Canada's heavy-water reactors can run on spent fuel from most light-water reactors

By Toronto Star


Protective Relay Training - Basic

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
The international potential of Candu nuclear reactors may not be obvious to some, but rising uranium prices and heightened concern over nuclear-waste disposal could soon shine a light on this made-in-Canada technology.

Nobody sees this more than Myung Seung Yang of South Korea's atomic energy institute. Yang and his fellow nuclear scientists have spent the past 15 years exploring ways of using Candu reactors to recycle highly radioactive waste, or "spent fuel," from a majority of the world's nuclear reactors.

The approach, Yang wrote in an email message to the Star, "would have many benefits when practically implemented." South Korea is determined to try.

It's little known – at least outside the nuclear power industry – that the heavy-water reactor technology that lies at the heart of Candu's design can, with some technical tinkering, directly use waste fuel from most rival light-water reactors.

Candu developer Atomic Energy of Canada Ltd. calls this the DUPIC process – standing for the Direct Use of Spent Pressurized Water Reactor Fuel in Candus. In 1991, the Canadian government established a joint research program with the Korean Atomic Energy Research Institute to investigate the approach, and both sides have demonstrated that it technically works.

The long-term implications, if DUPIC processing can be done safely and economically, are potentially enormous. There are hundreds of pressurized light-water reactors (PWRs) around the world being used to generate electricity and propel submarines and aircraft carriers.

In the United States alone, two-thirds of the 104 reactors in operation are based on PWR designs, according to the U.S. Energy Information Administration. This has led over the years to the accumulation of 36,000 metric tonnes of spent fuel, which is kept in temporary storage at dozens of locations until a safe permanent-storage site can be found.

With DUPIC processing, that waste can be turned into a reusable fuel. This can significantly reduce a country's dependence on uranium, which many analysts predict will rise above $100 (U.S.) per pound by the end of next year – a tenfold price increase since January 2001.

Perhaps most important, the spent light-water fuel that eventually comes out of a Candu reactor will contain less toxic material than the fuel that goes in, shrinking the amount of radioactive waste that must ultimately go into long-term storage.

"The DUPIC fuel cycle could reduce a country's need for used PWR fuel disposal by 70 per cent while reducing fresh uranium requirements by 30 per cent," according to the World Nuclear Association.

It's for this reason South Korea is keen on the DUPIC process. It currently has 20 operating reactors – 16 PWRs and four Candus. Another eight PWRs are on order or being built. It sees the reuse of spent fuel in Candus as a key strategy for managing radioactive waste.

"The accumulation of spent fuel is an urgent issue that should be resolved," Yang and his colleagues wrote in a briefing document that was presented at the 15th Pacific Nuclear Conference in Australia last October. They called the eventual commercial development of the DUPIC process "an extremely important turning point in the history of nuclear power development."

David Torgerson, chief technology officer and senior vice-president of Atomic Energy of Canada, says the way uranium resources are used by power generators is driven by cost and supply. During the 1990s, for example, uranium prices were so low that it made more economic sense to just use it once and then stick the spent fuels in wet or dry storage.

But some countries don't have their own uranium resources, leaving them dependent on imports from other, potentially hostile jurisdictions. As uranium prices rise, the economics of the once-through fuel cycle also become less appealing when measured against the costs of waste management and disposal.

"As the nuclear renaissance takes off and more reactors are built, it's likely the price of uranium will increase (even more), and people will be looking at ways of getting more value out of that uranium," says Torgerson.

"Any time you can convert a waste into an asset, then you're going in the right direction."

He's quick to point out that the DUPIC process is also "proliferation resistant," meaning there is no chemical separation of the spent uranium's more dangerous components, primarily plutonium, which could be used by extremists or rogue nations to produce nuclear weapons. Only mechanical processing is required to change the shape of the spent fuel rods into shorter Candu rods.

Mechanical reprocessing, while it has some safety and transportation issues, could be cheaper than conventional chemical reprocessing.

"Because this is so much simpler, you have to expect the economics are going to be so much better," says Torgerson, pointing out that the South Koreans studied the economics of the DUPIC fuel cycle in the 1990s and found it could compete against other fuel options. "This is one of the characteristics we're certainly pushing."

