UK Renewable energy projects worth billions stuck on hold


uk renewables

NFPA 70b Training - Electrical Maintenance

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today

UK Renewable Grid Connection Delays threaten the 2035 zero-carbon electricity target as National Grid queues stall wind and solar projects, investors, and infrastructure, slowing clean energy deployment, curtailing capacity build-out, and risking net-zero progress.

 

Key Points

Prolonged National Grid queues delaying wind and solar connections, jeopardizing the UK's 2035 clean power target.

✅ Up to 15-year waits for grid connections

✅ Over £200bn projects stuck in the queue

✅ Threatens zero-carbon electricity by 2035

 

The UK currently has a 2035 target for 100% of its electricity to be produced without carbon emissions, while Ireland's green electricity progress offers a nearby benchmark within the next four years.

But meeting the target will require a big increase in the number of renewable projects across the country. It is estimated as much as five times more solar and four times as much wind is needed, with growth in UK offshore wind expected to play a key role here.

The government and private investors have spent £198bn on renewable power infrastructure since 2010, alongside European wind investments recorded last year. But now energy companies are warning that significant delays to connect their green energy projects to the system will threaten their ability to bring more green power online.

A new wind farm or solar site can only start supplying energy to people's homes once it has been plugged into the grid.

Energy companies like Octopus Energy, one of Europe's largest investors in renewable energy, say they have been told by National Grid that they need to wait up to 15 years for some connections, even as a new 10 GW contract aims to speed UK grid additions - far beyond the government's 2035 target.

'Longest grid queues in Europe'
There are currently more than £200bn worth of projects sitting in the connections queue, the BBC has calculated.

Around 40% of them face a connection wait of at least a year, according to National Grid's own figures. That represents delayed investments worth tens of billions of pounds, reflecting stalled grid spending that slows renewable rollouts.

"We currently have one of the longest grid queues in Europe," according to Zoisa North-Bond, chief executive of Octopus Energy Generation.

The problem is so many new renewable projects are applying for connections, the grid cannot keep up with required network expansion such as new pylons in Scotland being discussed nationwide.

The system was built when just a few fossil fuel power plants were requesting a connection each year, but now there are 1,100 projects in the queue, a challenge mirrored by U.S. grid hurdles in moving toward 100% renewables today.

 

Related News

Related News

Space-based solar power, once for science fiction, is gaining interest.

Space-Based Solar Power enables wireless energy transfer from orbital solar arrays, using microwave beaming to rectennas on Earth, delivering clean baseload power beyond weather and night limits, as demonstrated by Caltech and NASA.

 

Key Points

Space-based solar power beams microwaves from arrays to rectennas, delivering clean electricity beyond weather and night.

✅ Caltech demo proved wireless power transfer in space.

✅ Microwaves beam to rectennas for grid-scale clean energy.

✅ Operates above clouds, enabling continuous baseload supply.

 

Ali Hajimiri thinks there’s a better way to power the planet — one that’s not getting the attention it deserves. The Caltech professor of electrical engineering envisages thousands of solar panels floating in space, unobstructed by clouds and unhindered by day-night cycles, effectively generating electricity from the night sky for continuous delivery, wirelessly transmitting massive amounts of energy to receivers on Earth.

This year, that vision moved closer to reality when Mr. Hajimiri, together with a team of Caltech researchers, proved that wireless power transfer in space was possible: Solar panels they had attached to a Caltech prototype in space successfully converted electricity into microwaves and beamed those microwaves to receivers, as a demonstration of beaming power from space to devices about a foot away, lighting up two LEDs.

The prototype also beamed a tiny but detectable amount of energy to a receiver on top of their lab’s building in Pasadena, Calif. The demonstration marks a first step in the wireless transfer of usable power from space to Earth, and advances in low-cost solar batteries could help store and smooth that power flow — a power source that Mr. Hajimiri believes will be safer than direct sun rays. “The beam intensity is to be kept less than solar intensity on earth,” he said.

Finding alternative energy sources is one of the topics that will be discussed by leaders in business, science and public policy, including wave energy, during The New York Times Climate Forward event on Thursday. The Caltech demonstration was a significant moment in the quest to realize space-based solar power, amid policy moves such as a proposed tenfold increase in U.S. solar that would remake the U.S. electricity system — a clean energy technology that has long been overshadowed by other long-shot clean energy ideas, such as nuclear fusion and low-cost clean hydrogen.

If space-based solar can be made to work on a commercial scale, said Nikolai Joseph, a NASA Goddard Space Flight Center senior technology analyst, and integrate with peer-to-peer energy sharing networks, such stations could contribute as much as 10 percent of global power by 2050.

