GM forms new engineering group for electric and hybrid vehicles

By Electricity Forum


Protective Relay Training - Basic

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
General Motors Corp. has formed a new engineering group to focus on hybrid vehicles, extended-range electric vehicles and battery technology, Dow Jones reported.

The move is aimed at bringing advanced fuel-efficient vehicles to market more quickly. Robert Kruse, executive director of vehicle engineering for hybrids, electric vehicles and batteries, will lead the group. Teams will be based in North America, Europe and Asia.

"The future of automotive transportation will be based on electrification of our vehicles," Jim Queen, GM's group vice president of global engineering, said in a statement. "By having a vehicle engineering team in place and focused on delivering the technical aspects of hybrids and E-REVs, we can accelerate these programs and get them into production quickly and efficiently."

The team will oversee work on production versions of GM's advanced powertrain vehicles such as the Chevrolet Tahoe and Silverado two-mode hybrids, Chevrolet Malibu hybrid, Saturn Vue two-mode plug-in hybrid, Saturn Vue and Aura Hybrid, GMC Yukon and Sierra two-mode hybrid and Cadillac Escalade two-mode hybrid, Dow Jones reported.

Related News

In 2021, 40% Of The Electricity Produced In The United States Was Derived From Non-Fossil Fuel Sources

Renewable Electricity Generation is accelerating the shift from fossil fuels, as wind, solar, and hydro boost the electric power sector, lowering emissions and overtaking nuclear while displacing coal and natural gas in the U.S. grid.

 

Key Points

Renewable electricity generation is power from non-fossil sources like wind, solar, and hydro to cut emissions.

✅ Driven by wind, solar, and hydro adoption

✅ Reduces fossil fuel dependence and emissions

✅ Increasing share in the electric power sector

 

The transition to electric vehicles is largely driven by a need to reduce our reliance on fossil fuels and reduce emissions associated with burning fossil fuels, while declining US electricity use also shapes demand trends in the power sector. In 2021, 40% of the electricity produced by the electric power sector was derived from non-fossil fuel sources.

Since 2007, the increase in non-fossil fuel sources has been largely driven by “Other Renewables” which is predominantly wind and solar. This has resulted in renewables (including hydroelectric) overtaking nuclear power’s share of electricity generation in 2021 for the first time since 1984. An increasing share of electricity generation from renewables has also led to a declining share of electricity from fossil fuel sources like coal, natural gas, and petroleum, with renewables poised to eclipse coal globally as deployment accelerates.

Includes net generation of electricity from the electric power sector only, and monthly totals can fluctuate, as seen when January power generation jumped on a year-over-year basis.

Net generation of electricity is gross generation less the electrical energy consumed at the generating station(s) for station service or auxiliaries, and the projected mix of sources is sensitive to policies and natural gas prices over time. Electricity for pumping at pumped-storage plants is considered electricity for station service and is deducted from gross generation.

“Natural Gas” includes blast furnace gas and other manufactured and waste gases derived from fossil fuels, while in the UK wind generation exceeded coal for the first time in 2016.

“Other Renewables” includes wood, waste, geo-thermal, solar and wind resources among others.

“Other” category includes batteries, chemicals, hydrogen, pitch, purchased steam, sulfur, miscellaneous technologies, and, beginning in 2001, non-renewable waste (municipal solid waste from non-biogenic sources, and tire-derived fuels), noting that trends vary by country, with UK low-carbon generation stalling in 2019.

 

Related News

View more

Grid coordination opens road for electric vehicle flexibility

Smart EV Charging orchestrates vehicle-to-grid (V2G), demand response, and fast charging to balance the power grid, integrating renewables, electrolyzers for hydrogen, and megawatt chargers for fleets with advanced control and co-optimization.

 

Key Points

Smart EV charging coordinates EV load to stabilize the grid, cut peaks, and integrate renewable energy efficiently.

✅ Reduces peak demand via coordinated, flexible load control

✅ Enables V2G services with renewables and battery storage

✅ Supports megawatt fast charging for heavy-duty fleets

 

As electric vehicle (EV) sales continue to rev up in the United States, the power grid is in parallel contending with the greatest transformation in its 100-year history: the large-scale integration of renewable energy and power electronic devices. The expected expansion of EVs will shift those challenges into high gear, causing cities to face gigawatt-growth in electricity demand, as analyses of EV grid impacts indicate, and higher amounts of variable energy.