For countries such as China, which already have Candu reactors in their fleet, it's an approach that could prove attractive. AECL estimates that waste fuel from three light-water reactors would be enough to fuel one Candu.

Daune Bratt, a political science instructor and expert on Canadian nuclear policy at Calgary's Mount Royal College, says he can envision two revenue streams going to Candu operators that choose to embrace the DUPIC process.

One stream would be the revenue that comes in through the generation and sale of electricity; the other would come from a tipping fee that operators of light-water reactors would pay to unload their spent fuel.

"These (Candu) operators wouldn't be buying the spent fuel, they'd be paid to use the spent fuel for environmental reasons," says Bratt. "If you can minimize the waste, you bring tremendous value."

The economic incentive could even be enough to convince China and other countries with light-water reactors to consider building new Candu reactors as part of a waste-management strategy. The approach, however, is not without its risks.

First, a DUPIC processing facility would need to be built to safely receive and store the spent fuel, mechanically process and reshape it and then send it off to a Candu customer. The fuel, throughout the whole process, remains hot and highly radioactive. Special equipment, procedures and reactor modifications would be required to handle the material, and safety systems would need to be reassessed.

This is the main reason why South Korea's biggest utility, Korean Electric Power Corp., has been somewhat skeptical of the DUPIC option. It fears, most of all, that workers who load the hot fuel into Candu reactors could expose themselves to high levels of radiation.

Another major concern is moving the fuel between different locations. As one former executive at AECL put it: "Transporting spent fuel is a political nightmare." It's risky enough transporting such material between reactor sites within a country, but the possibility of moving material between neighbouring countries adds a new dimension to the problem.

Canada, for example, could theoretically strike a deal that would see light-water fuel waste from the U.S. burned in Candu reactors in Ontario, Quebec and New Brunswick. Such an arrangement would not only eliminate the need for natural uranium fuel in Canada, but would represent a major revenue stream for Canada while limiting the growth of waste stockpiles in North America.

"The bigger deal is the possibility of traffic accidents," says Bratt. "What you need to do is design storage trucks where there isn't spilled waste if it rolls over." But agreeing to such a deal would be political suicide, he concedes. "I can just imagine the protests at the border crossing in Windsor."

In cases where a Candu reactor is built to handle light-water waste, the best approach would be to cluster the reactors in the same location and construct a DUPIC facility on site to limit transportation.

The potential of the DUPIC process raises the question of whether Ontario should get in the game and develop an expertise it can export around the world. Doing so, however, would mean building a PWR light-water reactor in Candu country – yet another political hot potato.

"In Canada, there would be both money to be made and a good environmental case to be put for a two-technology-plus-fuel-recycling model, if someone decided to see this as an opportunity, not a threat," says one nuclear-industry executive who asked not to be named.

France's Areva SA, Westinghouse Electric Co. and General Electric Co. all produce PWR light-water reactors and all want to build one in Ontario, which said last year it will consider foreign designs in pursing any new reactor builds.

Armand Laferrere, president of Areva Canada, has argued that Ontario could diversify its engineering skills base if it built a new nuclear plant based on a foreign design. By coupling such a plant with a DUPIC processing facility, the province could develop a nuclear waste management technology that could be sold globally in an international market dominated by light-water reactors.

Some have even suggested that a company such as Areva, if it purchased all or part of AECL's commercial business, could sell hybrid light- and heavy-water reactor fleets along with DUPIC processing in fast-growing markets such as China.

But Bratt dismisses the possibility. "Ontario is not a big enough market to run two different parallel systems. Shifting systems would be an incredible risk both short and long term," he says.

"The more conservative route – and not necessarily the better route – is to maintain the Candu system. So I would be stunned if Ontario went with another design."

Which leaves all eyes on South Korea, the only jurisdiction with both Candu and PWR reactors that considers the commercial development of DUPIC a fruitful – albeit challenging – endeavour.

Related News

Solar + Wind = 10% of US Electricity Generation in 1st Half of 2018

US Electricity Generation H1 2018 saw wind and solar gains but hydro declines, as natural gas led the grid mix and coal fell; renewables' share, GWh, emissions, and capacity additions shaped the power sector.