The idea of space-based solar energy has been around since at least 1941, when the science-fiction writer Isaac Asimov set one of his short stories, “Reason,” on a solar station that beamed energy by microwaves to Earth and other planets.

In the 1970s, when a fivefold increase in oil prices sparked interest in alternative energy, NASA and the Department of Energy conducted the first significant study on the topic. In 1995, under the direction of the physicist John C. Mankins, NASA took another look and concluded that investments in space-launch technology were needed to lower the cost and move closer to cheap abundant electricity before space-based solar power could be realized.

“There was never any doubt about it being technically feasible,” said Mr. Mankins, now president of Artemis Innovation Management Solutions, a technology consulting group. “The cost was too prohibitive.”

 

Related News

View more

Ford Motor Co. details plans to spend $1.8B to produce EVs

Ford Oakville Electric Vehicle Complex will anchor EV production in Ontario, adding a battery plant, retooling lines, and assembly capacity for passenger models targeting the North American market and Canada's zero-emission mandates.

 

Key Points

A retooled Ontario hub for passenger EV production, featuring on-site battery assembly and modernized lines.

✅ Retooling begins Q2 2024; EV production slated for 2025.

✅ New 407,000 sq ft battery plant for pack assembly.

✅ First full-line passenger EV production in Canada.

 

Ford Motor Co. has revealed some details of its plan to spend $1.8 billion on its Oakville Assembly Complex to turn it into an electric vehicle production hub, a government-backed Oakville EV deal, in the latest commitment by an automaker transitioning towards an electric future.

The automaker said Tuesday that it will start retooling the Ontario complex in the second quarter of 2024, bolstering Ontario's EV jobs boom, and begin producing electric vehicles in 2025.

The transformation of the Oakville site, to be renamed the Oakville Electric Vehicle Complex, will include a new 407,000 square-foot battery plant, similar to Honda's Ontario battery investment efforts, where parts produced at Ford's U.S. operations will be assembled into battery packs.

General Motors is already producing electric delivery vans in Canada, and its Ontario EV plant plans continue to expand, but Ford says this is the first time a full-line automaker has announced plans to produce passenger EVs in Canada for the North American market.

GM said in February it plans to build motors for electric vehicles at its St. Catharines, Ont. propulsion plant, aligning with the Niagara Region battery investment now underway. The motors will go into its BrightDrop electric delivery vans, which it produces in part at its Ingersoll, Ont. plant, as well as its electric pickup trucks, producing enough at the plant for 400,000 vehicles a year.

Ford's announcement is the latest commitment by an automaker transitioning towards an electric future, part of Canada's EV assembly push that is accelerating.

"Canada and the Oakville complex will play a vital role in our Ford Plus transformation," said chief executive Jim Farley in a statement.

The company has committed to invest over US$50 billion in electric vehicles globally and has a target of producing two million EVs a year by the end of 2026 as part of its Ford Plus growth plan, reflecting an EV market inflection point worldwide.

Ford didn't specify in the release which models it planned to build at the Oakville complex, which currently produces the Ford Edge and Lincoln Nautilus.

The company's spending plans were first announced in 2020 as part of union negotiations, with workers seeking long-term production commitments and the Detroit Three automakers eventually agreeing to invest in Canadian operations in concert with spending agreements with the Ontario and federal governments.

The two governments agreed to provide $295 million each in funding to secure the Ford investment.

"The partnership between Ford and Canada helps to position us as a global leader in the EV supply chain for decades to come," said Industry Minister Francois-Philippe Champagne in Ford's news release.

Funding help comes as the federal government moves to require that at least 20 percent of new vehicles sold in Canada will be zero-emission by 2026, at least 60 per cent by 2030, and 100 per cent by 2035.

 

Related News

View more

Texas battery rush: Oil state's power woes fuel energy storage boom

Texas Battery Storage Investment Boom draws BlackRock, SK, and UBS, leveraging ERCOT price volatility, renewable energy growth, and utility-scale energy storage arbitrage to enhance grid reliability, resilience, and double-digit returns across high-demand nodes.

 

Key Points

Texas sees a rush into battery storage, using ERCOT price spreads to bolster grid reliability and earn about 20% returns.

✅ Investors exploit price volatility, peak-demand spreads.

✅ Utility-scale storage enhances ERCOT reliability.

✅ Top players: BlackRock, SK E&S, UBS; 700 MW deals.

