxiliary Power Unit (APU). While this does not provide any power for aircraft propulsion, it does provide electrics for when the engines are not running.
The APU of the 787 has the same generators as each of the engines — two 235Vac VFSGs, designated L and R. They act as starter motors to get the APU going and once running, then act as generators. The power generated is once again directly proportional to the APU speed.
The APU not only provides power to the aircraft on the ground when the engines are switched off, but it can also provide power in flight should there be a problem with one of the engine generators.
Battery power
The aircraft has one main battery and one APU battery. The latter is quite basic, providing power to start the APU and for some of the external aircraft lighting.
The main battery is there to power the aircraft up when everything has been switched off and also in cases of extreme electrical failure in flight, and in the grid context, alternatives such as gravity power storage are being explored for long-duration resilience. It provides power to start the APU, acts as a back-up for the brakes and also feeds the captain’s flight instruments until the Ram Air Turbine deploys.
Ram air turbine (RAT) generator
When you need this, you’re really not having a great day. The RAT is a small propeller which automatically drops out of the underside of the aircraft in the event of a double engine failure (or when all three hydraulics system pressures are low). It can also be deployed manually by pressing a switch in the flight deck.
Once deployed into the airflow, the RAT spins up and turns the RAT generator. This provides enough electrical power to operate the captain’s flight instruments and other essentials items for communication, navigation and flight controls.
External power
Using the APU on the ground for electrics is fine, but they do tend to be quite noisy. Not great for airports wishing to keep their noise footprint down. To enable aircraft to be powered without the APU, most big airports will have a ground power system drawing from national grids, including output from facilities such as Barakah Unit 1 as part of the mix. Large cables from the airport power supply connect 115Vac to the aircraft and allow pilots to shut down the APU. This not only keeps the noise down but also saves on the fuel which the APU would use.
The 787 has three external power inputs — two at the front and one at the rear. The forward system is used to power systems required for ground operations such as lighting, cargo door operation and some cabin systems. If only one forward power source is connected, only very limited functions will be available.
The aft external power is only used when the ground power is required for engine start.
Circuit breakers
Most flight decks you visit will have the back wall covered in circuit breakers — CBs. If there is a problem with a system, the circuit breaker may “pop” to preserve the aircraft electrical system. If a particular system is not working, part of the engineers procedure may require them to pull and “collar” a CB — placing a small ring around the CB to stop it from being pushed back in. However, on the 787 there are no physical circuit breakers. You’ve guessed it, they’re electric.
Within the Multi Function Display screen is the Circuit Breaker Indication and Control (CBIC). From here, engineers and pilots are able to access all the “CBs” which would normally be on the back wall of the flight deck. If an operational procedure requires it, engineers are able to electrically pull and collar a CB giving the same result as a conventional CB.
Not only does this mean that the there are no physical CBs which may need replacing, it also creates space behind the flight deck which can be utilised for the galley area and cabin.
A normal flight
While it’s useful to have all these systems, they are never all used at the same time, and, as the power sector’s COVID-19 mitigation strategies showed, resilience planning matters across operations. Depending on the stage of the flight, different power sources will be used, sometimes in conjunction with others, to supply the required power.
On the ground
When we arrive at the aircraft, more often than not the aircraft is plugged into the external power with the APU off. Electricity is the blood of the 787 and it doesn’t like to be without a good supply constantly pumping through its system, and, as seen in NYC electric rhythms during COVID-19, demand patterns can shift quickly. Ground staff will connect two forward external power sources, as this enables us to operate the maximum number of systems as we prepare the aircraft for departure.
Whilst connected to the external source, there is not enough power to run the air conditioning system. As a result, whilst the APU is off, air conditioning is provided by Preconditioned Air (PCA) units on the ground. These connect to the aircraft by a pipe and pump cool air into the cabin to keep the temperature at a comfortable level.
APU start
As we near departure time, we need to start making some changes to the configuration of the electrical system. Before we can push back , the external power needs to be disconnected — the airports don’t take too kindly to us taking their cables with us — and since that supply ultimately comes from the grid, projects like the Bruce Power upgrade increase available capacity during peaks, but we need to generate our own power before we start the engines so to do this, we use the APU.