 

Key Points

It is the H1 2018 US power mix, where natural gas led, coal declined, and wind and solar grew while hydro fell.

✅ Natural gas reached 32% of generation, highest share

✅ Coal fell; renewables roughly tied nuclear at ~20%

✅ Wind and solar up; hydro output down vs 2017

 

To complement our revival of US electricity capacity reports, here’s a revival of our reports on US electricity generation.

As with the fresh new capacity report, things are not looking too bright when it comes to electricity generation. There’s still a lot of grey — in the bar charts below, in the skies near fossil fuel power plants, and in the human and planetary outlook based on how slowly we are cutting fossil fuel electricity generation.

As you can see in the charts above, wind and solar energy generation increased notably from the first half of 2017 to the first half of 2018, and the EIA expected larger summer solar and wind generation in subsequent months, reinforcing that momentum.

A large positive when it comes to the environment and human health is that coal generation dropped a great deal year over year — by even more than renewables increased, though the EIA later noted an increase in coal-fired generation in a subsequent year, complicating the trend. However, on the down side, natural gas soared as it became the #1 source of electricity generation in the United States (32% of US electricity). Furthermore, coal was still solidly in the #2 position (27% of US electricity). Renewables and nuclear were essentially in a tie at 19.8% of generation, with renewables just a tad above nuclear.

Actually, combined with an increase in nuclear power generation, natural gas electricity production increased so much that the renewable energy share of electricity generation actually dropped in the first half of 2018 versus the first half of 2017, even amid declining electricity use in some periods. It was 19.8% this year and 20% last year.

Again, solar and wind saw a significant growth in its market share, from 9% to 9.9%, but hydro brought the whole category down due to a decrease from 9% to 8%.

The visuals above are probably the best way to examine it all. The H1 2018 chart was still dominated by fossil fuels, which together accounted for approximately 60% of electricity generation, even though by 2021 non-fossil sources supplied about 40% of U.S. electricity, highlighting the longer-term shift. In H1 2017, the figure was 59.7%. Furthermore, if you switch to the “Change H1 2018 vs H1 2017 (GWh)” chart, you can watch a giant grey bar representing natural gas take over the top of the chart. It almost looks like it’s part of the border of the chart. The biggest glimmer of positivity in that chart is seeing the decline in coal at the bottom.

What will the second half of the year bring? Well, the gigantic US electricity generation market shifts slowly, even as monthly figures can swing, as January generation jumped 9.3% year over year according to the EIA, reminding us about volatility. There is so much base capacity, and power plants last so long, that it takes a special kind of magic to create a rapid transition to renewable energy. As you know from reading this quarter’s US renewable energy capacity report, only 43% of new US power capacity in the first half of the year was from renewables. The majority of it was from natural gas. Along with other portions of the calculation, that means that electricity generation from natural gas is likely to increase more than electricity generation from renewables.

Jump into the numbers below and let us know if you have any more thoughts.


 

 

Related News

View more

New rules give British households right to sell solar power back to energy firms

UK Smart Export Guarantee enables households to sell surplus solar energy to suppliers, with dynamic export tariffs, grid payments, and battery-friendly incentives, boosting local renewable generation, microgeneration uptake, and decarbonisation across Britain.

 

Key Points

UK Smart Export Guarantee pays homes for exporting surplus solar power to the grid via supplier tariffs.

✅ Suppliers must pay households for exported kWh.

✅ Dynamic tariffs incentivize daytime solar generation.

✅ Batteries boost self-consumption and grid flexibility.

 

Britain’s biggest energy companies will have to buy renewable energy from their own customers through community-generated green electricity models under new laws to be introduced this week.

Homeowners who install new rooftop solar panels from 1 January 2020 will be able to lower their bills as many seek to cut soaring bills by selling the energy they do not need to their supplier.

A record was set at noon on a Friday in May 2017, when solar energy supplied around a quarter of the UK’s electricity, and a recent award that adds 10 GW of renewables indicates further growth.

However, solar panel owners are not always at home on sunny days to reap the benefit. The new rules will allow them to make money if they generate electricity for the grid.