Coordinating large numbers of EVs with the power system presents a highly complex challenge. EVs introduce variable electrical loads that are highly dependent on customer behavior. Electrified transportation involves co-optimization with other energy systems, like natural gas and bulk battery storage, including mobile energy storage flexibility for new operational options. It could involve fleets of automated ride-hailing EVs and lead to hybrid-energy truck stops that provide hydrogen and fast-charging to heavy-duty vehicles.

Those changes will all test the limits of grid integration, but the National Renewable Energy Laboratory (NREL) sees opportunity at the intersection of energy systems and transportation. With powerful resources for simulating and evaluating complex systems, several NREL projects are determining the coordination required for fast charging, balancing electrical supply and demand, and efficient use of all energy assets.


Smart and Not-So-Smart Control
To appreciate the value of coordinated EV charging, it is helpful to imagine the opposite scenario.

"Our first question is how much benefit or burden the super simple, uncoordinated approach to electric vehicle charging offers the grid," said Andrew Meintz, the researcher leading NREL's Electric Vehicle Grid Integration team, as well as the RECHARGE project for smart EV charging. "Then we compare that to the 'whiz-bang,' everything-is-connected approach. We want to know the difference in value."

In the "super simple" approach, Meintz explained that battery-powered electric vehicles grow in market share, exemplified by mass-market EVs, without any evolution in vehicle charging coordination. Picture every employee at your workplace driving home at 5 p.m. and charging their vehicle. That is the grid's equivalent of going 0 to 100 mph, and if it does not wreck the system, it is at least very expensive. According to NREL's Electrification Futures Study, a comprehensive analysis of the impacts of widespread electrification across all U.S. economic sectors, in 2050 EVs could contribute to a 33% increase in energy use during peak electrical demand, underscoring state grid challenges that make these intervals costly when energy reserves are procured. In duck curve parlance, EVs will further strain the duck's neck.

The Optimization and Control Lab's Electric Vehicle Grid Integration bays allow researchers to determine how advanced high power chargers can be added safely and effectively to the grid, with the potential to explore how to combine buildings and EV charging. Credit: Dennis Schroeder, NREL
Meintz's "whiz-bang" approach instead imagines EV control strategies that are deliberate and serve to smooth, rather than intensify, the upcoming demand for electricity. It means managing both when and where vehicles charge to create flexible load on the grid.

At NREL, smart strategies to dispatch vehicles for optimal charging are being developed for both the grid edge, where consumers and energy users connect to the grid, as in RECHARGEPDF, and the entire distribution system, as in the GEMINI-XFC projectPDF. Both projects, funded by the U.S. Department of Energy's (DOE's) Vehicle Technologies Office, lean on advanced capabilities at NREL's Energy Systems Integration Facility to simulate future energy systems.

At the grid edge, EVs can be co-optimized with distributed energy resources—small-scale generation or storage technologies—the subject of a partnership with Eaton that brought industry perspectives to bear on coordinated management of EV fleets.

At the larger-system level, the GEMINI-XFC project has extended EV optimization scenarios to the city scale—the San Francisco Bay Area, to be specific.

"GEMINI-XFC involves the highest-ever-fidelity modeling of transportation and the grid," said NREL Research Manager of Grid-Connected Energy Systems Bryan Palmintier.

"We're combining future transportation scenarios with a large metro area co-simulationPDF—millions of simulated customers and a realistic distribution system model—to find the best approaches to vehicles helping the grid."

GEMINI-XFC and RECHARGE can foresee future electrification scenarios and then insert controls that reduce grid congestion or offset peak demand, for example. Charging EVs involves a sort of shell game, where loads are continually moved among charging stations to accommodate grid demand.

But for heavy-duty vehicles, the load is harder to hide. Electrified truck fleets will hit the road soon, creating power needs for electric truck fleets that translate to megawatts of localized demand. No amount of rerouting can avoid the requirements of charging heavy-duty vehicles or other instances of extreme fast-charging (XFC). To address this challenge, NREL is working with industry and other national laboratories to study and demonstrate the technological buildout necessary to achieve 1+ MW charging stationsPDF that are capable of fast charging at very high energy levels for medium- and heavy-duty vehicles.