The APU, like any engine, takes a little time to start up, around 90 seconds or so. If you remember from before, the external power only supplies 115Vac whereas the two VFSGs in the APU each provide 235Vac. As a result, as soon as the APU is running, it automatically takes over the running of the electrical systems. The ground staff are then clear to disconnect the ground power.
If you read my article on how the 787 is pressurised, you’ll know that it’s powered by the electrical system. As soon as the APU is supplying the electricity, there is enough power to run the aircraft air conditioning. The PCA can then be removed.
Engine start
Once all doors and hatches are closed, external cables and pipes have been removed and the APU is running, we’re ready to push back from the gate and start our engines. Both engines are normally started at the same time, unless the outside air temperature is below 5°C.
On other aircraft types, the engines require high pressure air from the APU to turn the starter in the engine. This requires a lot of power from the APU and is also quite noisy. On the 787, the engine start is entirely electrical.
Power is drawn from the APU and feeds the VFSGs in the engines. If you remember from earlier, these fist act as starter motors. The starter motor starts the turn the turbines in the middle of the engine. These in turn start to turn the forward stages of the engine. Once there is enough airflow through the engine, and the fuel is igniting, there is enough energy to continue running itself.
After start
Once the engine is running, the VFSGs stop acting as starter motors and revert to acting as generators. As these generators are the preferred power source, they automatically take over the running of the electrical systems from the APU, which can then be switched off. The aircraft is now in the desired configuration for flight, with the 4 VFSGs in both engines providing all the power the aircraft needs.
As the aircraft moves away towards the runway, another electrically powered system is used — the brakes. On other aircraft types, the brakes are powered by the hydraulics system. This requires extra pipe work and the associated weight that goes with that. Hydraulically powered brake units can also be time consuming to replace.
By having electric brakes, the 787 is able to reduce the weight of the hydraulics system and it also makes it easier to change brake units. “Plug in and play” brakes are far quicker to change, keeping maintenance costs down and reducing flight delays.
In-flight
Another system which is powered electrically on the 787 is the anti-ice system. As aircraft fly though clouds in cold temperatures, ice can build up along the leading edge of the wing. As this reduces the efficiency of the the wing, we need to get rid of this.
Other aircraft types use hot air from the engines to melt it. On the 787, we have electrically powered pads along the leading edge which heat up to melt the ice.
Not only does this keep more power in the engines, but it also reduces the drag created as the hot air leaves the structure of the wing. A double win for fuel savings.
Once on the ground at the destination, it’s time to start thinking about the electrical configuration again. As we make our way to the gate, we start the APU in preparation for the engine shut down. However, because the engine generators have a high priority than the APU generators, the APU does not automatically take over. Instead, an indication on the EICAS shows APU RUNNING, to inform us that the APU is ready to take the electrical load.
Shutdown
With the park brake set, it’s time to shut the engines down. A final check that the APU is indeed running is made before moving the engine control switches to shut off. Plunging the cabin into darkness isn’t a smooth move. As the engines are shut down, the APU automatically takes over the power supply for the aircraft. Once the ground staff have connected the external power, we then have the option to also shut down the APU.
However, before doing this, we consider the cabin environment. If there is no PCA available and it’s hot outside, without the APU the cabin temperature will rise pretty quickly. In situations like this we’ll wait until all the passengers are off the aircraft until we shut down the APU.
Once on external power, the full flight cycle is complete. The aircraft can now be cleaned and catered, ready for the next crew to take over.
Bottom line
Electricity is a fundamental part of operating the 787. Even when there are no passengers on board, some power is required to keep the systems running, ready for the arrival of the next crew. As we prepare the aircraft for departure and start the engines, various methods of powering the aircraft are used.
The aircraft has six electrical generators, of which only four are used in normal flights. Should one fail, there are back-ups available. Should these back-ups fail, there are back-ups for the back-ups in the form of the battery. Should this back-up fail, there is yet another layer of contingency in the form of the RAT. A highly unlikely event.
The 787 was built around improving efficiency and lowering carbon emissions whilst ensuring unrivalled levels safety, and, in the wider energy landscape, perspectives like nuclear beyond electricity highlight complementary paths to decarbonization — a mission it’s able to achieve on hundreds of flights every single day.
