Volvo Trucks to launch complete range of electric trucks in Europe in 2021


volvo trucks

CSA Z463 Electrical Maintenance

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today

Volvo Electric Heavy-Duty Trucks lead Europe’s e-mobility shift, meeting strict emissions rules with battery-electric drivelines, hydrogen fuel cell roadmaps, fast charging infrastructure, and autonomous freight solutions for regional haulage and urban construction.

 

Key Points

A battery-electric heavy truck range for haulage and urban construction, targeting zero emissions and compliance.

✅ Up to 44t GCW, ranges up to 300 km per charge

✅ Battery-electric now; hydrogen fuel cells targeted next

✅ Production from 2022; suited to haulage and construction

 

According to the report published by Allied Market Research, the global electric truck market generated $422.5M (approx €355.1M) in 2019 and is estimated to reach $1.89B (approx €1.58B) by 2027, registering a CAGR of 25.8% from 2020 to 2027, reflecting broader expectations that EV adoption within a decade will accelerate worldwide. 

The surge in government initiatives to promote e-mobility and stringent emission norms on vehicles using fossil fuels (petrol and diesel) is driving the growth of the global electric truck market, while shifts in the EV aftermarket are expected to reinforce this trend. 


Launching a range of electric trucks in 2021
Volvo is among the several companies, including early moves like Tesla's truck reveal efforts, trying to cash in on this popular and lucrative market. Recently, the company announced that it’s going to launch a complete heavy-duty range of trucks with electric drivelines starting in Europe in 2021. Next year, hauliers in Europe will be able to order all-electric versions of Volvo’s heavy-duty trucks. The sales will begin next year and volume production will start in 2022. 

“To reduce the impact of transport on the climate, we need to make a swift transition from fossil fuels to alternatives such as electricity. But the conditions for making this shift, and consequently the pace of the transition, vary dramatically across different hauliers and markets, depending on many variables such as financial incentives, access to charging infrastructure and type of transport operations,” explains Roger Alm, President Volvo Trucks.


Used for regional transport and urban construction operations
According to the company, it is now testing electric heavy-duty models – Volvo FH, FM, and FMX trucks, which will be used for regional transport and urban construction operations in Europe, and in the U.S., 70 Volvo VNR Electric trucks are being deployed in California initiatives as well. These Volvo trucks will offer a complete heavy-duty range with electric drivelines. These trucks will have a gross combination weight of up to 44 tonnes.

“Our chassis is designed to be independent of the driveline used. Our customers can choose to buy several Volvo trucks of the same model, with the only difference being that some are electric and others are powered by gas or diesel. As regards product characteristics, such as the driver’s environment, reliability, and safety, all our vehicles meet the same high standards. Drivers should feel familiar with their vehicles and be able to operate them safely and efficiently regardless of the fuel used,” says Alm.


Fossil free by 2040
Depending on the battery configuration the range could be up to 300 km, claims the company. Back in 2019, Volvo started manufacturing the Volvo FL Electric and FE Electric for city distribution and refuse operations, primarily in Europe, while in the van segment, Ford's all-electric Transit targets similar urban use cases. Volvo Trucks aims to start selling electric trucks powered by hydrogen fuel cells in the second half of this decade. Volvo Trucks’ objective is for its entire product range to be fossil-free by 2040.

Back in 2019, Swedish autonomous and electric freight mobility leader provider Einride’s Pod became the world’s first autonomous, all-electric truck to operate a commercial flow for DB Schenker with a permit on the public road. Last month, the company launched its next-generation Pod in the hopes to have it on the road starting from 2021, while major fleet commitments such as UPS's Tesla Semi pre-orders signal broader demand.

Related News

California allows electric school buses only from 2035

California Electric School Bus Mandate 2035 sets zero-emission requirements, outlines funding, state reimbursement, fleet electrification, infrastructure, and cost estimates, highlighting exemptions for frontier districts and alignment with clean transportation and climate policy goals.

