EPRI to offer new renewable integration research programs
Research in one program will address challenges related to grid operations with high levels of renewable resources. It is expected that grid operators will need to redefine ancillary requirements, such as generation reserves and ramp rates in order to ensure reliability.
These operation changes will likely require modifications to existing tools and processes and will be instrumental for operators to meet reliability standards in a system with much greater reliance on renewables. The research program is titled “Enabling Transmission for Large Scale Renewable Integration.”
The second program provides access to the latest ideas, and current practices, planning methods, and practical implementation methods for integrating distributed renewable generation. In contrast to large-scale renewables, “distributed” renewable resources are smaller applications such as rooftop solar that can be distributed throughout the electrical system.
This program addresses key issues such as enabling high penetration of distributed generation into existing and future distribution systems. The program also is planning laboratory and field tests, technology demonstrations, and case studies.
A primary objective is to increase utilities’ knowledge and their capability to use, leverage, and monetize the value of renewable deployment, without reducing distribution safety, reliability, or asset utilization effectiveness. The research program is titled “Enabling Integration of Distributed Renewables.
“Today, the electricity industry has a tremendous opportunity to deliver increasing power requirements while reducing the industry’s carbon footprint for a better future,” said Arshad Mansoor, vice president of power delivery and utilization for EPRI.
“Renewable generation will be an ever increasing source of power for utilities, but we must address numerous challenges ahead to ensure that power from all sources is seamlessly integrated into the grid. These research programs will help utilities better understand those challenges as well as to establish processes to manage the large volumes and diverse sources of renewable power.”
Related News

Brand New Renewable Technology Harnesses Electricity From The Cold, Dark Night
LOS ANGELES - Two years ago, one freezing December night on a California rooftop, a tiny light shone weakly with a little help from the freezing night air. It wasn't a very bright glow. But it was enough to demonstrate the possibility of generating renewable power after the Sun goes down.
Working with Stanford University engineers Wei Li and Shanhui Fan, University of California Los Angeles materials scientist Aaswath Raman put together a device that produces a voltage by channelling the day's residual warmth into cooling air.
"Our work highlights the many remaining opportunities for energy by taking advantage of the cold…