Power for California Launches Clean Nuclear Power Ballot Measure with the Attorney GeneralÂ’s Office

By Business Wire


Arc Flash Training CSA Z462 - Electrical Safety Essentials

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today
A ballot initiative was launched that aims to provide Californians with safe, clean, reliable and affordable electrical power by lifting the stateÂ’s 31-year ban on constructing new nuclear power plants. The measure was submitted to the Attorney GeneralÂ’s office for ballot title and summary.

Initiative proponent Assemblyman Chuck DeVore said, “California is the most energy efficient state in the U.S., but we run the very real risk of running short on power as we try to meet ambitious greenhouse gas reduction mandates. Modern nuclear power will allow us to add jobs while improving the environment – there are really no other options capable of generating the large amounts of power we need.”

Assemblyman DeVore joins an effort already underway by the Fresno Nuclear Energy Group, LLC to lift California’s ban on building nuclear power plants. The Fresno group’s president and CEO, John Hutson, said, “Building a modern and safe nuclear power plant in the Fresno area will bring thousands of high-paying jobs and hundreds of millions of dollars in tax revenues to the Central San Joaquin Valley. In addition, it will benefit all of California by helping to meet California’s growing demand for electricity.”

The proponents will need to collect about 500,000 signatures to qualify the measure for June 2008 ballot.

DeVore added, “The leading candidates for president, including Democratic senators Hillary Clinton and Barrack Obama, as well as most of the Republican field, have publicly called for nuclear power to be considered part of our national energy solution. California should take the lead in boosting electrical production from clean and safe nuclear power.”

About 14 percent of CaliforniaÂ’s electricity comes from nuclear power.

California put its nuclear power ban into place in 1976 chiefly citing concerns over storage of spent nuclear fuel. Since then, the Nuclear Regulatory Commission licensed the first dry cask storage installation at the Surry Nuclear Power Plant in Virginia in 1986. The technology is considered a highly reliable method to store spent fuel until such time as a long-term storage facility is operational.

Related News

Investigation underway to determine cause of Atlanta Airport blackout

Atlanta Airport Power Outage disrupts Hartsfield-Jackson as an underground fire cripples switchgear redundancy, canceling flights during holiday travel; Georgia Power restores electricity overnight while utility crews probe causes and monitor system resilience.

 

Key Points

A major Hartsfield-Jackson blackout from an underground fire; power restored as switchgear redundancy is investigated.

✅ Underground fire near Plane Train tunnel damaged switchgear systems

✅ Over 1,100 flights canceled; holiday travel severely disrupted

✅ Georgia Power restored service; redundancy and root cause under review

 

Power has been restored at the world’s busiest airport after a massive outage Sunday afternoon left planes and passengers stranded for hours, forced airlines to cancel more than 1,100 flights and created a logistical nightmare during the already-busy holiday travel season.

An underground fire caused a complete power outage Sunday afternoon at Hartsfield-Jackson Atlanta International Airport, resulting in thousands of canceled flights at the world's busiest terminal and affecting travelers worldwide.

The massive outage didn’t just leave passengers stranded overnight Sunday, it also affected travelers with flights Monday morning schedules.

According to Paul Bowers, the president and CEO of Georgia Power,  “From our standpoint, we apologize for the inconvenience,” he said. The utility restored power to the airport shortly before midnight.

Utility Crews are monitoring the fixes that restored power and investigating what caused the fire and why it was able to damage redundant systems. Bowers said the fire occurred in a tunnel that runs along the path of the underground Plane Train tunnel near Concourse E.

Sixteen highly trained utility personnel worked in the passageway to reconnect the network.“Our investigation is going through the process of what do we do to ensure we have the redundancy going back at the airport, because right now we are a single source feed,” Bowers said.

“We will have that complete by the end of the week, and then we will turn to what caused the failure of the switchgear.”

Though the cause isn’t yet known, he said foul play is not suspected.“There are two things that could happen,” he said.

“There are inner workings of the switchgear that could create the heat that caused the fire, or the splicing going into that switchgear -- that the cable had a failure on that going into the switch gear.”