 

BlackRock, Korea's SK, Switzerland's UBS and other companies are chasing an investment boom in battery storage plants in Texas, lured by the prospect of earning double-digit returns from the power grid problems plaguing the state, according to project owners, developers and suppliers.

Projects coming online are generating returns of around 20%, compared with single digit returns for solar and wind projects, according to Rhett Bennett, CEO of Black Mountain Energy Storage, one of the top developers in the state.

"Resolving grid issues with utility-scale energy storage is probably the hottest thing out there,” he said.

The rapid expansion of battery storage could help, through efforts like a virtual power plant initiative in Texas, prevent a repeat of the February 2021 ice storm and grid collapse which killed 246 people and left millions of Texans without power for days.

The battery rush also puts the Republican-controlled state at the forefront of President Joe Biden's push to expand renewable energy use.

Power prices in Texas can swing from highs of about $90 per megawatt hour (MWh) on a normal summer day to nearly $3,000 per MWh when demand surges on a day with less wind power, a dynamic tied to wind curtailment on the Texas grid according to a simulation by the federal government's U.S. Energy Information Administration.

That volatility, a product of demand and higher reliance on intermittent wind and solar energy, has fueled a rush to install battery plants, aided by falling battery costs, that store electricity when it is cheap and abundant and sell when supplies tighten and prices soar.

Texas last year accounted for 31% of new U.S. grid-scale energy storage, with much of it pairing storage with solar, according to energy research firm Wood Mackenzie, second only to California which has had a state mandate for battery development for a decade.

And Texas is expected to account for nearly a quarter of the U.S. grid-scale storage market over the next five years, a trajectory consistent with record U.S. solar-plus-storage growth noted by analysts, according to Wood Mackenzie projections shared with Reuters.

Developers and energy traders said locations offering the highest returns -- in strapped areas of the grid -- will become increasingly scarce as more storage comes online and, as diversifying resources for better projects suggests, electricity prices stabilize.

Texas lawmakers this week voted to provide new subsidies for natural gas power plants in a bid to shore up reliability. But the legislation also contains provisions that industry groups said could encourage investment in battery storage by supporting 'unlayering' peak demand approaches.

Amid the battery rush, BlackRock acquired developer Jupiter Power from private equity firm EnCap Investments late last year. Korea's SK E&S acquired Key Capture Energy from Vision Ridge Partners in 2021 and UBS bought five Texas projects from Black Mountain last year for a combined 700 megawatts (MW) of energy storage. None of the sales' prices were disclosed.

SK E&S said its acquisition of Key Capture was part of a strategy to invest in U.S. grid resiliency.

"SK E&S views energy storage solutions in Texas and across the U.S. as a core technology that supports a new energy infrastructure system to ensure American homes and businesses have affordable power," the company said in a statement.

 

Related News

View more

Prairie Provinces to lead Canada in renewable energy growth

Canada Renewable Power sees Prairie Provinces surge as Canada Energy Regulator projects rising wind, solar, and hydro capacity in Alberta, Saskatchewan, and Manitoba, replacing coal, expanding the grid, and lowering emissions through 2023.

 

Key Points

A CER outlook on Canada's grid: Prairie wind, solar, and hydro growth replacing coal and cutting emissions by 2023.

✅ Prairie wind, solar capacity surge by 2023

✅ Alberta, Saskatchewan shift from coal to renewables, gas

✅ Manitoba strengthens hydro leadership, low-carbon grid

 

Canada's Prairie Provinces will lead the country's growth in renewable energy capacity over the next three years, says a new report by the Canada Energy Regulator (CER).

The online report, titled Canada's Renewable Power, says decreased reliance on coal and substantial increases in wind and solar capacity will increase the amount of renewable energy added to the grid in Alberta and Saskatchewan. Meanwhile, Manitoba will strengthen its position as a prominent hydro producer in Canada. The pace of overall renewable energy growth is expected to slow at the national level between 2021 and 2023, in part due to lagging solar demand in some markets, but with strong growth in provinces with a large reliance on fossil fuel generation.

The report explores electricity generation in Canada and provides a short-term outlook for renewable electricity capacity in each province and territory to 2023. It also features a series of interactive visuals that allow for comparison between regions and highlights the diversity of electricity sources across Canada.

Electricity generation from renewable sources is expected to continue increasing as demand for electricity grows and the country continues its transition to a lower-carbon economy. Canada will see gradual declines in overall carbon emissions from electricity generation largely due to Saskatchewan, Alberta, Nova Scotia and New Brunswick replacing coal with renewables and natural gas. The pace of growth beyond 2023 in renewable power will depend on technological developments; consumer preferences; and government policies and programs.