Some 800,000 householders with solar panels already benefit from payments under a previous scheme. However, the subsidies were controversially scrapped by the government in April, with similar reduced credits for solar owners seen in other regions, causing the number of new installations to fall by 94% in May from the month before.

Labour accused the government last week of “actively dismantling” the solar industry. The sector will still struggle this summer as the change does not come in for another seven months, so homeowners have no incentive to buy panels this year.

Chris Skidmore, the minister for energy and clean growth, said the government wanted to increase the number of small-scale generators without adding the cost of subsidies to energy bills. “The future of energy is local and the new smart export guarantee will ensure households that choose to become green energy generators will be guaranteed a payment for electricity supplied to the grid,” he said. The government also hopes to encourage homes with solar panels to install batteries to help manage excess solar power on networks.

Greg Jackson, the founder of Octopus Energy, said: “These smart export tariffs are game-changing when it comes to harnessing the power of citizens to tackle climate change”.

A few suppliers, including Octopus, already offer to buy solar power from their customers, often setting terms for how solar owners are paid that reflect market conditions.

“They mean homes and businesses can be paid for producing clean electricity just like traditional generators, replacing old dirty power stations and pumping more renewable energy into the grid. This will help bring down prices for everyone as we use cheaper power generated locally by our neighbours,” Jackson said.

Léonie Greene, a director at the Solar Trade Association, said it was “vital” that even “very small players” were paid a fair price. “We will be watching the market like a hawk to see if competitive offers come forward that properly value the power that smart solar homes can contribute to the decarbonising electricity grid,” she said.

 

Related News

View more

Coronavirus could stall a third of new U.S. utility solar this year: report

U.S. Utility-Scale Solar Delays driven by the coronavirus pandemic threaten construction timelines, supply chains, and financing, with interconnection and commissioning setbacks, module sourcing risks in Southeast Asia, and tax credit deadline pressures impacting project delivery.

 

Key Points

Setbacks to large U.S. solar builds from COVID-19 impacting construction, supply, financing, and permitting.

✅ Construction, interconnection, commissioning site visits delayed

✅ Supply chain risks for modules from Southeast Asia

✅ Tax credit deadline extensions sought by developers

 

About 5 gigawatts (GW) of big U.S. solar energy projects, enough to power nearly 1 million homes, could suffer delays this year if construction is halted for months due to the coronavirus pandemic, as the Covid-19 crisis hits renewables across the sector, according to a report published on Wednesday.

The forecast, a worst-case scenario laid out in an analysis by energy research firm Wood Mackenzie, would amount to about a third of the utility-scale solar capacity expected to be installed in the United States this year, even as US solar and wind growth continues under favorable plans.

The report comes two weeks after the head of the top U.S. solar trade group called the coronavirus pandemic (as solar jobs decline nationwide) "a crisis here" for the industry. Solar and wind companies are pleading with Congress to extend deadlines for projects to qualify for sunsetting federal tax credits.

Even the firm’s best-case scenario would result in substantial delays, mirroring concerns that wind investments at risk across the industry. With up to four weeks of disruption, the outbreak will push out 2 GW of projects, or enough to power about 380,000 homes. Before factoring in the impact of the coronavirus, Wood Mackenzie had forecast 14.7 GW of utility-scale solar projects would be installed this year.

In its report, the firm said the projects are unlikely to be canceled outright. Rather, they will be pushed into the second half of 2020 or 2021. The analysis assumes that virus-related disruptions subside by the end of the third quarter.

Mid-stage projects that still have to secure financing and receive supplies are at the highest risk, Wood Mackenzie analyst Colin Smith said in an interview, adding that it was too soon to know whether the pandemic would end up altering long-term electricity demand and therefore utility procurement plans, where policy shifts such as an ITC extension could reshape priorities.

Currently, restricted travel is the most likely cause of project delays, the report said. Developers expect delays in physical site visits for interconnection and commissioning, and workers have had difficulty reaching remote construction sites.

For earlier-stage projects, municipal offices that process permits are closed and in-person meetings between developers and landowners or local officials have slowed down.

Most solar construction is proceeding despite stay at home orders in many states because it is considered critical infrastructure, and long-term proposals like a tenfold increase in solar could reshape the outlook, the report said, adding that “that could change with time.”

Risks to supplies of solar modules include potential manufacturing shutdowns in key producing nations in Southeast Asia such as Malaysia, Vietnam and Thailand. Thus far, solar module production has been identified as an essential business and has been allowed to continue.

 

Related News

View more

China boosts wind energy, photovoltaic and concentrated solar power

China Renewable Energy Law drives growth in wind power, solar thermal, and photovoltaic capacity, supporting grid integration and five-year plans, even as China leads CO2 emissions, with policy incentives, compliance inspections, and national resource assessments.

 

Key Points

A legal framework that speeds wind, solar thermal, and PV growth in China via mandates, incentives, and grid rules.

✅ 2018 renewables: 1.87T kWh, 26.7% of national power

✅ Over 100 State Council policies enabling deployment

✅ Law inspections and regional oversight across six provinces

 

China leads renewable energies, installing more wind power, solar thermal and photovoltaic than any other country, as seen in the China solar PV growth reported in 2016, but also leads CO2 emissions, and much remains to be done.

The effective application of Chinas renewable energy law has boosted the use of renewable energy in the country and facilitated the rapid development of the sector, as solar parity across Chinese cities indicates, a report said.

The report on compliance with renewable energy law was presented today at the current bimonthly session of the Standing Committee of the National Peoples Assembly (APN).

Electricity generated by renewable energy amounted to about 1.87 trillion kilowatts per hour in 2018, representing 26.7 percent of Chinas total energy production in the year, aligning with trends where wind and solar doubling globally over five years, the report said.

Ding Zhongli, vice president of the NPC Standing Committee, presented the report to the legislators at the second plenary meeting of the session.

An inspection of the law enforcement was carried out from August to November, as U.S. renewables hit 28% record showed momentum elsewhere. A total of 21 members of the NPC Standing Committee and the NPC Environmental Protection and Resource Conservation Committee, as well as national legislators, traveled to six regions at the provincial level on inspection visits. Twelve legislative bodies at the provincial level inspected the law enforcement efforts in their jurisdictions.

The relevant State Council agencies have implemented more than 100 regulations and policies to foster a good policy environment for the development of renewable energy, as seen in markets where U.S. renewable electricity surpassed coal in 2022. Local regulations have also been formulated based on local conditions, according to the report.

In accordance with the law, a thorough investigation of the national conditions of renewable energy resources was undertaken.

In 2008 and 2014 atlas of solar energy resources and wind energy evaluation of China were issued. The relevant agencies of the State Council have also implemented five-year plans for the development of renewable energy, which have provided guidance to the sector, while countries like Ireland's one-third green power target remain in focus within four years.

The main provisions of the law have been met, the law has been effectively applied and the purpose of the legislation has been met, and this momentum is echoed abroad, with U.S. renewables near one-fourth according to projections, Ding said.

 

Related News

View more

Buyer's Remorse: Questions about grid modernization affordability

Grid Modernization drives utilities to integrate DER, AMI, and battery storage while balancing reliability, safety, and affordability; regulators pursue cost-benefit analyses, new rate design, and policy actions to guide investment and protect customer-owned resources.

 

Key Points

Upgrading the grid to manage DER with digital tools, while maintaining reliability, safety, and customer affordability.

✅ Cost-benefit analyses guide prudent grid investments

✅ AMI and storage deployments enable DER visibility and control

✅ Rate design reforms support customer-owned resources

 

Utilities’ pursuit of a modern grid, including the digital grid concept, to maintain the reliability and safety pillars of electricity delivery has raised a lot of questions about the third pillar — affordability.

Utilities are seeing rising penetrations of emerging technologies, highlighted in recent grid edge trends reports, like distributed solar, behind-the-meter battery storage, and electric vehicles. These new distributed energy resources (DER) do not eliminate utilities' need to keep distribution systems safe and reliable.

But the need for modern tools to manage DER imposes costs on utilities, prompting calls to invest in smarter infrastructure even as some regulators, lawmakers and policymakers are concerned those costs could drive up electricity rates.

The result is an increasing number of legislative and regulatory grid modernization actions aimed at identifying what is necessary to serve the coming power sector transformation and address climate change risks across the grid.