When asked if age of the system could have been a failure, Bowers said his company conducts regular inspections.“We constantly inspect,” he said. “We inspect on an annual basis to ensure the reliability of the network, and that redundancy is protection for the airport.”Bowers said he is not familiar with any similar fire or outage at the airport.

“The issue for us is to ensure the reliability is here and that it doesn’t happen again and to ensure that our network is resilient enough to withstand any kind of fire,” he said. He added that Georgia Power will seek to determine what can be done in the future to avoid a similar event, such as those experienced during regional outages in other communities.

 

Related News

View more

China's Data Centers Alone Will Soon Use More Electricity Than All Of Australia

Cloud Data Centers Environmental Impact highlights massive electricity use, carbon emissions, and cooling demands, with coal-heavy grids in China; big tech shifts to renewable energy, green data centers, and cooler climates to boost sustainability.

 

Key Points

Energy use, emissions, and cooling load of cloud systems, and shifts to renewables to reduce climate impact.

✅ Global data centers use 3-5% of electricity, akin to airlines

✅ Cooling drives energy demand; siting in cool climates saves power

✅ Shift from coal to renewables lowers CO2 and improves PUE

 

A hidden environmental price makes storing data in the cloud a costly convenience.

Between 3 to 5% of all electricity used globally comes from data centers that house massive computer systems, with computing power forecasts warning consumption could climb, an amount comparable to the airline industry, says Ben Brock Johnson, Here & Now’s tech analyst.

Instead of stashing information locally on our own personal devices, the cloud allows users to free up storage space by sending photos and files to data centers via the internet.

The cloud can also use large data sets to solve problems and host innovative technologies that make cities and homes smarter, but storing information at data centers uses energy — a lot of it.

"Ironically, the phrase 'moving everything to the cloud' is a problem for our actual climate right now," Johnson says.

A new study from Greenpeace and North China Electric Power University reports that in five years, China's data centers alone will consume as much power as the total amount used in Australia in 2018. The industry's electricity consumption is set to increase by 66% over that time.

Buildings storing data produced 99 million metric tons of carbon last year in China, the study finds, with SF6 in electrical equipment compounding warming impacts, which is equivalent to 21 million cars.

The amount of electricity required to run a data center is a global problem, but in China, 73% of these data centers run on coal, even as coal-fired electricity is projected to fall globally this year.

The Chinese government started a pilot program for green data centers in 2015, which Johnson says signals the country is thinking about the environmental consequences of the cloud.

"Beijing’s environmental awareness in the last decade has really come from a visible impact of its reliance on fossil fuels," he says. "The smog of Chinese cities is now legendary and super dangerous."

The country's solar power innovations have allowed the country to surpass the U.S. in cleantech, he says.

Chinese conglomerate Alibaba Group has launched data centers powered by solar and hydroelectric power.

"While I don't know how committed the government is necessarily to making data centers run on clean technology," Johnson says. "I do think it is possible that a larger evolution of the government's feelings on environmental responsibility might impact this newer tech sector."

In the U.S., there has been a big push to make data centers more sustainable amid warnings that the electric grid is not designed for mounting climate impacts.

Canada has made notable progress decarbonizing power, with nationwide electricity gains supporting cleaner data workloads.

Apple now says all of its data centers use clean energy. Microsoft is aiming for 70% renewable energy by 2023, aligning with declining power-sector emissions as producers move away from coal.

Amazon is behind the curve, for once, with about 50%, Johnson says. Around 1,000 employees are planning to walk out on Sept. 20 in protest of the company’s failure to address environmental issues.

"Environmental responsibility fits the brand identities these companies want to project," he says. "And as large tech companies become more competitive with each other, as Apple becomes more of a service company and Google becomes a device company, they want to convince users more and more to think of them as somehow different even if they aren't."

Google and Facebook are talking about building data centers in cooler places like Finland and Sweden instead of hot deserts like Nevada, he says.

In Canada, cleaning up electricity is critical to meeting climate pledges, according to recent analysis.