Ireland electricity support measures include PSO levy rebates, RESS 2 renewables, CRU-directed EirGrid backup capacity, and grid investment for the Celtic Interconnector, cutting bills, boosting security of supply, and reducing reliance on imported fossil fuels.
Key Points
Government steps to cut bills and secure supply via PSO rebates, RESS 2 renewables, backup power, and grid upgrades.
✅ PSO levy rebates lower domestic electricity bills.
✅ RESS 2 adds wind, solar, and hydro to the grid.
✅ EirGrid to procure temporary backup capacity for winter peaks.
Ireland's Cabinet has approved a package of measures to help mitigate the rising cost of rising electricity bills, as Irish provider price increases continue to pressure consumers, and to ensure secure supplies to electricity for households and business across Ireland over the coming years.
The package of measures includes changes to the Public Service Obligation (PSO) levy (beyond those announced earlier in the year), which align with emerging EU plans for more fixed-price electricity contracts to improve price stability. The changes will result in rebates, and thus savings, for domestic electricity bills over the course of the next PSO year beginning in October. This further reduction in the PSO levy occurs because of a fall in the relative cost of renewable energy, compared to fossil fuel generation.
The Government has also approved the final results of the second onshore Renewable Electricity Support Scheme (RESS 2) auction, echoing how Ontario's electricity auctions have aimed to lower costs for consumers. This will bring significantly more indigenous wind, solar and hydro-electric energy onto the National Grid. This, in turn, will reduce our reliance on increasingly expensive imported fossil fuels, as the UK explores ending the gas-electricity price link to curb bills.
The package also includes Government approval for the provision of funding for back-up generation capacity, to address risks to security of electricity supply over the coming winters, similar to the UK's forthcoming energy security law approach in this area. The Commission for the Regulation of Utilities (CRU), which has statutory responsibility for security of supply, has directed EirGrid to procure additional temporary emergency generation capacity (for the winters of 2023/2024 to 2025/2026). This will ultimately provide flexible and temporary back-up capacity, to safeguard secure supplies of electricity for households and businesses as we deploy longer-term generation capacity.
Today’s measures also see an increased borrowing limit (€3 billion) for EirGrid – to strengthen our National Grid as part of 'Shaping Our Electricity Future' and to deliver the Celtic (Ireland-France) Interconnector, amid wider European moves to revamp the electricity market that could enhance cross-border resilience. An increased borrowing limit (€650 million) for Bord na Móna will drive greater deployment of indigenous renewable energy across the Midlands and beyond – as part of its 'Brown to Green' strategy, while measures like the UK's household energy price cap illustrate the scale of consumer support elsewhere.
Ontario Battery Energy Storage anchors IESO strategy, easing peak demand and boosting grid reliability. Projects like Oneida BESS (250MW) and nearly 3GW procurements integrate renewables, wind and solar, enabling flexible, decarbonized power.
Key Points
Provincewide grid batteries help IESO manage peaks, integrate renewables, and strengthen reliability across Ontario.
✅ IESO forecasts 1,000MW peak growth by 2026
✅ Oneida BESS adds 250MW with 20-year contract
✅ Nearly 3GW storage procured via LT1 and other RFPs
Ontario’s electricity grid is facing increasing demand amid a looming supply crunch, prompting the province to invest heavily in battery energy storage systems (BESS) as a key solution. The Ontario Independent Electricity System Operator (IESO) has highlighted that these storage technologies will be crucial for managing peak demand in the coming years.
Ontario's energy demands have been on the rise, driven by factors such as population growth, electric vehicle manufacturing, data center expansions, and heavy industrial activity. The IESO's latest assessment, and its work on enabling storage, covering the period from April 2025 to September 2026, indicates that peak demand will increase by approximately 1,000MW between the summer of 2025 and 2026. This forecasted rise in energy use is attributed to the acceleration of various sectors within the province, underscoring the need for reliable, scalable energy solutions.
A significant portion of this solution will be met by large-scale energy storage projects. Among the most prominent is the Oneida BESS, a flagship project that will contribute 250MW of storage capacity. This project, developed by a consortium including Northland Power and NRStor, will be located on land owned by the Six Nations of the Grand River. Expected to be operational soon, it will play a pivotal role in ensuring grid stability during high-demand periods. The project benefits from a 20-year contract with the IESO, guaranteeing payments that will support its financial viability, alongside additional revenue from participating in the wholesale energy market.