To reach such a scale, NREL is also considering new power conversion hardware based on advanced materials like wide-bandgap semiconductors, as well as new controllers and algorithms that are uniquely suited for fleets of charge-hungry vehicles. The challenge to integrate 1+ MW charging is also pushing NREL research to higher power: Upcoming capabilities will look at many-megawatt systems that tie in the support of other energy sectors.


Renewable In-Roads for Hydrogen

At NREL, the drive toward larger charging demands is being met with larger research capabilities. The announcement of ARIES opens the door to energy systems integration research at a scale 10-times greater than current capabilities: 20 MW, up from 2 MW. Critically, it presents an opportunity to understand how mobility with high energy demands can be co-optimized with other utility-scale assets to benefit grid stability.

"If you've got a grid humming along with a steady load, then a truck requires 500 kW or more of power, it could create a large disruption for the grid," said Keith Wipke, the laboratory program manager for fuel cells and hydrogen technologies at NREL.

Such a high power demand could be partially served by battery storage systems. Or it could be hidden entirely with hydrogen production. Wipke's program, with support from the DOE's Hydrogen and Fuel Cell Technologies Office, has been performing studies into how electrolyzers—devices that use electricity to break water into hydrogen and oxygen—could offset the grid impacts of XFC. These efforts are also closely aligned with DOE's H2@Scale vision for affordable and effective hydrogen use across multiple sectors, including heavy-duty transportation, power generation, and metals manufacturing, among others.

"We're simulating electrolyzers that can match the charging load of heavy-duty battery electric vehicles. When fast charging begins, the electrolyzers are ramped down. When fast charging ends, the electrolyzers are ramped back up," Wipke said. "If done smoothly, the utility doesn't even know it's happening."

NREL Researchers Rishabh Jain, Kazunori Nagasawa, and Jen Kurtz are working on how grid integration of electrolyzers—devices that use electricity to break water into hydrogen and oxygen—could offset the grid impacts of extreme fast-charging. Credit: National Renewable Energy Laboratory
As electrolyzers harness the cheap electrons from off-demand periods, a significant amount of hydrogen can be produced on site. That creates a natural energy pathway from discount electricity into a fuel. It is no wonder, then, that several well-known transportation and fuel companies have recently initiated a multimillion-dollar partnership with NREL to advance heavy-duty hydrogen vehicle technologies.

"The logistics of expanding electric charging infrastructure from 50 kW for a single demonstration battery electric truck to 5,000 kW for a fleet of 100 could present challenges," Wipke said. "Hydrogen scales very nicely; you're basically bringing hydrogen to a fueling station or producing it on site, but either way the hydrogen fueling events are decoupled in time from hydrogen production, providing benefits to the grid."

The long driving range and fast refuel times—including a DOE target of achieving 10-minutes refuel for a truck—have already made hydrogen the standout solution for applications in warehouse forklifts. Further, NREL is finding that distributed electrolyzers can simultaneously produce hydrogen and improve voltage conditions, which can add much-needed stability to a grid that is accommodating more energy from variable resources.

Those examples that co-optimize mobility with the grid, using diverse technologies, are encouraging NREL and its partners to pursue a new scale of systems integration. Several forward-thinking projects are reimagining urban mobility as a mix of energy solutions that integrate the relative strengths of transportation technologies, which complement each other to fill important gaps in grid reliability.


The Future of Urban Mobility
What will electrified transportation look like at high penetrations? A few NREL projects offer some perspective. Among the most experimental, NREL is helping the city of Denver develop a smart community, integrated with electrified mobility and featuring automated charging and vehicle dispatch.

On another path to advanced mobility, Los Angeles has embarked on a plan to modernize its electricity system infrastructure, reflecting California EV grid stability goals—aiming for a 100% renewable energy supply by 2045, along with aggressive electrification targets for buildings and vehicles. Through the Los Angeles 100% Renewable Energy Study, the city is currently working with NREL to assess the full-scale impacts of the transition in a detailed analysis that integrates diverse capabilities across the laboratory.

The transition would include the Port of Long Beach, the busiest container port in the United States.

At the port, NREL is applying the same sort of scenario forecasting and controls evaluation as other projects, in order to find the optimal mix of technologies that can be integrated for both grid stability and a reliable quality of service: a mix of hydrogen fuel-cell and battery EVs, battery storage systems, on-site renewable generation, and extreme coordination among everything.