Computer systems heat up and need to be cooled down by air conditioning units, so putting a data center in a warm climate will require greater cooling efforts and use more energy.

In China, 40% of the electricity used at data centers goes toward cooling equipment, according to the study.

The more data centers consolidate, Johnson says they can rely on fewer servers and focus on larger cooling efforts.

But storing data in the cloud isn't the only way tech users are unknowingly using large amounts of energy: One Google search requires an amount of electricity equivalent to powering a 60-watt light bulb for 17 seconds, magazine Yale Environment 360 reports.

"In some ways, we're making strides even as we are creating a bigger problem," he says. "Which is like, humanity's MO, I guess."

 

Related News

View more

Is this the start of an aviation revolution?

Harbour Air Electric Seaplanes pioneer sustainable aviation with battery-electric propulsion, zero-emission operations, and retrofitted de Havilland Beavers using magniX motors for regional commuter routes, cutting fuel burn, maintenance, and carbon footprints across British Columbia.

 

Key Points

Retrofitted floatplanes using magniX battery-electric motors to provide zero-emission, short-haul regional flights.

✅ Battery-electric magniX motors retrofit de Havilland DHC-2 Beavers

✅ Zero-emission, low-noise operations on short regional routes

✅ Lower maintenance and operating costs vs combustion engines

 

Aviation is one of the fastest rising sources of carbon emissions from transport, but can a small Canadian airline show the industry a way of flying that is better for the planet?

As air journeys go, it was just a short hop into the early morning sky before the de Havilland seaplane splashed back down on the Fraser River in Richmond, British Columbia. Four minutes earlier it had taken off from the same patch of water. But despite its brief duration, the flight may have marked the start of an aviation revolution.

Those keen of hearing at the riverside on that cold December morning might have been able to pick up something different amid the rumble of the propellers and whoosh of water as the six-passenger de Havilland DHC-2 Beaver took off and landed. What was missing was the throaty growl of the aircraft’s nine-cylinder radial engine.

In its place was an all-electric propulsion engine built by the technology firm magniX that had been installed in the aircraft over the course of several months. The four-minute test flight (the plane was restricted to flying in clear skies, so with fog and rain closing in the team opted for a short trip) was the first time an all-electric commercial passenger aircraft had taken to the skies.

The retrofitted de Havilland DHC-2 Beaver took off from the Fraser River in the early morning light for a four minute test flight (Credit: Diane Selkirk)

“It was the first shot of the electric aviation revolution,” says Roei Ganzarski, chief executive of magniX, which worked with Canadian airline Harbour Air Seaplanes to convert one of the aircraft in their fleet of seaplanes so it could run on battery power rather than fossil fuels.

For Greg McDougall, founder of Harbour Air and pilot during the test flight, it marked the culmination of years of trying to put the environment at the forefront of its operations, backed by research investment across the program.

Harbour Air, which has a fleet of some 40 commuter floatplanes serving the coastal regions around Vancouver, Victoria and Seattle, was the first airline in North America to become carbon-neutral through offsets in 2007. A one-acre green roof on their new Victoria airline terminal followed. Then in 2017, 50 solar panels and four beehives housing 10,000 honeybees were added, but for McDougall, a Tesla owner with an interest in disruptive technology, the big goal was to electrify the fleet, with 2023 electric passenger flights as an early target for service.

McDougall searched for alternative motor options for a couple of years and had put the plan on the backburner when Ganzarski first approached him in February 2019. “He said, ‘We’ve got a motor we want to get certified and we want to fly it before the end of the year,’” McDougall recalls.

The two companies found their environmental values and teams were a good match and quickly formed a partnership. Eleven months later, the modest Canadian airline got what McDougall refers to as their “e-plane” off the ground, pulling ahead of other electric flight projects, including those by big-name companies Airbus, Boeing and Rolls-Royce, and startups such as Eviation that later stumbled.