In addition to Oneida, Ontario has committed to acquiring nearly 3GW of energy storage capacity through various procurement programs. The 2023 Expedited Long-Term 1 (LT1) request for proposals (RfP) alone secured 881MW of storage, with additional projects in the pipeline. A notable example is the Hagersville Battery Energy Storage Park, which, upon completion, will be the largest such project in Canada. The success of these procurement efforts highlights the growing importance of BESS in Ontario's energy strategy.
The IESO’s proactive approach to energy storage is not only a response to rising demand but also a step toward decarbonizing the province’s energy system. As Ontario transitions away from traditional fossil fuels, BESS will provide the necessary flexibility to accommodate increasing renewable energy generation, a clean energy solution widely recognized in jurisdictions like New York, particularly from intermittent sources like wind and solar. By storing excess energy during periods of low demand and dispatching it when needed, these systems will help maintain grid stability, and as many utilities see benefits even without mandates, reduce reliance on fossil fuel-based power plants.
Looking ahead, Ontario's energy storage capacity is expected to grow significantly, complemented by initiatives such as the Hydrogen Innovation Fund, with projects from the 2023 LT1 RfP expected to come online by 2027. As more storage resources are integrated into the grid, the province is positioning itself to meet its rising energy needs while also advancing its environmental goals.
Ontario’s increasing reliance on battery energy storage is a clear indication of the province’s commitment to a sustainable and resilient energy future, aligning with perspectives from Sudbury sustainability advocates on the grid's future. With substantial investments in storage technology, Ontario is not only addressing current energy challenges but also paving the way for a cleaner, more reliable energy system in the years to come.
BC Hydro Site C and Clean Energy Policy shapes B.C.'s power mix, affecting run-of-river hydro, net metering for rooftop solar, independent power producers, and surplus capacity forecasts tied to LNG Canada demand.
Key Points
BC Hydro's strategy centers on Site C, limiting new run-of-river projects and tightening net metering amid surplus power
✅ Site C adds long-term capacity with lower projected rates.
✅ Net metering limits deter oversized rooftop solar.
Innergex Renewable Energy Inc. is celebrating the official commissioning today of what may be the last large run-of-river hydro project in B.C. for years to come.
The project – two new generating stations on the Upper Lillooet River and Boulder Creek in the Pemberton Valley – actually began producing power in 2017, but the official commissioning was delayed until Friday September 14.
Innergex, which earlier this year bought out Vancouver’s Alterra Power, invested $491 million in the two run-of-river hydro-electric projects, which have a generating capacity of 106 megawatts of power. The project has the generating capacity to power 39,000 homes.
The commissioning happened to coincide with an address by BC Hydro CEO Chris O’Riley to the Greater Vancouver Board of Trade Friday, in which he provided an update on the progress of the $10.7-billion Site C dam project.
That project has put an end, for the foreseeable future, of any major new run-of-river projects like the Innergex project in Pemberton.
BC Hydro expects the new dam to produce a surplus of power when it is commissioned in November 2024, so no new clean energy power calls are expected for years to come.
Independent power producers aren’t the only ones who have seen a decline in opportunities to make money in B.C. providing renewable power, as the Siwash Creek project shows. So will homeowners who over-build their own solar power systems, in an attempt to make money from power sales.
There are about 1,300 homeowners in B.C. with rooftop solar systems, and when they produce surplus power, they can sell it to BC Hydro.
BC Hydro is amending the net metering program to discourage homeowners from over-building. In some cases, some howeowners have been generating 40% to 50% more power than they need.
“We were getting installations that were massively over-sized for their load, and selling this big quantity of power to us,” O’Riley said. “And that was never the idea of the program.”
Going forward, BC Hydro plans to place limits on how much power a homeowner can sell to BC Hydro.
BC Hydro has been criticized for building Site C when the demand for power has been generally flat, and reliance on out-of-province electricity has drawn scrutiny. But O’Riley said the dam isn’t being built for today’s generation, but the next.
“We’re not building Site C for today,” he said. “We have an energy surplus for the short term. We’re not even building it for 2024. We’re building it for the next 100 years.”
O’Riley acknowledged Site C dam has been a contentious and “extremely challenging” project. It has faced numerous court challenges, a late-stage review by the BC Utilities Commission, cost overruns, geotechnical problems and a dispute with the main contractors.
In a separate case, the province was ordered to pay $10 million over the denial of a Squamish power project, highlighting broader legal risk.
But those issues have been resolved, O’Riley said, and the project is back on track with a new construction schedule.
“As we move forward, we have a responsibility to deliver a project on time and against the new revised budget, and I’m confident the changes we’ve made are set up to do that,” O’Riley said.
Currently, there are about 3,300 workers employed on the dam project.
Despite criticisms that BC Hydro is investing in a legacy mega-project at a time when cost of wind and solar have been falling, O’Riley insisted that Site C was the best and lowest cost option.
“First, it’s the lowest cost option,” he said. “We expect over the first 20 years of Site C’s operating life, our customers will see rates 7% to 10% below what it would otherwise be using the alternatives.”
BC Hydro missed a critical window to divert the Peace River, something that can only be done in September, during lower river flows. That added a full year’s delay to the project.
O’Riley said BC Hydro had built in a one-year contingency into the project, so he expects the project can still be completed by 2024 – the original in-service target date. But the delay will add more than $2 billion to the last budget estimate, boosting the estimated capital cost from $8.3 billion to $10.7 billion.
Meeting the 2024 in-service target date could be important, if Royal Dutch Shell and its consortium partners make a final investment decision this year on the $40 billion LNG Canada project.
That project also has a completion target date of 2024, and would be a major new industrial customer with a substantial power draw for operations.
“If they make a decision to go forward, they will be a very big customer of BC Hydro,” O’Riley told Business in Vancouver. “They would be in our top three or four biggest customers.”
Hydro One Avista takeover rejection signals Washington regulators blocking a utility acquisition over governance risk, EPS dilution, and balance sheet impact, as investors applaud share price gains and a potential US$103M break fee.
Key Points
A regulator-led block of Hydro One's Avista bid, citing EPS dilution, balance sheet risk, and governance concerns.
✅ Washington denies approval; Idaho, Oregon decisions pending.
✅ Shares rise 5.7%; US$103M break fee if deal collapses.
Opposition politicians may not like it but investors are applauding the rejection of Hydro One Ltd.'s $6.7-billion Avista takeover of U.S.-based utility Avista Corp.
Shares in the power company controlled by the Ontario government, which has also proposed a bill redesign to simplify statements, closed at $21.53, up $1.16 or 5.7 per cent, on the Toronto Stock Exchange on Thursday.
On Wednesday, Washington State regulators said they would not allow Ontario's largest utility to buy Avista over concerns about political risk that the provincial government, which owns 47 per cent of Hydro One's shares, might meddle in Avista's operations.
Financial analysts had predicted investors would welcome the news because the deal, announced in July 2017, would have eroded earnings per share and weakened Hydro One's balance sheet.
"The Washington regulator's denial of Avista is a positive development for the shares, in our opinion," said analyst Ben Pham of BMO Capital Markets in a report on Wednesday.
"While this may sound odd, we note that the Avista deal is expected to be EPS dilutive and result in a weaker balance sheet for (Hydro One). Not acquiring Avista and refocusing its attention on its core Ontario franchise ... along with related interprovincial arrangements such as the Ontario-Quebec electricity deal under discussion would likely be viewed positively if the deal ultimately breaks."
Decisions are yet to come from Idaho and Oregon state regulators, but Washington was probably the most important as the state contains customers making up about 60 per cent of Avista's rate base, Pham said.
He pointed out that a US$103-million break fee is to be paid to Avista if the deal collapses due to a failure to obtain regulatory approval.
CIBC analyst Robert Catellier raised his 12-month Hydro One target price by 25 cents and said many shareholders will feel "relieved" that the deal had failed.
He warned that the company's earnings power could deteriorate as the province seeks to reduce power bills by 12 per cent, despite an Ontario-Quebec hydro deal that may not lower costs.
Whether you would prefer Live Online or In-Person
instruction, our electrical training courses can be
tailored to meet your company's specific requirements
and delivered to your employees in one location or at
various locations.