"Hydrogen at ports makes sense for the same reason as trucks: Marine applications have big power and energy demands," Wipke said. "But it's really the synergies between diverse technologies—the existing infrastructure for EVs and the flexibility of bulk battery systems—that will truly make the transition to high renewable energy possible."

Like the Port of Long Beach, transportation hubs across the nation are adapting to a complex environment of new mobility solutions. Airports and public transit stations involve the movement of passengers, goods, and services at a volume exceeding anywhere else. With the transition to digitally connected electric mobility changing how airports plan for the future, NREL projects such as Athena are using the power of high-performance computing to demonstrate how these hubs can maximize the value of passenger and freight mobility per unit of energy, time, and/or cost.

The growth in complexity for transportation hubs has just begun, however. Looking ahead, fleets of ride-sharing EVs, automated vehicles, and automated ride-sharing EV fleets could present the largest effort to manage mobility yet.


A Self-Driving Power Grid
To understand the full impact of future mobility-service providers, NREL developed the HIVE (Highly Integrated Vehicle Ecosystem) simulation framework. HIVE combines factors related to serving mobility needs and grid operations—such as a customer's willingness to carpool or delay travel, and potentially time-variable costs of recharging—and simulates the outcome in an integrated environment.

"Our question is, how do you optimize the management of a fleet whose primary purpose is to provide rides and improve that fleet's dispatch and charging?" said Eric Wood, an NREL vehicle systems engineer.

HIVE was developed as part of NREL's Autonomous Energy Systems research to optimize the control of automated vehicle fleets. That is, optimized routing and dispatch of automated electric vehicles.

The project imagines how price signals could influence dispatch algorithms. Consider one customer booking a commute through a ride-hailing app. Out of the fleet of vehicles nearby—variously charged and continually changing locations—which one should pick up the customer?

Now consider the movements of thousands of passengers in a city and thousands of vehicles providing transportation services. Among the number of agents, the moment-to-moment change in energy supply and demand, and the broad diversity in vendor technologies, "we're playing with a lot of parameters," Wood said.

But cutting through all the complexity, and in the midst of massive simulations, the end goal for vehicle-to-grid integration is consistent:

"The motivation for our work is that there are forecasts for significant load on the grid from the electrification of transportation," Wood said. "We want to ensure that this load is safely and effectively integrated, while meeting the expectations and needs of passengers."

The Port of Long Beach uses a mix of hydrogen fuel-cell and battery EVs, battery storage systems, on-site renewable generation, and extreme coordination among everything. Credit: National Renewable Energy Laboratory
True Replacement without Caveats

Electric vehicles are not necessarily helpful to the grid, but they can be. As EVs become established in the transportation sector, NREL is studying how to even out any bumps that electrified mobility could cause on the grid and advance any benefits to commuters or industry.

"It all comes down to load flexibility," Meintz said. "We're trying to decide how to optimally dispatch vehicle charging to meet quality-of-service considerations, while also minimizing charging costs."

 

Related News

View more

Why Atomic Energy Is Heating Up Again

Nuclear Power Revival drives decarbonization, climate change mitigation, and energy security with SMRs, Generation IV designs, baseload reliability, and policy support, complementing renewables to meet net-zero targets and growing global electricity demand.

 

Key Points

A global shift back to nuclear energy, leveraging SMRs and advanced reactors to cut emissions and enhance energy security.

✅ SMRs offer safer, modular, and cost-effective deployment.

✅ Provides baseload power to complement intermittent renewables.

✅ Policy support and investments accelerate advanced designs.

 

In recent years, nuclear power has experienced a remarkable revival in public interest, policy discussions, and energy investment. Once overshadowed by controversies surrounding safety, waste management, and high costs, nuclear energy is now being reexamined as a vital component of the global energy transition, despite recurring questions such as whether it is in decline from some commentators. Here's why nuclear power is "so hot" right now:

1. Climate Change Urgency

One of the most compelling reasons for the renewed interest in nuclear energy is the urgent need to address climate change. Unlike fossil fuels, nuclear power generates electricity with zero greenhouse gas emissions during operation. As countries rush to meet net-zero carbon targets, evidence that net-zero may require nuclear is gaining traction, and nuclear offers a reliable, large-scale alternative to complement renewable energy sources like wind and solar.

2. Energy Security and Independence

Geopolitical tensions and supply chain disruptions have exposed vulnerabilities in relying on imported fossil fuels, and Europe's shrinking nuclear capacity has sharpened concerns over resilience. Nuclear power provides a domestic, stable energy source that can operate independently of volatile global markets. For many nations, this has become a strategic priority, reducing dependence on politically sensitive energy imports.

3. Advances in Technology

Modern innovations in nuclear technology are transforming the industry. Small Modular Reactors (SMRs) are leading the way as part of next-gen nuclear innovation, offering safer, more affordable, and flexible options for nuclear deployment. Unlike traditional large-scale reactors, SMRs can be built faster, scaled to specific energy needs, and deployed in remote or smaller markets.

Additionally, advances in reactor designs, such as Generation IV reactors and fusion research, promise to address longstanding concerns like waste management and safety. For example, some new designs can recycle spent fuel or run on alternative fuels, significantly reducing radioactive waste.

4. Public Perception Is Shifting

Public opinion on nuclear power is also changing. While the industry faced backlash after high-profile incidents like Chernobyl and Fukushima, increasing awareness of climate change and energy security is prompting many to reconsider, including renewed debates such as Germany's potential nuclear return in policy circles. A younger, climate-conscious generation views nuclear energy not as a relic of the past, but as an essential tool for a sustainable future.

5. Renewables Alone Are Not Enough

While renewable energy sources like solar and wind have grown exponentially, their intermittent nature remains a challenge. Energy storage technologies, such as batteries, have not yet matured enough to fully bridge the gap. Nuclear power, with its ability to provide constant, "baseload" energy, as France's fleet demonstrates in practice, serves as an ideal complement to variable renewables in a decarbonized energy mix.

6. Government Support and Investment

Policymakers are taking action to bolster the nuclear sector. Many countries are including nuclear energy in their clean energy plans, offering subsidies, grants, and streamlined regulations to accelerate its deployment. For instance, the United States has allocated billions of dollars to support advanced nuclear projects, the UK's green industrial revolution outlines support for upcoming reactor waves, while Europe has classified nuclear power as "sustainable" under its green taxonomy.

7. Global Energy Demand Is Growing

As populations and economies grow, so does the demand for electricity. Developing nations, in particular, are seeking energy solutions that can support industrialization while limiting environmental impact. Nuclear energy is being embraced as a way to meet these dual objectives, especially in regions with limited access to consistent renewable energy resources.

Challenges Ahead

Despite its potential, nuclear energy is not without its challenges. High upfront costs, lengthy construction timelines, and public concerns over safety and waste remain significant hurdles. The industry will need to address these issues while continuing to innovate and build public trust.

Nuclear power's resurgence is driven by its unique ability to tackle some of the most pressing challenges of our time: climate change, energy security, and the growing demand for electricity. With advances in technology, changing perceptions, and robust policy support, nuclear energy is poised to play a critical role in the global transition to a sustainable and secure energy future.

In a world increasingly shaped by the need for clean and reliable power, nuclear energy has once again become a hot topic—and for good reason.

 

Related News

View more

Solar changing shape of electricity prices in Northern Europe

EU Solar Impact on Electricity Prices highlights how rising solar PV penetration drives negative pricing, shifts peak hours, pressures wholesale markets, and challenges grid balancing, interconnection, and flexibility amid changing demand and renewables growth.

 

Key Points

Explains how rising solar PV cuts wholesale prices, shifts negative-price hours, and strains grid flexibility.

✅ Negative pricing events surge with higher solar penetration.

✅ Afternoon price dips replace night-time wind-led lows.

✅ Grid balancing, interconnectors, and flexibility become critical.

 

The latest EU electricity market report has confirmed the affect deeper penetration of solar is having on wholesale electricity prices more broadly.

The Quarterly Report on European Electricity Markets for the final three months of last year noted the number of periods of negative electricity pricing doubled from 2019, to almost 1,600 such events, as global renewables set new records in deployment across markets.

Having experienced just three negative price events in 2019, the Netherlands recorded almost 100 last year “amid a dramatic increase in solar PV capacity,” in the nation, according to the report.

Whilst stressing the exceptional nature of the Covid-19 pandemic on power consumption patterns, the quarterly update also noted a shift in the hours during which negative electric pricing occurred in renewables poster child Germany. Previously such events were most common at night, during periods of high wind speed and low demand, but 2020 saw a switch to afternoon negative pricing. “Thus,” stated the report, “solar PV became the main driver behind prices falling into negative territory in the German market in 2020, as Germany's solar boost accelerated, and also put afternoon prices under pressure generally.”

The report also highlighted two instances of scarce electricity–in mid September and on December 9–as evidence of the problems associated with accommodating a rising proportion of intermittent clean energy capacity into the grid, and called for more joined-up cross-border power networks, amid pushback from Russian oil and gas across the continent.

Rising solar generation–along with higher gas output, year on year–also helped the Netherlands generate a net surplus of electricity last year, after being a net importer “for many years.” The EU report also noted a beneficial effect of rising solar generation capacity on Hungary‘s national electricity account, and cited a solar “boom” in that country and Poland, mirroring rapid solar PV growth in China in recent years.

With Covid-19 falls in demand helping renewables generate more of Europe's electricity (39%) than fossil fuels (36%) for the first time, as renewables surpassed fossil fuels across Europe, the market report observed the 5% of the bloc's power produced from solar closed in on the 6% accounted for by hard coal. In the final three months of the year, European solar output rose 12%, year on year, to 18 TWh and “the increase was almost single-handedly driven by Spain,” the study added.

With coal and lignite-fired power plunging 22% last year across the bloc, it is estimated the European power sector reduced its carbon footprint 14% as part of Europe's green surge although the quarterly report warned cold weather, lower wind speeds and rising gas prices in the opening months of this year are likely to see carbon emissions rebound.

There was good news on the transport front, though, with the report stating the scale of the European “electrically-charged vehicle” fleet doubled in 2020, to 2 million, with almost half a million of the new registrations arriving in the final months of the year. That meant cars with plug sockets accounted for a remarkable 17% of new purchases in Q4, twice the proportion seen in China and a slice of the pie six times bigger than such products claimed in the U.S.

 

Related News

View more

P.E.I. government exploring ways for communities to generate their own electricity

P.E.I. Community Energy Independence empowers local microgrids through renewable generation, battery storage, and legislative reform, enabling community-owned power, stable electricity rates, and grid-friendly distributed generation across Island communities with wind, biomass, and net metering models.

 

Key Points

A program enabling communities to generate and store renewable power under supportive laws and grid-friendly models.

✅ Legislative review of Electric Power and Renewable Energy Acts

✅ Community microgrids with wind, biomass, and battery storage

✅ Grid integration without raising rates via Maritime Electric

 

The P.E.I. government is taking steps to review energy legislation and explore new options when it comes to generating power across Island communities.

Energy Minister Steven Myers said one of those options will be identifying ways for Island communities to generate their own energy, aligning with a federal electrification study now examining how electricity can reduce or eliminate fossil fuels. 

He said the move would provide energy independence, create jobs and economic development, and save the communities on their energy bills, as seen with an electricity bill credit in Newfoundland that eased costs for consumers.

But the move will require sweeping legislative changes, that may include the merging of the Electric Power Act and the Renewable Energy Act, similar to an electricity market overhaul in Connecticut seen in other jurisdictions.  

Myers said creating energy independence should ensure a steady supply of electricity while also ensuring costs remain reasonable for P.E.I. residents, even as a Nova Scotia electricity rate hike highlights regional cost pressures.   

"We have communities that are looking to generate their own electricity for their own needs," said Myers, adding the province will not dictate what energy sources communities can invest in. 

He also said the province wants to find new community-based models that will complement existing services.

"How do we do that in a way that we don't impact the grid, that we don't impact the service that Maritime Electric is delivering, mindful of a seasonal rate backlash in New Brunswick that illustrates consumer concerns, that we don't drive up the rates for all other Islanders."

Last fall, a group of P.E.I. MLAs traveled to Samsø, a small Danish island, where they learned about renewable and sustainable energy systems being used there.

The province is looking at storage options so it can store power generated during the day to be used in the evening when electricity use is at its highest. (CBC)
Samsø produces 100 per cent of its electricity from wind and biomass, and utilities like HECO meeting renewable goals early show how quickly transitions can occur. The P.E.I. government said the Island produces 25 per cent of its electricity from wind. 

Following the trip, Myers said he was impressed by the control the island had over its energy production and would like to see if a similar model could work on P.E.I. 

Myers said the legislative review will also look at different ways to store energy on the Island. 

He said that will allow communities to sell that excess energy into the provincial electricity grid, and those revenues could be redirected into that community's priorities. 

'For the survival and the future of their community'
"This is kind of a model that we had suggested that would be in place that would allow people in their own community to produce a revenue stream for themselves that they could then turn into projects like rinks, or parks, or tennis courts or whatever it is that community thinks is the most important thing for the survival and the future of their community," said Myers. 

Energy Minister Steven Myers says creating energy independence could create a steady supply of electricity while also ensuring costs remain reasonable for P.E.I. residents. (Randy McAndrew/CBC)
The province said Maritime Electric, Summerside Electric and the P.E.I. Energy Corporation will be involved in the review, recognizing that a Nova Scotia ruling on rate-setting powers underscores regulatory limits 

Government also wants to hear from Islanders and will be accepting written submissions beginning Monday. Myers said the province is also planning to host public consultations, but because of COVID-19, those will be held virtually in mid-June.

Myers calls this a major move, one that will take time. He said he doesn't expect the legislation to be made public until the spring of 2021.

"I want to make sure we take our time and do the proper consultation."

 

Related News

View more

Sycamore Energy taking Manitoba Hydro to court, alleging it 'badly mismanaged' Solar Energy Program

Sycamore Energy Manitoba Hydro Lawsuit centers on alleged mismanagement of the solar rebate incentive program, project delays, inspection backlogs, and alleged customer interference, impacting renewable energy installations, contractors, and clean power investment across Manitoba.

 

Key Points

Claim alleging mismanagement of Manitoba's solar rebate, delays, and inducing customers to switch installers.

✅ Lawsuit alleges mismanaged solar rebate incentive program

✅ Delays in inspections left hundreds of projects incomplete

✅ Claims Hydro urged customers to switch installers for rebates

 

Sycamore Energy filed a statement of claim Monday in Manitoba Court of Queens Bench against Manitoba Hydro saying it badly mismanaged its Solar Energy Program, a dispute that comes as Canada's solar progress faces criticism nationwide.

The claim also noted the crown corporation caused significant financial and reputational damage to Sycamore Energy, echoing disputes like Ontario wind cancellation costs seen elsewhere.

The statement of claim says Manitoba Hydro was telling customers to find other companies to complete solar panel installations, even as Nova Scotia's solar charge debate has unfolded.

'I'm still waiting': dozens of Manitoba solar system installations in the queue under expired incentive program
This all comes after a pilot project was launched in the province in April 2016, which would allow people to apply for a rebate under the incentive program, while Saskatchewan adjusted solar credits in parallel, and the project would cover about 25 per cent of the installation costs.

The project ended in April 2018, but hundreds of approved projects had yet to be finished.

According to Manitoba Hydro, in November there were 252 approved projects awaiting completion by more than one contractor, and Sycamore Energy said it had about 100 of those projects, a dynamic seen as New England's solar growth strains grid upgrades in other regions.

At the time Sycamore Energy COO, Alex Stuart, blamed Manitoba Hydro for the delays, stating it took too long to get inspections after solar systems were installed.

Scott Powell, Manitoba Hydro’s director of corporate communications, said in November he disagreed with Sycamore Energy’s comments, even as Ontario moves to reintroduce renewables elsewhere.

In a news release, the company said it sold more installations under Manitoba Hydro’s Solar Energy Program compared to other companies and it was instrumental in helping set up standards for the program.

“Manitoba Hydro mismanaged the solar rebate program from the beginning. In the end, they targeted our company unfairly and unlawfully by inducing our customers to break their contracts with us. Manitoba Hydro told our customers they could get an extension to their rebate but only if they switched to different installers,” said Justin Phillips, CEO of Sycamore Energy in a news release.

“We would much rather be installing clean, effective solar power projects for our customers right now. The last thing we want to do is to be suing Manitoba Hydro, but we feel we have no choice. Their actions have cost us millions in lost business. They’ve also cost the province jobs, millions in private investment and a positive way forward to help combat climate change.”

Manitoba Hydro now has 20 days to respond to the action, and a recent Cornwall wind-farm ruling underscores the stakes.

When asked for a response from CTV News, a spokesperson for the Crown corporation said it hadn’t yet been made aware of the suit.

“If a statement of claim is filed and served, we’ll file a statement of defence in due course. As this matter is now apparently before the courts, we have no further comment,” the spokesperson said.

None of these allegations have been proven in court.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.