 

Key Points

California's 2035 policy requires all new school buses be zero-emission, with funding and limited rural exemptions.

✅ Mandates zero-emission purchases for new school buses from 2035

✅ Estimates $5B transition cost with state reimbursement support

✅ Frontier districts may apply for 5-year extensions

 

California Governor Gavin Newsom has signed a new legislation requiring that from 2035, all newly ordered or contracted school buses must be zero-emission, a move aligned with California's push for expanded EV grid capacity statewide.

The state estimates that switching to electric school buses will cost around five billion dollars over the next decade, a projection reflecting electric bus challenges seen globally. That is because a diesel equivalent costs about 200,000 dollars less than a battery-electric version, as highlighted by critical analyses of California policy. And “the California Constitution requires the state to reimburse local agencies and school districts for certain costs mandated by the state.”

There are about 23,800 school buses on the road in California. About 500 are already electric, with conversion initiatives expected to expand the total, and 2,078 electric buses have been ordered.

There are – as always- exceptions to the rule. So-called “frontier districts,” which have less than 600 students or are in a county with a population density of less than ten persons per square mile, can file for a five-year extension, drawing on lessons from large electric bus fleets about route length and charging constraints. However, they must “reasonably demonstrate that a daily planned bus route for transporting pupils to and from school cannot be serviced through available zero-emission technology in 2035.”

Califonia is the fifth US state to mandate electric school buses, and jurisdictions like British Columbia are deploying electric school buses as well. Connecticut, Maryland, Maine, and New York implemented similar legislation, while California continues broader zero-emission freight adoption with Volvo VNR electric trucks entering service across the state.

 

Related News

View more

Cost is the main reason stopping Canadians from buying an electric car: Survey

Canada EV Incentives drive adoption toward the 2035 zero-emission target, with rebates, federal and provincial programs boosting affordability amid concerns over charging infrastructure, range anxiety, and battery life, according to a BNN Bloomberg-Leger survey.

 

Key Points

Canada EV incentives are rebates and tax credits reducing EV costs to accelerate zero-emission vehicle adoption nationwide.

✅ Federal and provincial rebates reduce EV purchase prices

✅ Incentives offset range, battery, and charging concerns

✅ Larger incentives correlate with higher adoption rates

 

If the federal government wants to meet its ambitious EV goals of having all cars and passenger trucks sold in Canada be zero emissions by 2035, it’s going to have to do something about the cost of these vehicles.

A new survey from BNN Bloomberg and RATESDOTCA has found that cost is the number one reason stopping Canadians from buying an electric car.

The survey, which was conducted by Leger Marketing earlier this month, asked 1,511 Canadians if they were planning to purchase a new electric vehicle in the near future. It found that just over one in four, or 26 per cent of Canadians, are planning to do so, with Atlantic Canada lagging other regions. On the other hand, 19 per cent of Canadians are planning to buy a gas/diesel/hybrid card for their next purchase. 

Those who aren’t planning on buying an EV were asked what the biggest reason for their decision was. By far, it was the price of these vehicles: 31 per cent of this group cited cost as the main reason for not electrifying their ride. Another 59 per cent of respondents cited it as a concern, but not the main one. Other reasons for not wanting to buy an electric vehicle included lack of infrastructure (18 per cent), range concerns (16 per cent), and battery life and replacement (13 per cent), and some report EV shortages and wait times too.

What’s interesting is that it’s clear that government incentives for EVs are the most powerful tool right now to drive adoption, though some argue subsidies are a bad idea for Canada. When asked if further government incentives would convince them to buy an electric vehicle, 78 per cent of those surveyed said yes.

That’s right. If more governments increased the incentives offered for buying electric vehicles, reaching the goal of only selling zero emission vehicles in Canada by 2035 would no longer be a pipe dream, despite 2035 mandate skepticism from some.

At the moment, only Quebec and B.C. offer government incentives to buy an electric vehicle, even as B.C. charging bottlenecks are predicted. The federal government offers up to a $5,000 incentive, with restrictions including a limit on the total price of the vehicle, and has signaled EV sales regulations are forthcoming. Ontario previously offered a rebate of up to $14,000, however, the popular program was cancelled when the Progress Conservative government was elected in 2018.

The cancellation led to a plunge in new electric vehicle sales in Ontario, falling more than 55 per cent in the first six months of 2019 when compared to the same time period in the previous year, according to Electric Mobility Canada.

It’s no surprise that the larger the incentive, the more Canadians will be swayed to buy an electric car. Perhaps what’s surprising is that the incentive doesn’t even have to be as large as the previous Ontario rebate was. The survey found that seven per cent of Canadians would buy an electric vehicle if they got an incentive ranging anywhere from $5,001-$7,250. A full 35 per cent said a $12,500 or higher incentive would convince them.

The majority of Canadians surveyed said they use their vehicles for leisure or commuting to work. Leisure uses include running errands and seeing friends and family, of which 43 per cent of respondents said was the primary way they used their vehicle. Meanwhile, 36 per cent said they primarily used their car to commute to work.

The survey also found that incentives were more effective at convincing younger people to buy an electric vehicle. Eighty-three per cent of those under the age of 55 could be swayed by new incentives. But for those over 55, only 66 per cent said they would change their mind. 

 

Related News

View more

Biden's Climate Bet Rests on Enacting a Clean Electricity Standard

Clean Electricity Standard drives Biden's infrastructure, grid decarbonization, and utility mandates, leveraging EPA regulation, renewables, nuclear, and carbon capture via reconciliation to reach 80% clean power by 2030 amid partisan Congress.

 

Key Points

A federal mandate to reach 80% clean U.S. power by 2030 using incentives and EPA rules to speed grid decarbonization.

✅ Targets 80% clean electricity by 2030 via Congress or reconciliation

✅ Mix of renewables, nuclear, gas with carbon capture allowed

✅ Backup levers: EPA rules, incentives, utility planning shifts

 

The true measure of President Biden’s climate ambition may be the clean electricity standard he tucked into his massive $2.2 trillion infrastructure spending plan.

Its goal is striking: 80% clean power in the United States by 2030.

The details, however, are vague. And so is Biden’s plan B if it fails—an uncertainty that’s worrisome to both activists and academics. The lack of a clear backup plan underscores the importance of passing a clean electricity standard, they say.

If the clean electricity standard doesn’t survive Congress, it will put pressure on the need to drive climate policy through targeted spending, said John Larsen, a power system analyst with the Rhodium Group, an economic consulting firm.

“I don’t think the game is lost at all if a clean electricity standard doesn’t get through in this round,” Larsen said. “But there’s a difference between not passing a clean electricity standard and passing the right spending package.”

In his few months in office, Biden has outlined plans to bring the United States back into the international Paris climate accord, pause oil and gas leasing on public lands, boost the electric vehicle market, and target clean energy investments in vulnerable communities, including plans to revitalize coal communities across the country, most affected by climate change.

But those are largely executive orders and spending proposals—even as early assessments show mixed results from climate law—and unlikely to last beyond his administration if the next president favors fossil fuel usage over climate policy. The clean electricity standard, which would decarbonize 80% of the electrical grid by 2030, is different.

It transforms Biden’s climate vision from a goal into a mandate. Passing it through Congress makes it that much harder for a future administration to undo. If Biden is in office for two terms, the United States would see a rate of decarbonization unparalleled in its history that would set a new bar for most of the world’s biggest economies.

But for now, the clean electricity standard faces an uncertain path through Congress and steep odds to getting enacted. That means there’s a good chance the administration will need a plan B, observers said.

Exactly what kind of climate spending can pass Congress is the very question the White House and congressional Democrats will be working on in the next few months, including upgrades to an aging power grid that affect renewables and EVs, as the infrastructure bill proceeds through Congress.

Negotiations are fraught already. Congress is almost evenly split between a party that wants to curtail the use of fossil fuels and another that wants to grow them, and even high energy prices have not necessarily triggered a green transition in the marketplace.

Senate Minority Leader Mitch McConnell (R-Ky.) said last week that “100% of my focus is on stopping this new administration.” He made similar comments at the start of the Obama administration and blocked climate policy from getting through Congress. He also said last week that no Republican senators would vote for Biden’s infrastructure spending plan.

A clean electricity standard has been referred to as the “backbone” of Biden’s climate policy—a way to ensure his policies to decarbonize the economy outlast a future president who would seek to roll back his climate work. Advocates say hitting that benchmark is an essential milestone in getting to a carbon-free grid by 2035. Much of President Obama’s climate policy, crafted largely through regulations and executive orders, proved vulnerable to President Trump’s rollbacks.

Biden appears to have learned from those lessons and wants to chart a new course to mitigate the worst effects of climate change. He’s using his majority in the House and Senate to lock in whatever he can before the 2022 midterms, when Democrats are expected to lose the House.

To pass a clean electricity standard, virtually every Democrat must be on board, and even then, the only chance of success is to pass a bill through the budget reconciliation process that can carry a clean electricity standard. Some Senate Democrats have recently hinted that they were willing to split the bill into pieces to get it through, while others are concerned that although this approach might win some GOP support on traditional infrastructure such as roads and bridges, it would isolate the climate provisions that make up more than half of the bill.

The most durable scenario for rapid electricity-sector decarbonization is to lock in a bipartisan clean electricity standard into legislation with 60 votes in the Senate, said Mike O’Boyle, the director of electricity policy for Energy Innovation. Because that’s highly unlikely—if not impossible—there are other paths that could get the United States to the 80% goal within the next decade.

“The next best approach is to either, or in combination, pursue EPA regulation of power plant pollution from existing and new power plants as well as to take a reconciliation-based approach to a clean electricity standard where you’re basically spending federal dollars to provide incentives to drive clean electricity deployment as opposed to a mandate per se,” he said.

Either way, O’Boyle said the introduction of the clean electricity standard sets a new bar for the federal government that likely would drive industry response even if it doesn’t get enacted. He compared it to the Clean Power Plan, Obama’s initiative to limit power plant emissions. Even though the plan never came to fruition, because of a Clean Power Plan rollback, it left a legacy that continues years later and wasn’t negated by a president who prioritized fossil fuels over the climate, he said.

“It never got enacted, but it still created a titanic shift in the way utilities plan their systems and proactively reposition themselves for future carbon regulation of their electricity systems,” O’Boyle said. “I think any action by the Biden administration or by Congress through reconciliation would have a similar catalytic function over the next couple years.”

Some don’t think a clean electricity standard has a doomed future. Right now, its provisions are vague. But they can be filled in in a way that doesn’t alienate Republicans or states more hesitant toward climate policy, said Sally Benson, an engineering professor at Stanford University and an expert on low-carbon energy systems. The United States is overdue for a federal mandate that lasts through multiple administrations. The only way to ensure that happens is to get Republican support.

She said that might be possible by making the clean electricity standard more flexible. Mandate the goals, she said, not how states get there. Going 100% renewable is not going to sell in some states or with some lawmakers, she added. For some regions, flexibility will mean keeping nuclear plants open. For others, it would mean using natural gas with carbon capture, Benson said.

While it might not meet the standards some progressives seek to end all fossil fuel usage, it would have a better chance of getting enacted and remaining in place through multiple presidents, she said. In fact, a clean electricity standard would provide a chance for carbon capture, which has been at the center of Republican climate policy proposals. Benson said carbon capture is not economical now, but the mandate of a standard could encourage investments that would drive the sector forward more rapidly.

“If it’s a plan that people see as shutting the door to nuclear or to natural gas plus carbon capture, I think we will face a lot of pushback,” she said. “Make it an inclusive plan with a specific goal of getting to zero emissions and there’s not one way to do it, meaning all renewables—I think that’s the thing that could garner a lot of industrial support to make progress.”

In addition to industry, Biden’s proposed clean electricity standard would drive states to do more, said Larsen of the Rhodium Group. Several states already have their own version of a clean energy standard and have driven much of the national progress on carbon emissions reduction in the last four years, he said. Biden has set a new benchmark that some states, including those with some of the biggest economies in the United States, would now likely exceed, he said.

“It is rare for the federal government to get out in front of leading states in clean energy policy,” he said. “This is not usually how climate policy diffusion works from the state level to the federal level; usually it’s states go ahead and the federal government adopts something that’s less ambitious.”

 

Related News

View more

Wind power is Competitive on Reliability and Resilience Says AWEA CEO

Wind farm reliability services now compete in wholesale markets, as FERC and NERC endorse market-based solutions that reward performance, bolster grid resilience, and compensate ancillary services like frequency regulation, voltage support, and spinning reserve.

 

Key Points

Grid support from wind plants, including frequency, voltage, ramping, and inertial response via advanced controls.

✅ Enabled by advanced controls and inverter-based technology

✅ Compete in market-based mechanisms for ancillary services

✅ Support frequency, voltage, reserves; enhance grid resilience

 

 

American Wind Energy Association CEO Tom Kiernan has explained to a congressional testimony that wind farms can now compete, as renewables approach market majority, to provide essential electric reliability services. 

Mr Kiernan appeared before the US Congress House Energy and Commerce Committee where he said that, thanks to technological advances, wind farms are now competitive with other energy technologies with regard to reliability and resiliency. He added that grid reliability and resilience are goals that everyone can support and that efforts underway at the Federal Energy Regulatory Commission (FERC) and by market operators are rightly focused on market-based solutions to better compensate generators for providing those essential services.

AWEA strongly agreed with other witnesses on the panel who endorsed market-based solutions in their submitted testimony, including the American Petroleum Institute, Solar Energy Industries Association, Energy Storage Association, Natural Resources Defence Council, National Hydropower Association, and others. However, AWEA is concerned that the Department of Energy’s recent proposal to provide payments to specific resources based on arbitrary requirements is anti-competitive, and threatens to undermine electricity markets that are bolstering reliability and saving consumers billions of dollars per year.

“We support the objective of maintaining a reliable and resilient grid which is best achieved through free and open markets, with a focus on needed reliability services – not sources – and a programme to promote transmission infrastructure.”

Kiernan outlined several major policy recommendations in his testimony, including reliance on competitive markets that reward performance to ensure affordable and reliable electricity, a focus on reliability needs rather than generation sources and the promotion of transmission infrastructure investment to improve resilience and allow consumers greater access to all low-cost forms of energy.

The CEO of the North American Electric Reliability Corporation (NERC) has recently testified that the state of reliability in North America remains strong and the trend line shows continuing improvement year over year. Technological advances and innovation by over 100,000 US wind workers enable wind farms today to provide the grid reliability services traditionally provided by conventional power plants. NERC’s CEO emphasised in its testimony at last month’s hearing that “variable resources significantly diversify the generation portfolio and can contribute to reliability and resilience in important ways.”

 

Related News

View more

California Takes the Lead in Electric Vehicle and Charging Station Adoption

California EV Adoption leads the U.S., with 37% of registered electric vehicles and 27% of charging locations, spanning Level 1, Level 2, and DC Fast stations, aligned with OCPI and boosted by CALeVIP funding.

 

Key Points

California EV adoption reflects the state's leading EV registrations and growth in private charging infrastructure.

✅ 37% of U.S. EVs, 27% of charging locations in 2022

✅ CALeVIP funding boosts public charging deployment

✅ OCPI-aligned data; EVs per charger rose to 75 in CA

 

California has consistently been at the forefront of electric vehicle (EV) adoption, with EV sales topping 20% in California underscoring this trend, and the proliferation of EV charging stations in the United States, maintaining this position since 2016. According to recent estimates from our State Energy Data System (SEDS), California accounts for 37% of registered light-duty EVs in the U.S. and 27% of EV charging locations as of the end of 2022.

The vehicle stock data encompass all registered on-road, light-duty vehicles and exclude any previous vehicle sales no longer in operation. The data on EV charging locations include both private and public access stations for Legacy, Level 1, Level 2, and DC Fast charging ports, excluding EV chargers in single-family residences. There is a data series break between 2020 and 2021, when the U.S. Department of Energy updated its data to align with the Open Charge Point Interface (OCPI) international standard, reflecting changes in the U.S. charging infrastructure landscape.

In 2022, the number of registered EVs in the United States, with U.S. EV sales soaring into 2024 nationwide, surged to six times its 2016 figure, growing from 511,600 to 3.1 million, while the number of U.S. charging locations nearly tripled, rising from 19,178 to 55,015. Over the same period, California saw its registered EVs more than quadruple, jumping from 247,400 to 1.1 million, and its charging locations tripled, increasing from 5,486 to 14,822.

California's share of U.S. EV registrations has slightly decreased in recent years as EV adoption has spread across the country, with Arizona EV ownership relatively high as well. In 2016, California accounted for approximately 48% of light-duty EVs in the United States, which was approximately 12 times more than the state with the second-highest number of EVs, Georgia. By 2022, California's share had decreased to around 37%, which was still approximately six times more than the state with the second-most EVs, Florida.

On the other hand, California's share of U.S. EV charging locations has risen slightly in recent years, as charging networks compete amid federal electrification efforts and partly due to the California Electric Vehicle Infrastructure Project (CALeVIP), which provides funding for the installation of publicly available EV charging stations. In 2016, approximately 25% of U.S. EV charging locations were in California, over four times as many as the state with the second-highest number, Texas. In 2022, California maintained its position with over four times as many EV charging locations as the state with the second-most, New York.

The growth in the number of registered EVs has outpaced the growth of EV charging locations in the United States, and in 2021 plug-in vehicles traveled 19 billion electric miles nationwide, underscoring utilization. In 2016, there were approximately 27 EVs per charging location on average in the country. Alaska had the highest ratio, with 67 EVs per charging location, followed by California with 52 vehicles per location.

In 2022, the average ratio was 55 EVs per charging location in the United States, raising questions about whether the grid can power an ongoing American EV boom ahead. New Jersey had the highest ratio, with 100 EVs per charging location, followed by California with 75 EVs per location.

 

Related News

View more

Total Cost of EV Ownership: New Data Reveals Long-Term Savings

Electric vehicles may cost more upfront but often save money long-term. A new MIT study shows the total cost of EV ownership is lower than gas cars when factoring in fuel, maintenance, and emissions.

 

Total cost of EV ownership is the focus of new MIT research showing electric vehicles offer both financial and environmental benefits over time.

✅ Electric vehicles cost more upfront but save money over their lifetime through lower fuel and maintenance costs

✅ MIT study confirms EVs have lower emissions and total ownership costs than most gas-powered cars

✅ New interactive tool helps consumers compare climate and cost impacts of EVs, hybrids, and traditional vehicles

Electric vehicles are better for the climate than gas‑powered cars, but many Americans are still reluctant to buy them. One reason: The larger upfront cost.

New data published Thursday shows that despite the higher sticker price, electric cars may actually save drivers money in the long-run.

To reach this conclusion, a team at the Massachusetts Institute of Technology calculated both the carbon dioxide emissions and full lifetime cost — including purchase price, maintenance and fuel — for nearly every new car model on the market.

They found electric cars were easily more climate friendly than gas-burning ones. Over a lifetime, they were often cheaper, too.

Jessika Trancik, an associate professor of energy studies at M.I.T. who led the research, said she hoped the data would “help people learn about how those upfront costs are spread over the lifetime of the car.”

For electric cars, lower maintenance costs and the lower costs of charging compared with gasoline prices tend to offset the higher upfront price over time. (Battery-electric engines have fewer moving parts that can break compared with gas-powered engines and they don’t require oil changes. Electric vehicles also use regenerative braking, which reduces wear and tear.)

As EV adoption continues to boom, more consumers are realizing the long-term savings and climate benefits. Ontario’s investment in EV charging stations reflects how infrastructure is beginning to catch up with demand. Despite regional energy pricing differences, EV charging costs remain lower than gasoline in nearly every U.S. city.

The cars are greener over time, too, despite the more emissions-intensive battery manufacturing process. Dr. Trancik estimates that an electric vehicle’s production emissions would be offset in anywhere from six to 18 months, depending on how clean the energy grid is where the car is charging.

In some areas, EVs are even being used to power homes, enhancing their value as a sustainable investment. Recent EPA rules aim to boost EV sales, further signaling government support. California leads the nation in EV charging infrastructure, setting a model for nationwide adoption.

The new data showed hybrid cars, which run on a combination of fuel and battery power, and can sometimes be plugged in, had more mixed results for both emissions and costs. Some hybrids were cheaper and spewed less planet-warming carbon dioxide than regular cars, but others were in the same emissions and cost range as gas-only vehicles.

Traditional gas-burning cars were usually the least climate friendly option, though long-term costs and emissions spanned a wide range. Compact cars were usually cheaper and more efficient, while gas-powered SUVs and luxury sedans landed on the opposite end of the spectrum.

Dr. Trancik’s team released the data in an interactive online tool to help people quantify the true costs of their car-buying decisions — both for the planet and their budget. The new estimates update a study published in 2016 and add to a growing body of research underscoring the potential lifetime savings of electric cars.

Take the Tesla Model 3, the most popular electric car in the United States. The M.I.T. team estimated the lifetime cost of the most basic model as comparable to a Nissan Altima that sells for $11,000 less upfront. (That’s even though Tesla’s federal tax incentive for electric vehicles has ended.)

Toyota’s Hybrid RAV4 S.U.V. also ends up cheaper in the long run than a similar traditional RAV4, a national bestseller, despite a higher retail price.

Hawaii, Alaska and parts of New England have some of the highest average electricity costs, while parts of the Midwest, West and South tend to have lower rates. Gas prices are lower along the Gulf Coast and higher in California. But an analysis from the Union of Concerned Scientists still found that charging a vehicle was more cost effective than filling up at the pump across 50 major American cities. “We saw potential savings everywhere,” said David Reichmuth, a senior engineer for the group’s Clean Transportation Program.

Still, the upfront cost of an electric vehicle continues to be a barrier for many would-be owners.

The federal government offers a tax credit for some new electric vehicle purchases, but that does nothing to reduce the initial purchase price and does not apply to used cars. That means it disproportionately benefits wealthier Americans. Some states, like California, offer additional incentives. President-elect Joseph R. Biden Jr. has pledged to offer rebates that help consumers swap inefficient, old cars for cleaner new ones, and to create 500,000 more electric vehicle charging stations, too.

EV sales projections for 2024 suggest continued acceleration, especially as costs fall and policy support expands. Chris Gearhart, director of the Center for Integrated Mobility Sciences at the National Renewable Energy Laboratory, said electric cars will become more price competitive in coming years as battery prices drop. At the same time, new technologies to reduce exhaust emissions are making traditional cars more expensive. “With that trajectory, you can imagine that even immediately at the purchase price level, certain smaller sedans could reach purchase price parity in the next couple of years,” Dr. Gearhart said.

 

Related Pages:

EV Boom Unexpectedly Benefits All Electricity Customers

Ontario Invests in New EV Charging Stations

EV Charging Cost Still Beats Gasoline, Study Finds

EPA Rules Expected to Boost U.S. Electric Vehicle Sales

California Takes the Lead in Electric Vehicle and Charging Station Adoption

EVs to Power Homes: New Technology Turns Cars Into Backup Batteries

U.S. Electric Vehicle Sales Soar Into 2024

 

 

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.