 

The rise of grid modernization

Grid modernization, which is supported by both conservatives and distributed energy resources advocates, got a lot of attention last year. According to the 2017 review of grid modernization policy by the North Carolina Clean Energy Technology Center (NCCETC), 288 grid modernization policy actions were proposed, pending or enacted in 39 states.

These numbers from NCCETC's first annual review of policy activity set a benchmark against which future years' activity can be measured.

The most common type of state actions, by far, were those that focused on the deployment of advanced metering infrastructure (AMI) and battery energy storage. Those are two of the 2017 trends identified in NCCETC’s 50 States of Grid Modernization report. But deployment of those technologies, while foundational to an updated grid, only begins to prepare distribution systems for the coming power sector transformation.

Bigger advances, including the newest energy system management tools, are being held back by 2017’s other policy actions requiring more deliberation and fact-finding, even as grid vulnerability report cards underscore the risks that modernization seeks to mitigate.

Utilities’ proposals to more fully prepare their grids to deliver 21st century technologies are being met with questions about completeness and cost.

Utilities are being asked to address these questions in comprehensive, public utility commission-led cost-benefit analyses and studies. This is also one of NCCETC’s top 2017 policy action trends for grid modernization. The outcome to date appears to be an increased, but still incomplete, understanding of what is needed to build a 21st century grid.

Among the top objectives of those driving the policy actions are resolving questions about private sector participation in grid modernizaton buildouts and developing new rate designs to protect and support customer-owned distributed energy resources. Actions on those topics are also on NCCETC’s list of 2017 policy trends.

Altogether, the trend list is dominated by actions that do not lead to completion of grid modernization but to more work on it.

 

Related News

View more

Daimler Details Gigantic Scope of Its Electrification Plan

Daimler Electric Strategy drives EV adoption with global battery factories, Mercedes-Benz electrified models, battery cells procurement, and major investments spanning vans, buses, trucks, and production capacity across Europe, Asia, and the USA.

 

Key Points

Daimler Electric Strategy is a multi-billion EV roadmap for batteries, factories, and 130 electrified Mercedes models.

✅ Eight battery factories across three continents

✅ EUR 10B for EV lineup; EUR 20B for battery cells

✅ 130 electrified variants plus vans, buses, trucks

 

Throughout 2018, we all witnessed the unprecedented volume of promises for a better future made by the giants of the auto industry. All say they've committed billions so that, within a decade, combustion engines will be on their way out.

The most active of all companies when talking about promises is Volkswagen, which, amid German plant closures, time and time again has said it will do this or that and completely change the meaning of car in the coming years. But there are other planning the same thing, possibly with even vaster resources.

Planning to end the year on a high note, Daimler detailed its plan for the electric future once again on Tuesday, this time making no secret of its gigantic size and scope.

As announced before, Daimler plans to build electric cars, but also manufacture electric batteries for its own and others’ use, and has launched a US energy storage company to support this strategy. These batteries will eventually be produced by Daimler in eight factories on three continents.

Batteries are already rolling off the lines in Kamenz, and a second facility will begin doing so next year. Two more factories will be built in Stuttgart-Untertürkheim, one at the company’s Sindelfingen site, and one each at the sites in Beijing (China), Bangkok (Thailand) and Tuscaloosa (USA).

In all, one billion EUR will be invested in the expansion of the global battery production network, but that is nothing compared to the 10 billion to be poured into the expansion of the Mercedes-Benz car fleet.

On top of that, 20 billion EUR will go towards the purchase of battery cells from producers all around the world, echoing other automakers' battery sourcing strategies worldwide over the next 12 years.

“After investing billions of euros in the development of the electric fleet and the expansion of our global battery network, we are now taking the next step,” said in a statement Dieter Zetsche, Daimler chairman of the board.

“With the purchase of battery cells for more than 20 billion euros, we are systematically pushing forward with the transformation into the electric future of our company.”

By 2022, the carmaker plans to launch 130 electrified variants of its cars, as cheaper, more powerful batteries become available, adding to them electric vans, buses and trucks. That pretty much means all the models and variants sold by Daimler globally will be at least partially powered by electricity.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified