Gas plant developers fight TrAIL power transmission

By Charleston Gazette


NFPA 70e Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$199
Coupon Price:
$149
Reserve Your Seat Today
Developers of two natural gas-fired power plants proposed for Virginia and Maryland are fighting plans to build a $1.3 billion electrical transmission line across Northern West Virginia.

Competitive Power Ventures Inc. argues that its plants would eliminate the need for the 500-kilovolt transmission line to ship more coal-fired power from Appalachia to Washington, D.C., and its growing suburbs.

One of CPVÂ’s projects, CPV Warren LLC, has intervened in a pending West Virginia Public Service Commission review of the Trans-Allegheny Interstate Line, or TrAIL.

CPV Warren proposes to build a 600-megawatt gas-fired plant in Warren County, Va. A sister company proposes a similar 640-megawatt plant in Charles County, Md. Both plants are expected to be in operation by 2011.

Reports from CPV Warren experts, filed with the PSC, conclude the gas-fired plants are a better solution to electrical reliability problems identified by PJM Interconnections, a private organization that maintains the regional power grid.

“If the generation resource cap is in the East, build generation resources, such as CPV Warren, in the East, not a massive transmission line such as the one proposed here to support the delivery of power and energy from existing and proposed generation in the West,” George C. Loehr, a consultant for CPV Warren, said in prepared testimony filed with the PSC.

Debate over CPV WarrenÂ’s arguments was among the issues focused on last week as the PSC began formal evidentiary hearings on the 240-mile transmission line that would carry electricity from western Pennsylvania across West Virginia and into Virginia.

Allegheny Energy wants the PSC to approve the 114 miles of the line that run through West Virginia. TrAIL would enter the state north of Morgantown and run south and east through Monongalia, Preston and Tucker counties to Mount Storm in Grant County. Then it would turn east through Hardy and Hampshire counties before entering Virginia.

Allegheny officials say the line is needed to provide cheap and reliable power to big Eastern cities and their growing suburbs. Aging infrastructure, combined with increasing power demand, could cause rolling blackouts by 2011 that would extend into eastern West Virginia, power company officials say.

The project has drawn intense opposition from hundreds of West Virginians, who fear it will mar scenic views, lower their property values and otherwise damage rural communities.

Among other opponents, the Sierra Club has intervened to fight TrAIL, arguing that increasing coal-fired power would make the climate-change problem worse.

“At a time when the overriding need, nationally and internationally, is to reduce emissions of carbon dioxide the case for any proposed increase must face an overwhelming burden of proof,” the Sierra Club said in a prepared opening statement.

“Such an evidentiary showing could never be sustained where the purported electric objective — increase net supplies of electricity in the target market — can be achieved by available regulatory tools in the target market that will, incidentally, achieve the desired objective and reduce, not increase, carbon dioxide emissions.”

In deciding the case, commissioners must decide whether the power line will “economically, adequately and reliably contribute to meeting the present and anticipated requirements for electric power of the customers served” and whether it is “desirable for present and anticipated reliability of service for electric power for its service area or region.”

The PSC also must decide whether the project “will result in an acceptable balance between reasonable power needs and reasonable environmental factors.”

The PSC already held a series of public-comment periods last year, and set aside 10 days in January — including several Saturday sessions — and four days in February for formal testimony.

A ruling is not expected until late April or early May.

The TrAIL project is the first of two new major transmission lines that the PSC is expected to be asked to approve in West Virginia over the next few years.

American Electric Power wants to build a 765-kilovolt transmission line from the John Amos Power Station near St. Albans to a substation northeast of Martinsburg.

That 250-mile project is part of a $3 billion, 550-mile line that would run to New Jersey. AEP calls that proposal PATH, for Potomac-Appalachian Transmission Highline.

During the opening hearings on TrAIL, CPV Warren lawyer Michael Engleman spent several hours grilling PJM Vice President Steven Herling about his organizationÂ’s backing of the power line.

Related News

18% of electricity generated in Canada in 2019 came from fossil fuels

EV Decarbonization Strategy weighs life-cycle emissions and climate targets, highlighting mode shift to public transit, cycling, and walking, grid decarbonization, renewable energy, and charging infrastructure to cut greenhouse gases while reducing private car dependence.

 

Key Points

A plan to cut transport emissions by pairing EV adoption with mode shift, clean power, and less private car use.

✅ Prioritize mode shift: transit, cycling, and walking.

✅ Electrify remaining vehicles with clean, renewable power.

✅ Expand charging, improve batteries, and manage critical minerals.

 

California recently announced that it plans to ban the sales of gas-powered vehicles by 2035, a move similar to a 2035 electric vehicle mandate seen elsewhere, Ontario has invested $500 million in the production of electric vehicles (EVs) and Tesla is quickly becoming the world's highest-valued car company.

It almost seems like owning an electric vehicle is a silver bullet in the fight against climate change, but it isn't, as a U of T study explains today. What we should also be focused on is whether anyone should use a private vehicle at all.
 
As a researcher in sustainable mobility, I know this answer is unsatisfying. But this is where my latest research has led.

Battery EVs, such as the Tesla Model 3 - the best selling EV in Canada in 2020 - have no tailpipe emissions. But they do have higher production and manufacturing emissions than conventional vehicles, and often run on electricity that comes from fossil fuels.

Almost 18 per cent of the electricity generated in Canada came from fossil fuels in 2019, and even as Canada's EV goals grow more ambitious today, the grid mix varies from zero in Quebec to 90 per cent in Alberta.
 
Researchers like me compare the greenhouse gas emissions of an alternative vehicle, such as an EV, with those of a conventional vehicle over a vehicle lifetime, an exercise known as a life-cycle assessment. For example, a Tesla Model 3 compared with a Toyota Corolla can provide up to 75 per cent reduction in greenhouse gases emitted per kilometre travelled in Quebec, but no reductions in Alberta.

 

Hundreds of millions of new cars

To avoid extreme and irreversible impacts on ecosystems, communities and the overall global economy, we must keep the increase in global average temperatures to less than 2 C - and ideally 1.5 C - above pre-industrial levels by the year 2100.

We can translate these climate change targets into actionable plans. First, we estimate greenhouse gas emissions budgets using energy and climate models for each sector of the economy and for each country. Then we simulate future emissions, taking alternative technologies into account, as well as future potential economic and societal developments.

I looked at the U.S. passenger vehicle fleet, which adds up to about 260 million vehicles, while noting the potential for Canada-U.S. collaboration in this transition, to answer a simple question: Could the greenhouse gas emissions from the sector be brought in line with climate targets by replacing gasoline-powered vehicles with EVs?

The results were shocking. Assuming no changes to travel behaviours and a decarbonization of 80 per cent of electricity, meeting a 2 C target could require up to 300 million EVs, or 90 per cent of the projected U.S. fleet, by 2050. That would require all new purchased vehicles to be electric from 2035 onwards.

To put that into perspective, there are currently 880,000 EVs in the U.S., or 0.3 per cent of the fleet. Even the most optimistic projections, despite hype about an electric-car revolution gaining steam, from the International Energy Agency suggest that the U.S. fleet will only be at about 50 per cent electrified by 2050.

 

Massive and rapid electrification

Still, 90 per cent is theoretically possible, isn't it? Probably, but is it desirable?

In order to hit that target, we'd need to very rapidly overcome all the challenges associated with EV adoption, such as range anxiety, the higher purchase cost and availability of charging infrastructure.
 
A rapid pace of electrification would severely challenge the electricity infrastructure and the supply chain of many critical materials for the batteries, such as lithium, manganese and cobalt. It would require vast capacity of renewable energy sources and transmission lines, widespread charging infrastructure, a co-ordination between two historically distinct sectors (electricity and transportation systems) and rapid innovations in electric battery technologies. I am not saying it's impossible, but I believe it's unlikely.

Read more: There aren't enough batteries to electrify all cars - focus on trucks and buses instead

So what? Shall we give up, accept our collective fate and stop our efforts at electrification?

On the contrary, I think we should re-examine our priorities and dare to ask an even more critical question: Do we need that many vehicles on the road?

 

Buses, trains and bikes

Simply put, there are three ways to reduce greenhouse gas emissions from passenger transport: avoid the need to travel, shift the transportation modes or improve the technologies. EVs only tackle one side of the problem, the technological one.

And while EVs do decrease emissions compared with conventional vehicles, we should be comparing them to buses, including leading electric bus fleets in North America, trains and bikes. When we do, their potential to reduce greenhouse gas emissions disappears because of their life cycle emissions and the limited number of people they carry at one time.

If we truly want to solve our climate problems, we need to deploy EVs along with other measures, such as public transit and active mobility. This fact is critical, especially given the recent decreases in public transit ridership in the U.S., mostly due to increasing vehicle ownership, low gasoline prices and the advent of ride-hailing (Uber, Lyft)

Governments need to massively invest in public transit, cycling and walking infrastructure to make them larger, safer and more reliable, rather than expanding EV subsidies alone. And we need to reassess our transportation needs and priorities.

The road to decarbonization is long and winding. But if we are willing to get out of our cars and take a shortcut through the forest, we might get there a lot faster.

Author: Alexandre Milovanoff - Postdoctoral Researcher, Environmental Engineering, University of Toronto The Conversation

 

Related News

View more

National Grid to lose Great Britain electricity role to independent operator

UK Future System Operator to replace National Grid as ESO, enabling smart grid reform, impartial system planning, vehicle-to-grid, long duration storage, and data-driven oversight to meet net zero and cut consumer energy costs.

 

Key Points

The UK Future System Operator is an independent ESO and planner, steering net zero with impartial data and smart grid coordination.

✅ Replaces National Grid ESO with independent system operator

✅ Enables smart grid, vehicle-to-grid, and long-duration storage

✅ Supports net zero, lower bills, and impartial system planning

 

The government plans to strip National Grid of its role keeping Great Britain’s lights on as part of a proposed “revolution’” in the electricity network driven by smart digital grid technologies.

The FTSE 100 company has played a role in managing the energy system of England, Scotland and Wales, including efforts such as a subsea power link that brings renewable power from Scotland to England (Northern Ireland has its own network). It is the electricity system operator, balancing supply and demand to ensure the electricity supply. But it will lose its place at the heart of the industry after government officials put forward plans to replace it with an independent “future system operator”.

The new system controller would help steer the country towards its climate targets, at the lowest cost to energy bill payers, by providing impartial data and advice after an overhaul of the rules governing the energy system to make it “fit for the future”.

The plans are part of a string of new proposals to help connect millions of electric cars, smart appliances and other green technologies to the energy system, and to fast-track grid connections nationwide, which government officials believe could help to save £10bn a year by 2050, and create up to 10,000 jobs for electricians, data scientists and engineers.

The new regulations aim to make it easier for electric cars to export electricity from their batteries back on to the power grid or to homes when needed. They could also help large-scale and long-duration batteries play a role in storing renewable energy, supported by infrastructure such as a 2GW substation helping integrate supply, so that it is available when solar and wind power generation levels are low.

Anne-Marie Trevelyan, the energy and climate change minister, said the rules would allow households to “take control of their energy use and save money” while helping to make sure there is clean electricity available “when and where it’s needed”.

She added: “We need to ensure our energy system can cope with the demands of the future. Smart technologies will help us to tackle climate change while making sure that the lights stay on and bills stay low.”

The energy regulator, Ofgem, raised concerns earlier this year that National Grid would face a “conflict of interest” in providing advice on the future electricity system because it also owns energy networks that stand to benefit financially from future investment plans. It called for a new independent operator to take its place.

Jonathan Brearley, Ofgem’s chief executive, said the UK requires a “revolution” in how and when it uses electricity, including demand shifts during self-isolation to help meet its climate targets and added that the government’s plans for a new digital energy system were “essential” to meeting this goal “while keeping energy bills affordable for everyone”.

A National Grid spokesperson said the company would “work closely” with the government and Ofgem on the role of a future system operator, as well as “the most appropriate ownership model and any future related sale”.

The division has earned National Grid, which has addressed cybersecurity fears in supplier choices, an average of £199m a year over the last five years, or 1.3% of the group’s total revenues, which are split between the UK – where it operates high-voltage transmission lines in England and Wales, and the country’s gas system – and its growing energy supply business in the US, aligned with investment in a smarter electricity infrastructure in the US to modernize grids.

 

Related News

View more

OPINION | Bridging the electricity gap between Alberta and B.C. makes perfect climate sense

BC-Alberta Transmission Intertie enables clean hydro to balance wind and solar, expanding transmission capacity so Site C hydro can dispatch power, cut emissions, lower costs, and accelerate electrification across provincial grids under federal climate policy.

 

Key Points

A cross-provincial grid link using BC hydro to firm Alberta wind and solar, cutting emissions and costs.

✅ Balances variable renewables with dispatchable hydro from Site C.

✅ Enables power trade: peak exports, low-cost wind imports.

✅ Lowers decarbonization costs and supports electrification goals.

 

By Mark Jaccard

Lost in the news and noise of the federal government's newly announced $170-per-tonne carbon tax was a single, critical sentence in Canada's updated climate plan, one that signals a strategy that could serve as the cornerstone for a future free of greenhouse gas emissions.

"The government will work with provinces and territories to connect parts of Canada that have abundant clean hydroelectricity with parts that are currently more dependent on fossil fuels for electricity generation — including by advancing strategic intertie projects."

Why do we think this one sentence is so important? And what has it got to do with the controversial Site C project Site C electricity debate under construction in British Columbia?

The answer lies in the huge amount of electricity we'll need to generate in Canada to achieve our climate goals for 2030 and 2050. Even while we aggressively pursue energy efficiency, our electric cars, buses and perhaps trucks in Canada's net-zero race will need a huge amount of new electricity, as will our buildings and industries. 

Luckily, Canada is blessed with an electricity system that is the envy of the world — already over 80 per cent zero emission, the bulk being from flexible hydro-electricity, with a backbone of nuclear power largely in Ontario, a national electricity success and rapidly growing shares of cheap wind and solar. 

Provincial differences
Yet the story differs significantly from one province to another. While B.C.'s electricity is nearly emissions free, the opposite is true of its neighbour, Alberta, where more than 80 per cent still comes from fossil fuels. This, despite an impressive shift away from coal power in recent years.

Now imagine if B.C. and Alberta were one province.

This might sound like the start of a bad joke, or a horror movie to some, but it's the crux of new research by a trio of energy economists who put a fine point on the value of such co-operation.

The study, by Brett Dolter, Kent Fellows and Nic Rivers, takes a detailed look at the economic case for completing Site C, BC Hydro's controversial large hydro project under construction, and makes three key conclusions.

First, they argue Site C should likely not have been started in the first place. Only a narrow set of assumptions can now justify its total cost. But what's done is done, and absent a time machine, the decision to complete the dam rests on go-forward costs.

On that note, their second conclusion is no more optimistic. Considering the cost to complete the project, even accounting for avoiding termination costs should it be cancelled, they find the economics of completing Site C over-budget status to be weak. If the New York Times had a Site C needle in the style of the newspaper's election visual, it would be "leaning cancel" at this point.

In Alberta, more than 80 per cent of the electricity still comes from fossil fuels, despite an impressive shift away from coal power in recent years. (CBC)
But it is their third conclusion that stands out as worthy of attention. They argue there is a case for completing Site C if the following conditions are met:

B.C. and Alberta reduce their electricity sector emissions by more than 75 per cent (this really means Alberta, given B.C.'s already clean position); and

B.C. and Alberta expand their ability to move electricity between their respective provinces by building new transmission lines.

Let's deal with each of these in turn.

On Condition 1, we give an emphatic: YES! Reducing electricity emissions is an absolute must to meet climate pledges if Canada is to come even close to achieving its net-zero goals. As noted above, a clean electricity grid will be the cornerstone of a decarbonized economy as we generate a great deal more power to electrify everything from industrial processes to heating to transportation and more. 

Condition 2 is more challenging. Talk of increasing transmission connections across Canada, including Hydro-Québec's U.S. strategy has been ongoing for over 50 years, with little success to speak of. But this time might well be different. And the implications for a completed Site C, should the government go that route, are profound.

Wind and solar costs rapidly declining
Somewhat ironically, the case for Site C is made stronger by the rapidly declining costs of two of its apparent renewable competitors: wind and solar.

The cost of wind and solar generation has fallen by 70 per cent and 90 per cent, respectively, a dramatic decline in the past 10 years. No longer can these variable sources of power be derided as high cost; they are unequivocally the cheapest sources of raw energy in electricity systems today.

However, electricity system operators must deal with their "non-dispatchability," a seemingly complicated term that simply means they produce electricity only when the sun shines and the wind blows, which is not necessarily when electricity customers want their electricity delivered (dispatched) to them. And because of this characteristic, the value of dispatchable electricity sources, like a completed Site C, will grow as a complement to wind and solar. 

Thus, as Alberta's generation of cheap wind and solar grows, so too does the value of connecting it with the firm, dispatchable resources available in B.C.

Rather than displacing wind and solar, large hydro facilities with the ability to increase or decrease output on short notice can actually enable more investment in these renewable sources. Expanding the transmission connection, with Site C on one side of that line, becomes even more valuable.

Many in B.C. might read this and rightly ask themselves, why should we foot the bill for this costly project to help out Albertans? The answer is that it won't be charity — B.C. will get paid handsomely for the power it delivers in peak periods and will be able to import wind power at low prices from Alberta in other times. B.C. will benefit greatly from these gains of trade.

Turning to Alberta, why should Albertans support B.C. reaping these gains? The answer is two-fold.

First, Site C will actually enable more low-cost wind and solar to be built in Alberta due to hydro's ability to balance these non-dispatchable renewables. Jobs and economic opportunity will occur in Alberta from this renewable energy growth.

Second, while B.C. imports won't come cheap, they will be less costly than the decarbonization alternatives Alberta would need without B.C.'s flexible hydro, as the economists' study shows. This means lower overall costs to Alberta's power consumers.

A clear role for Ottawa
To be sure, there are challenges to increasing the connectedness of B.C. and Alberta's power systems, not least of which is BC Hydro being a regulated, government-owned monopoly while Alberta is a competitive market amongst private generators. Some significant accommodations in climate policy and grids will be needed to ensure both sides can compete and benefit from trade on an equal footing.

There is also the pesky matter of permitting and constructing thousands of kilometres of power lines. Getting linear energy infrastructure built in Canada has not exactly been our forte of late.

We are not naive to the significant challenges in such an approach, but it's not often that we see such a clear narrative for beneficial climate action that, when considered at the provincial level, is likely to be thwarted, but when considered more broadly can produce a big win.

It's the clearest example yet of a role for the federal government to bridge the gap, to facilitate the needed regulatory conversations, and, let's be frank, to bring money to the table to make the line happen. Neither provincial side is likely to do it on their own, nor, as history has shown, are they likely to do it together. 

For a government committed to reducing emissions, and with a justified emphasis on the electricity sector, the opportunity to expand the Alberta-B.C. transmission intertie, leveraging the flexibility of B.C.'s hydro with the abundance of wind and solar potential on the Prairies, offers a potential massive decarbonization win for Western Canada that is too good to ignore.


Mark Jaccard, a professor at Simon Fraser University, and Blake Shaffer, a professor at the University of Calgary

 

Related News

View more

U.S. Electric Vehicle Market Share Dips in Q1 2024

U.S. EV Market Share Dip Q1 2024 reflects slower BEV adoption, rising PHEV demand, affordability concerns, charging infrastructure gaps, tax credit shifts, range anxiety, and automaker strategy adjustments across the electric vehicle market.

 

Key Points

Q1 2024 EV and hybrid share slipped as BEV sales lag, PHEVs rise, and affordability and charging concerns temper demand.

✅ BEV share fell to 7.0% as affordable models remain limited

✅ PHEV sales rose 50% YoY, easing range anxiety concerns

✅ Policy shifts and charging gaps weigh on consumer adoption

 

The U.S. electric vehicle (EV) market, once a beacon of unbridled growth, appears to be experiencing a course correction. Data from the U.S. Energy Information Administration (EIA) reveals that the combined market share of electric vehicles (battery electric vehicles, or BEVs) and hybrids dipped slightly in the first quarter of 2024, marking the first decline since the onset of the COVID-19 pandemic, even as EU EV share rose during lockdowns in 2020.

This news comes as a surprise to many analysts who predicted continued exponential growth for the EV market. While overall sales of electric vehicles surged into 2024 and did increase by 7% compared to Q1 2023, this growth wasn't enough to keep pace with the overall rise in vehicle sales. The result: a decline in market share from 18.8% in Q4 2023 to 18.0% in Q1 2024.

Several factors may be contributing to this shift. One potential culprit is a slowdown in battery electric vehicle sales. BEVs saw their share of the market dip from 8.1% to 7.0% in the same period. This could be attributed to a lack of readily available affordable options, with many popular EV models still commanding premium prices and concerns that EV supply may miss demand in the near term.

Another factor could be the rising interest in plug-in hybrid electric vehicles (PHEVs). PHEV sales witnessed a significant jump of 50% year-over-year, reflecting how gas-electric hybrids are getting a boost from major automakers, potentially indicating a consumer preference for vehicles that offer both electric and gasoline powertrain options, addressing concerns about range anxiety often associated with BEVs.

Industry experts offer mixed interpretations of this data. Some downplay the significance of the dip, attributing it to a temporary blip, even though EVs remain behind gas cars in total sales. They point to the ongoing commitment from major automakers to invest in EV production and the potential for new, more affordable models to hit the market soon.

Others express more concern, citing Europe's recent EV slump and suggesting this might be a sign of maturing consumer preferences. They argue that simply increasing the number of EVs on the market might not be enough. Automakers need to address issues like affordability, charging infrastructure, and range anxiety to maintain momentum.

The role of government incentives also remains a question mark. The federal tax credit for electric vehicles is currently set to phase out gradually, potentially impacting consumer purchasing decisions in the future. Continued government support, through incentives or infrastructure development, could be crucial in maintaining consumer interest.

The coming quarters will be crucial in determining the long-term trajectory of the U.S. EV market, especially after the global electric car market's rapid expansion in recent years. Whether this is a temporary setback or a more lasting trend remains to be seen. Addressing consumer concerns, ensuring a diverse range of affordable EV options, and continued government support will all be essential in ensuring the continued growth of this critical sector.

This development also presents an opportunity for traditional automakers. By capitalizing on the growing PHEV market and addressing consumer concerns about affordability and range anxiety, they can carve out a strong position in the evolving automotive landscape.

 

Related News

View more

Announces Completion of $16 Million Project to Install Smart Energy-Saving Streetlights in Syracuse

Smart Street Lighting NY delivers Syracuse-wide LED retrofits with smart controls, Wi-Fi, and sensors, saving $3.3 million annually and cutting nearly 8,500 tons of greenhouse gases, improving energy efficiency, safety, and maintenance.

 

Key Points

A NYPA-backed program replacing streetlights with LED and controls to cut costs and emissions across New York by 2025.

✅ Syracuse replaced 17,500 fixtures with LED and smart controls.

✅ Saves $3.3M yearly; cuts 8,500 tons CO2e; improves safety.

✅ NYPA financing and maintenance support enable Smart City sensors.

 

Governor Andrew M. Cuomo today announced the completed installation of energy-efficient LED streetlights throughout the City of Syracuse as part of the Governor's Smart Street Lighting NY program. Syracuse, through a partnership with the New York Power Authority, replaced all of its streetlights with the most comprehensive set of innovative Smart City technologies in the state, saving the city $3.3 million annually and reducing greenhouse gas emissions by nearly 8,500 tons a year--the equivalent of taking more than 1,660 cars off the road. New York has now replaced more than 100,000 of its streetlights with LED fixtures, reflecting broader state renewable ambitions across the country, a significant milestone in the Governor's goal to replace at least 500,000 streetlights with LED technology by 2025 under Smart Street Lighting NY.

Today's announcement directly supports the goals of the Climate Leadership and Community Protection Act, the most aggressive climate change law in the nation, through the increased use of energy efficiency, exemplified by Seattle City Light's program that helps customers reduce bills, to annually reduce electricity demand by three percent--equivalent to 1.8 million New York households--by 2025.

"As we move further into the 21st century, it's critical we make the investments necessary for building smarter, more sustainable communities and that's exactly what we are doing in Syracuse," Governor Cuomo said. "Not only is the Smart Street Lighting NY program reducing the city's carbon footprint, but millions of taxpayer dollars will be saved thanks to a reduction in utility costs. Climate change is not going away and it is these types of smart, forward-thinking programs which will help communities build towards the future."

The more than $16 million cutting-edge initiative, implemented by NYPA, includes the replacement of approximately 17,500 streetlights throughout the city with SMART, LED fixtures, improving lighting quality and neighborhood safety while saving energy and maintenance costs. The city's streetlights are now outfitted with SMART controls that provide programmed dimming ability, energy metering, fault monitoring, and additional tools for emergency services through on-demand lighting levels.

"The completion of the replacement of LED streetlights in Syracuse is part of our overall efforts to upgrade more than 100,000 streetlights across the state," Lieutenant Governor Kathy Hochul said. "The new lights will save the city $3.3 million annually, helping to reduce cost for energy and maintenance and reducing greenhouse gas emissions. These new light fixtures will also help to improve safety and provide additional tools for emergency services. The conversion of streetlights statewide to high-tech LED fixtures will help local governments and taxpayers save money, while increasing efficiency and safety as we work to build back better and stronger for the future."

NYPA provided Syracuse with a $500,000 Smart Cities grant for the project. The city utilized the additional funding to support special features on the streetlights that demonstrate the latest in Smart City technologies, focused on digital connectivity, environmental monitoring and public safety. These features are expected to be fully implemented in early 2021.

Connectivity: The city is planning to deploy exterior Wi-Fi at community centers and public spaces, including in neighborhoods in need of expanded digital network services.

Environmental Monitoring: Ice and snow detection systems that assist city officials in pinpointing streets covered in ice or snow and require attention to prevent accidents and improve safety. The sensors provide data that can tell the city where salt trucks and plows are most needed instead of directing trucks to drive pre-determined routes. Flood reporting and monitoring systems will also be installed.

Public Safety and Property Protection: Illegal dumping and vandalism detection sensors will be installed at strategic locations to help mitigate these disturbances. Vacant house monitoring will also be deployed by the city. The system can monitor for potential fires, detect motion and provide temperature and humidity readings of vacant homes. Trash bin sensors will be installed at various locations throughout the city that will detect when a trash bin is full and alert local officials for pick-up.

NYPA President and CEO Gil C. Quiniones said, "Syracuse is truly a pioneer in its exploration of using SMART technologies to improve public services and the Power Authority was thrilled to partner with the city on this innovative initiative. Helping our customers bring their streetlights into the future further advances NYPA's reputation as a first-mover in the energy-sector."

New York State Public Service Commission Chair John B. Rhodes said, "Governor Cuomo signed legislation making it easier for municipalities to purchase and upgrade their street lighting systems. With smart projects like these, cities such as Syracuse can install state-of-the-art, energy efficient lights and take control over their energy use, lower costs to taxpayers and protect the environment."

Mayor Ben Walsh said, "Governor Cuomo and the New York Power Authority have helped power Syracuse to the front of the pack of cities in the U.S., leveraging SMART LED lighting to save money and make life better for our residents. Because of our progress, even in the midst of a global pandemic, the Syracuse Surge, our strategy for inclusive growth in the New Economy, continues to move forward. Syracuse and all of New York State are well positioned to lead the nation and the world because of NYPA's support and the Governor's leadership."

To date, NYPA has installed more than 50,000 LED streetlights statewide, with more than 115,000 lighting replacements currently implemented. Some of the cities and towns that have already converted to LED lights, in collaboration with NYPA, include Albany, Rochester, and White Plains. In addition, the Public Service Commission, whose ongoing retail energy markets review informs consumer protections, in conjunction with investor-owned utilities around the state, has facilitated the installation of more than 50,000 additional LED lights.

The NYPA Board of Trustees, in support of the Smart Street Lighting NY program, authorized at its September meeting the expenditure of $150 million over the next five years to secure the services of Candela Systems in Hawthorne, D&M Contracting in Elmsford and E-J Electric T&D in Wallingford, Connecticut, while in other regions, city officials take a clean energy message to Georgia Power and the PSC to spur utility action. All three firms will work on behalf of NYPA to continue to implement LED lighting replacements throughout New York State to meet the Governor's goal of 500,000 LED streetlights installed by 2025.

Smart Street Lighting NY: Energy Efficient and Economically Advantageous

NYPA is working with cities, towns, villages and counties throughout New York to fully manage and implement a customer's transition to LED streetlight technology. NYPA provides upfront financing for the project, and during emergencies, New York's utility disconnection moratorium helps protect customers while payments to NYPA are made in the years following from the cost-savings created by the reduced energy use of the LED streetlights, which are 50 to 65 percent more efficient than alternative street lighting options.

Through this statewide street lighting program, NYPA's government customers are provided a wide-array of lighting options to help meet their individual needs, including specifications on the lights to incorporate SMART technology, which can be used for dozens of other functions, such as cameras and other safety features, weather sensors, Wi-Fi and energy meters.

To further advance the Governor's effort to replace existing New York street lighting, in 2019, NYPA launched a new maintenance service to provide routine and on-call maintenance services for LED street lighting fixtures installed by NYPA throughout the state, and during the COVID-19 response, New York and New Jersey suspended utility shut-offs to protect customers and maintain essential services. The new service is available to municipalities that have engaged NYPA to implement a LED street lighting conversion and have elected to install an asset management controls system on their street lighting system, reducing the number of failures and repairs needed after installation is complete.

To learn more about the Smart Street Lighting NY program, visit the program webpage on NYPA's website.

 

New York State's Nation-Leading Climate Plan

Governor Cuomo's nation-leading climate plan is the most aggressive climate and clean energy initiative in the nation, calling for an orderly and just transition to clean energy that creates jobs and continues fostering a green economy as New York State builds back better as it recovers from the COVID-19 pandemic. Enshrined into law through the CLCPA, New York is on a path to reach its mandated goals of economy wide carbon neutrality and achieving a zero-carbon emissions electricity sector by 2040, similar to Ontario's clean electricity regulations that advance decarbonization, faster than any other state. It builds on New York's unprecedented ramp-up of clean energy including a $3.9 billion investment in 67 large-scale renewable projects across the state, the creation of more than 150,000 jobs in New York's clean energy sector, a commitment to develop over 9,000 megawatts of offshore wind by 2035, and 1,800 percent growth in the distributed solar sector since 2011. New York's Climate Action Council is working on a scoping plan to build on this progress and reduce greenhouse gas emissions by 85 percent from 1990 levels by 2050, while ensuring that at least 40 percent of the benefits of clean energy investments benefit disadvantaged communities, and advancing progress towards the state's 2025 energy efficiency target of reducing on-site energy consumption by 185 TBtus.

 

Related News

View more

Japan opens part of last town off-limits since nuclear leaks

Futaba Partial Reopening marks limited access to the Fukushima exclusion zone, highlighting radiation decontamination progress, the train station restart, and regional recovery ahead of the Tokyo Olympics after the 2011 nuclear disaster and evacuation.

 

Key Points

A lift of entry bans in Futaba, signaling Fukushima recovery, decontamination progress, and a train station restart.

✅ Unrestricted access to 2.4 km² around Futaba Station

✅ Symbolic step ahead of Tokyo Olympics torch relay

✅ Decommissioning and decontamination to span decades

 

Japan's government on Wednesday opened part of the last town that had been off-limits due to radiation since the Fukushima nuclear disaster nine years ago, in a symbolic move to show the region's recovery ahead of the Tokyo Olympics, even as grid blackout risks have drawn scrutiny nationwide.

The entire population of 7,000 was forced to evacuate Futaba after three reactors melted down due to damage at the town's nuclear plant caused by a magnitude 9. 0 quake and tsunami March 11, 2011.

The partial lifting of the entry ban comes weeks before the Olympic torch starts from another town in Fukushima, as new energy projects like a large hydrogen system move forward in the prefecture. The torch could also arrive in Futaba, about 4 kilometres (2.4 miles) from the wrecked nuclear plant.

Unrestricted access, however, is only being allowed to a 2.4 square-kilometre (less than 1 square-mile) area near the main Futaba train station, which will reopen later this month to reconnect it with the rest of the region for the first time since the accident. The vast majority of Futaba is restricted to those who get permission for a day visit.

The three reactor meltdowns at the town's Fukushima Dai-ichi nuclear power plant spewed massive amounts of radiation that contaminated the surrounding area and at its peak, forced more than 160,000 people to flee, even as regulators later granted TEPCO restart approval for a separate Niigata plant elsewhere in Japan.

The gate at a checkpoint was opened at midnight Tuesday, and Futaba officials placed a signboard at their new town office, at a time when the shutdown of Germany's last reactors has reshaped energy debates abroad.

“I'm overwhelmed with emotion as we finally bring part of our town operations back to our home town," said Futaba Mayor Shiro Izawa. “I pledge to steadily push forward our recovery and reconstruction."

Town officials say they hope to see Futaba’s former residents return, but prospects are grim because of lingering concern about radiation, and as Germany's nuclear exit underscores shifting policies abroad. Many residents also found new jobs and ties to communities after evacuating, and only about 10% say they plan to return.

Futaba's registered residents already has decreased by 1,000 from its pre-disaster population of 7,000. Many evacuees ended up in Kazo City, north of Tokyo, after long bus trips, various stopovers and stays in shelters at an athletic arena and an abandoned high school. The town's government reopened in a makeshift office in another Fukushima town of Iwaki, while abroad projects like the Bruce reactor refurbishment illustrate long-term nuclear maintenance efforts.

Even after radiation levels declined to safe levels, the region's farming and fishing are hurt by lingering concerns among consumers and retailers. The nuclear plant is being decommission in a process that will take decades, with spent fuel removal delays extending timelines, and it is building temporary storage for massive amounts of debris and soil from ongoing decontamination efforts.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.