Canada is a world leader in renewable power, generating almost two-thirds of its electricity from renewables with hydro as the dominant source, and the country ranks in the top 10 for hydropower jobs worldwide. Canada also has one of the world's lowest carbon intensities for electricity.

The CER produces neutral and fact-based energy analysis to inform the energy conversation in Canada. This report is part of a portfolio of publications on energy supply, demand and infrastructure that the CER publishes regularly as part of its ongoing market monitoring.

Report highlights

  • Wind capacity in Saskatchewan is projected to triple and nearly double in Alberta between 2020 and 2023 as wind power becomes more competitive in the market. Significant solar capacity growth is also projected, with Alberta adding 1,200 MW by 2023, as Canada approaches a 5 GW solar milestone by that time.
  • In Alberta, the share of renewables in the capacity mix is expected to increase from 16% in 2017 to 26% by 2023, with a renewable energy surge supporting thousands of jobs. Similarly, Saskatchewan's renewable share of capacity is expected to increase from 25% in 2018 to 33% in 2023.
  • Renewable capacity growth slows most notably in Ontario, where policy changes have scaled back growth projections. Between 2010 and 2017, renewable capacity grew 6.8% per year. Between 2018 and 2023, growth in Ontario slows to 0.4% per year as capacity grows by 466 MW over this period.
  • New large-scale hydro, wind, and solar projects will push the share of renewables in Canada's electricity mix from 67% of installed capacity in 2017 to 71% in 2023.
  • Hydro is the dominant source of electricity in Canada accounting for 55% of total installed capacity and 59% of generation, though Alberta's limited hydro stands as a notable exception, with B.C., Manitoba, Quebec, Newfoundland and Labrador, and Yukon deriving more than 90% of their power from hydro.
  • The jurisdictions with the highest percentage of non-hydro renewable electricity generation are PEI (100%), Nova Scotia (15.8%), and Ontario (10.5%).
  • In 2010, 62.8% of Canada's total electricity generation (364 681 GW‧h) was from renewable sources. By 2018, 66.2% (425 722 GW‧h) was from renewable sources and projected to be 71.0% by 2023.

 

Related News

View more

Ontario Launches Hydrogen Innovation Fund

Ontario Hydrogen Innovation Fund accelerates clean electricity integration, hydrogen storage, grid balancing, and electrolyzer pilot projects, supporting EV production, green steelmaking, and clean manufacturing under Ontario's Low-Carbon Hydrogen Strategy via IESO-administered funding.

 

Key Points

A $15M program funding hydrogen storage, grid pilots to integrate low-carbon hydrogen into Ontario's power system.

✅ Administered by IESO; applications opened April 2023.

✅ Supports existing, new, and research hydrogen projects.

✅ Backs grid storage, capacity, demand management pilots.

 

The Ontario government is establishing a Hydrogen Innovation Fund that will invest $15 million over the next three years to kickstart and develop opportunities for hydrogen to be integrated into Ontario’s clean electricity system, including hydrogen electricity storage. This launch marks another milestone in the implementation of the province’s Low-Carbon Hydrogen Strategy, supporting a growing hydrogen economy across the province, positioning Ontario as a clean manufacturing hub.

“When energy is reliable, affordable and clean our whole province wins,” said Todd Smith, Minister of Energy. “The Hydrogen Innovation Fund will help to lay the groundwork for hydrogen to contribute to our diverse energy supply, supporting game-changing investments in electric vehicle production and charging infrastructure across the province, green steelmaking and clean manufacturing that will create good paying jobs, grow our economy and reduce emissions.”

Hydrogen Innovation Fund projects would support electricity supply, capacity, battery storage and demand management, and support growth in Ontario’s hydrogen economy. The Fund will support projects across three streams:

Existing facilities already built or operational and ready to evaluate how hydrogen can support Ontario’s clean grid amid an energy storage crunch in Ontario.
New hydrogen facilities not yet constructed but could be in-service by a specified date to demonstrate how hydrogen can support Ontario’s clean grid.
Research studies investigating the feasibility of novel applications of hydrogen or support future hydrogen project decision making.

The Hydrogen Innovation Fund will be administered by the Independent Electricity System Operator, which is opening applications for the fund in April 2023. Natural Resources Canada modelling shows that hydrogen could make up about 30 per cent of the country's fuels and feedstock by 2050, as provinces advance initiatives like a British Columbia hydrogen project demonstrating scale and ambition, and create 100,000 jobs in Ontario. By making investments early to explore applications for hydrogen in our clean electricity sector we are paving the way for the growth of our own hydrogen economy.

“As a fuel that can be produced and used with little to no greenhouse gas emissions, hydrogen has tremendous potential to help us meet our long-term economic and environmental goals,” said David Piccini, Minister of the Environment, Conservation and Parks. “Our government will continue to support innovation and investment in clean technologies that will position Ontario as the clean manufacturing and transportation hub of the future while leading Canada in greenhouse gas emission reductions.”

The province is also advancing work to develop the Niagara Hydrogen Centre, led by Atura Power, which would increase the amount of low-carbon hydrogen produced in Ontario by eight-fold. This innovative project would help balance the electricity grid while using previously unutilized water at the Sir Adam Beck generating station to produce electricity for a hydrogen electrolyzer, reflecting broader electrolyzer investment trends in Canada. To support the implementation of the project, the IESO entered into a contract for grid regulation services at the Sir Adam Beck station starting in 2024, which will support low-carbon hydrogen production at the Niagara Hydrogen Centre.

These investments build on Ontario’s clean energy advantage, which also includes the largest battery storage project planned in southwestern Ontario, as our government makes progress on the Low-Carbon Hydrogen Strategy that laid out eight concrete actions to make Ontario a leader in the latest frontier of energy innovation – the hydrogen economy.

 

Related News

View more

Solar and wind power curtailments are rising in California

CAISO Renewable Curtailments reflect grid balancing under transmission congestion and oversupply, reducing solar and wind output while leveraging WEIM trading, battery storage, and transmission expansion to integrate renewables and stabilize demand-supply.

 

Key Points

CAISO renewable curtailments are reductions in wind and solar output to balance grid amid congestion or oversupply.

✅ Driven mainly by transmission congestion, less by oversupply.

✅ Peaks in spring when demand is low and solar output is high.

✅ Mitigated by WEIM trades, new lines, and battery storage growth.

 

The California Independent System Operator (CAISO), the grid operator for most of the state, is increasingly curtailing solar- and wind-powered electricity generation, as reported in rising curtailments, as it balances supply and demand during the rapid growth of wind and solar power in California.

Grid operators must balance supply and demand to maintain a stable electric system as advances in solar and wind continue to scale. The output of wind and solar generators are reduced either through price signals or rarely, through an order to reduce output, during periods of:

Congestion, when power lines don’t have enough capacity to deliver available energy
Oversupply, when generation exceeds customer electricity demand

In CAISO, curtailment is largely a result of congestion. Congestion-related curtailments have increased significantly since 2019 because California's solar boom has been outpacing upgrades in transmission capacity.

In 2022, CAISO curtailed 2.4 million megawatthours (MWh) of utility-scale wind and solar output, a 63% increase from the amount of electricity curtailed in 2021. As of September, CAISO has curtailed more than 2.3 million MWh of wind and solar output so far this year, even as the US project pipeline is dominated by wind, solar, and batteries.

Solar accounts for almost all of the energy curtailed in CAISO—95% in 2022 and 94% in the first seven months of 2023. CAISO tends to curtail the most solar in the spring when electricity demand is relatively low (because moderate spring temperatures mean less demand for space heating or air conditioning) and solar output is relatively high, although wildfire smoke impacts can reduce available generation during fire season as well.

CAISO has increasingly curtailed renewable generation as renewable capacity has grown in California, and the state has even experienced a near-100% renewables moment on the grid in recent years. In 2014, a combined 9.0 gigawatts (GW) of wind and solar capacity had been built in California. As of July 2023, that number had grown to 17.6 GW. Developers plan to add another 3.0 GW by the end of 2024.

CAISO is exploring and implementing various solutions to its increasing curtailment of renewables, including:

The Western Energy Imbalance Market (WEIM) is a real-time market that allows participants outside of CAISO to buy and sell energy to balance demand and supply. In 2022, more than 10% of total possible curtailments were avoided by trading within the WEIM. A day ahead market is expected to be operational in Spring 2025.

CAISO is expanding transmission capacity to reduce congestion. CAISO’s 2022–23 Transmission Planning Process includes 45 transmission projects to accommodate load growth and a larger share of generation from renewable energy sources.

CAISO is promoting the development of flexible resources that can quickly respond to sudden increases and decreases in demand such as battery storage technologies that are rapidly becoming more affordable. California has 4.9 GW of battery storage, and developers plan to add another 7.6 GW by the end of 2024, according to our survey of recent and planned capacity changes. Renewable generators can charge these batteries with electricity that would otherwise have been curtailed.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.