The test flight was followed years of work by Greg McDougall to make his airline more environmentally friendly (Credit: Diane Selkirk)

The project came together in record time considering how risk-adverse the aviation industry is, says McDougall. “Someone had to take the lead,” he says. “The reason I live in British Columbia is because of the outdoors: protecting it is in our DNA. When it came to getting the benefits from electric flight it made sense for us to step in and pioneer the next step.”

As the threat posed by the climate crisis deepens, there has been renewed interest in developing electric passenger aircraft as a way of reducing emissions
Electric flight has been around since the 1970s, but it’s remained limited to light-weight experimental planes flying short distances and solar-powered aircraft with enormous wingspans yet incapable of carrying passengers. But as the threat posed by the climate crisis deepens, there has been renewed interest in developing electric passenger aircraft as a way of reducing emissions and airline operating costs, aligning with broader Canada-U.S. collaboration on electrification across transport.

Currently there are about 170 electric aircraft projects underway internationally –up by 50% since April 2018, according to the consulting firm Roland Berger. Many of the projects are futuristic designs aimed at developing urban air taxis, private planes or aircraft for package delivery. But major firms such as Airbus have also announced plans to electrify their own aircraft. It plans to send its E-Fan X hybrid prototype of a commercial passenger jet on its maiden flight by 2021. But only one of the aircraft’s four jet engines will be replaced with a 2MW electric motor powered by an onboard battery.

This makes Harbour Air something of an outlier. As a coastal commuter airline, it operates smaller floatplanes that tend to make short trips up and down the coastline of British Columbia and Washington State, which means its aircraft can regularly recharge their batteries after a point-to-point electric flight along these routes. The company sees itself in a position to retrofit its entire fleet of floatplanes and make air travel in the region as green as possible.

This could bring some advantages. The efficiency of a typical combustion engine for a plane like this is fairly low – a large proportion of the energy from the fuel is lost as waste heat as it turns the propeller that drives the aircraft forward. Electrical motors have fewer moving parts, meaning there’s less maintenance and less maintenance cost, and comparable benefits are emerging for electric ships operating on the B.C. coast as well.

Electrical motors have fewer moving parts, meaning there’s less maintenance and less maintenance cost
Erika Holtz, Harbour Air’s engineering and quality manager, sees the move to electric as the next major aviation advancement, but warns that one stumbling block has been the perception of safety. “Mechanical systems are much better known and trusted,” she says. In contrast people see electrical systems as a bit unknown – think of your home computer. “Turning it off and on again isn’t an option in aviation,” she adds.

But it’s the possibility of spurring lasting change in aviation that’s made working on the Harbour Air/magniX project so exciting for Holtz. Aviation technology has stagnated over the past decades, she says. “Although there have been incremental improvements in certain technologies, there hasn't been a major development change in aviation in 50 years.”

 

Related News

View more

Victims of California's mega-fire will sue electricity company

PG&E Wildfire Lawsuit alleges utility negligence, inadequate infrastructure maintenance, and faulty transmission lines, as victims seek compensation. Regulators investigate the blaze, echoing class actions after Victoria's Black Saturday mega-fires and utility oversight failures.

 

Key Points

PG&E Wildfire Lawsuit alleges utility negligence and power line faults, seeking victim compensation amid investigations.

✅ Alleged failure to maintain transmission infrastructure

✅ Spark reports and regulator filings before blaze erupted

✅ Class action parallels with Australia's Black Saturday

 

Victims of California's most destructive wildfire have filed a lawsuit accusing Pacific Gas & Electric Co. of causing the massive blaze, a move that follows the utility's 2018 Camp Fire guilty plea in a separate case.

The suit filed on Tuesday in state court in California accuses the utility of failing to maintain its infrastructure and properly inspect and manage its power transmission lines, amid prior reports that power lines may have sparked fires in California.

The utility's president said earlier the company doesn't know what caused the fire, but is cooperating with the investigation by state agencies, and other utilities such as Southern California Edison have faced wildfire lawsuits in California.

PG&E told state regulators last week that it experienced a problem with a transmission line in the area of the fire just before the blaze erupted.

A landowner near where the blaze began said PG&E notified her the day before the wildfire that crews needed to come onto her property because some wires were sparking, and the company later promoted its wildfire assistance program for victims seeking aid.

A massive class action after Australia's last mega-fire, Victoria's Black Saturday in 2009, saw $688.5 million paid in compensation to thousands of claimants affected by the Kilmore-Kinglake and Murrindindi-Marysville fires, partly by electricity company SP Ausnet, and partly by government agencies, while in California PG&E's bankruptcy plan won support from wildfire victims addressing compensation claims.

 

Related News

View more

Invest in Hydropower to Tackle Coronavirus and Climate Crisis Impacts

Hydropower Covid-19 Resilience highlights clean, reliable energy and flexible grid services, with pumped storage, automation, and affordability supporting climate action, decarbonization, and recovery through sustainable infrastructure, policy incentives, and capacity upgrades.

 

Key Points

Hydropower Covid-19 Resilience is the sector's ability to ensure clean, reliable, flexible power during crises.

✅ Record 4,306 TWh in 2019, avoiding 80-100 Mt CO2e emissions.

✅ 1,308 GW installed; 15.6 GW added; flexibility and storage in demand.

✅ Policy, tax incentives, and fast-track approvals to spur projects.

 

The Covid-19 pandemic has underlined hydropower's resilience and critical role in delivering clean, reliable and affordable energy, especially in times of crisis, as highlighted by IAEA lessons for low-carbon electricity. This is the conclusion of two new reports published by the International Hydropower Association (IHA).

The 2020 Hydropower Status Report presents latest worldwide installed capacity and generation data, showcasing the sector's contribution to global carbon reduction efforts, with low-emissions sources projected to cover almost all demand increases in the next three years. It is published alongside a Covid-19 policy paper featuring recommendations for governments, financial institutions and industry to respond to the current health and economic crisis.

"Preventing an emergency is far better than responding to one," says Roger Gill, President of IHA, highlighting the need to incentivise investments in renewable infrastructure, a view echoed by Fatih Birol during the crisis. "The events of the past few months must be a catalyst for stronger climate action, including greater development of sustainable hydropower."

Now in its seventh edition, the Hydropower Status Report shows electricity generation hit a record 4,306 terawatt hours (TWh) in 2019, the single greatest contribution from a renewable energy source in history, aligning with the outlook that renewables to surpass coal by 2025.

The annual rise of 2.5 per cent (106 TWh) in hydroelectric generation - equivalent to the entire electricity consumption of Pakistan - helped to avoid an estimated additional 80-100 million metric tonnes of greenhouse gases being emitted last year.

The report also highlights:

* Global hydropower installed capacity reached 1,308 gigawatts (GW) in 2019, as 50 countries completed greenfield and upgrade projects, including pumped storage and repowering old dams in some regions.

* A total of 15.6 GW in installed capacity was added in 2019, down on the 21.8 GW recorded in 2018. This represents a rise of 1.2 per cent, which is below the estimated 2.0 per cent growth rate required for the world to meet Paris Agreement carbon reduction targets.

* India has overtaken Japan as the fifth largest world hydropower producer with its total installed capacity now standing at over 50 GW. The countries with the highest increases in were Brazil (4.92 GW), China (4.17 GW) and Laos (1.89 GW).

* Hydropower's flexibility services have been in high demand during the Covid-19 crisis, even as global demand dipped 15% globally, while plant operations have been less affected due to the degree of automation in modern facilities.

* Hydropower developments have not been immune to economic impacts however, with the industry facing widespread uncertainty and liquidity shortages which have put financing and refinancing of some projects at risk.

In a companion policy paper, IHA sets out the immediate impacts of the crisis on the sector, noting how European responses to Covid-19 have accelerated the electricity system transition, as well as recommendations to assist governments and financial institutions and enhance hydropower's contribution to the recovery.

The recommendations include:

  • Increasing the ambition of renewable energy and climate change targets which incorporate the role of sustainable hydropower development.
  • Supporting sustainable hydropower through introducing appropriate financial measures such as tax incentives to ensure viable and shovel-ready projects can commence.
  • Fast-tracking planning approvals to ensure the development and modernisation of hydropower projects can commence as soon as possible, in line with internationally recognised sustainability guidelines.
  • Safeguarding investment by extending deadlines for concession agreements and other awarded projects.
  • Given the increasing need for long-duration energy storage such as pumped storage, working with regulators and system operators to develop appropriate compensation mechanisms for hydropower's flexibility services.

 

Related News

View more

'Unlayering' peak demand could accelerate energy storage adoption

Duration Portfolio Energy Storage aligns layered peak demand with right-sized batteries, enabling peak shaving, gas peaker replacement, and solar-plus-storage synergy while improving grid flexibility, reliability, and T&D deferral through two- to four-hour battery durations.

 

Key Points

An approach that layers battery durations to match peaks, cut costs, replace peakers, and boost grid reliability.

✅ Layers 2- to 4-hour batteries by peak duration

✅ Enables solar-plus-storage and peak shaving

✅ Cuts T&D upgrades, emissions, and fuel costs

 

The debate over energy storage replacing gas-fired peakers has raged for years, but a new approach that shifts the terms of the argument could lead to an acceleration of storage deployments.

Rather than looking at peak demand as a single mountainous peak, some analysts now advocate a layered approach that allows energy storage to better match peak needs and complement ongoing efforts to improve solar and wind power across the grid.

"You don’t have to have batteries that run to infinity."

Some developers of solar-plus-storage projects, bolstered by cheap batteries, say they can already compete head-to-head with gas-fired peakers. "I can beat a gas peaker anywhere in the country today with a solar-plus-storage power plant," Tom Buttgenbach, president and CEO of developer 8minutenergy Renewables, recently told S&P Global.

Customers are very busy these days and rebate programs need to fit the speed of their life. Participation should be quick, easy, and accessible anywhere.

Others disagree. Storage is not disruptive for generation, but will be disruptive for transmission and distribution, Kris Zadlo, executive vice president and chief development officer at Invenergy, told the audience at a Bloomberg New Energy Finance conference last spring. Invenergy, like many renewable power developers, develops generation, energy storage and transmission projects.

But there is another path that avoids the pitfalls of positions on either end of the all-or-none approach. "Do the analysis of the need itself," Ray Hohenstein, market applications director at Fluence, told Utility Dive. If the need is only two hours in duration, it may be best served by a two-hour battery. "You don’t have to have batteries that run to infinity."

 

Storage vs. fossil fuel peakers

Energy storage has several benefits over traditional fossil fuel peaking plants, Hohenstein said. It is instantaneous, it has no emissions and requires no fuel, and has limited infrastructure needs. It can also help the grid absorb higher levels of renewable generation by soaking up excess output, such as solar power at noon, and many planned storage additions will be paired with solar in the next few years. But the one thing energy storage cannot do, he said, is provide limitless energy.

So, instead of looking at replacing an individual peaker, Hohenstein advocated a "duration portfolio" approach that uses energy storage to shave peak load.

If the need is for 150 MW of resources that will never need to run for more than two hours at a time, then a battery is "quite cheap," significantly less than a four or eight-hour battery, said Hohenstein. "If you fill up your peak by duration layer, it could be more cost effective."

 

NREL research driver

Fluence’s approach is informed by research by Paul Denholm and Robert Margolis at the National Renewable Energy Laboratory (NREL), released last spring.

The NREL researchers looked at the California market where they said 11 GW of fossil fuel capacity is expected to be retired by 2029 because of new once-through-cooling requirements that are taking effect. A lot of that capacity is peaking capacity and, according to NREL’s analysis, a large fraction could be replaced with four-hour energy storage, assuming continued storage cost reductions and growth in solar installations.

The key in NREL’s research was the level of solar power penetration. There is a "synergistic" relationship between solar penetration and storage deployment, the researchers wrote, and other studies suggest wind and solar could meet 80% of U.S. demand as these trends continue.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified