Carbon tax scheme slammed

By Edmonton Sun


Protective Relay Training - Basic

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
The war of words over the environment heated up with Prime Minister Stephen Harper saying the country would be "screwed" under Stephane Dion's carbon tax scheme.

Speaking in Saskatoon, itself booming with record oil prices, Harper pulled no punches when he described the Liberal leader's green plan, which includes a $15.4-billion a year carbon tax.

"(The carbon tax) is like the National Energy Program in the sense that the National Energy Program was designed to screw the West and really damage the energy sector - and this will do those things," Harper said.

"This is different in that this will actually screw everybody across the country."

The carbon tax would be worth $15.4 billion a year - to be offset by an equivalent cut in income and business taxes and a boost in tax breaks for poor, elderly, northern and rural Canadians, who stand to be hardest hit by the increased cost of necessities like home heating fuel, electricity, food and travel.

It would initially peg the price of greenhouse gas emissions at $10 per tonne, rising to $40 per tonne in the fourth year.

In Saskatoon with Harper, Saskatchewan Premier Brad Wall said the carbon tax could hurt that province's economic development.

Wall suggested such a plan could potentially force Saskatchewan back to "have-not" status once again.

"We're going to see wealth and opportunity and growth transferred under this kind of a fiscal tool from our province to elsewhere," Wall said.

"We will see the effective knee-capping of our economy.

"It's important for us to stand up and say look, this is going to come at a great cost to a part of the national economy that's working right now and working very well."

Dion's plan has been seen as an attempt to out-green all the other political parties.

It was unveiled recently and has been seen by some political experts as an attempt to win support on Canada's left wing.

It also attracted immediate criticism from Alberta Finance Minister Iris Evans, who called it an attempt to siphon dollars from Alberta to eastern Canada.

"This plan doesn't go after the automobile, but goes right after the way we look after heating our homes," she said.

"So you look at all of those with the luxury to be powered by hydro, and you know that they're not going to pay the penalty that Albertans will.

"Implementing this plan in Canada makes it less attractive to investment."

Ontario and Quebec rely mainly on hydro-electric power.

A local pro-development group is against Dion's plan because it could make Alberta, and Canada, less attractive to oil-sector investors.

"The things we have to worry about is maintaining a competitive environment in Canada," said Neil Shelly, executive director of Alberta's Industrial Heartland Association.

He supports Evans's comments that it unfairly targets Alberta's coal- and natural gas-fired electrical generation.

"We already have some of the highest electrical costs," he said. "This will have major regional differences across the country."

Dion's plan is expected to be a main part of the federal Liberals' election platform. It includes an income tax cut balancing the carbon tax increase.

While there are higher costs for home-heating oil, diesel fuel, propane and natural gas for homes heating, the Liberals say the plan targets heavy industry and power plants.

Related News

Electricity prices may go up by 15 per cent

Jersey Electricity Standby Charge proposes a grid-backup fee for commercial self-generators of renewable energy, with a review delaying implementation; potential tariff impacts include 10-15 percent price rises, cost recovery, and network reliability.

 

Key Points

A grid-backup fee for Jersey self-generating businesses to share network costs fairly and curb electricity price rises.

✅ Applies to commercial self-generation using renewables or not

✅ Excludes full exporters and pre-charge installations

✅ Aims to recover grid costs and avoid 10-15% price rises

 

Electricity prices could rise by ten to 15 per cent if a standby charge for some commercial customers is not implemented, the chief executive of Jersey Electricity has warned.

Jersey Electricity has proposed extending a monthly fee to commercial customers who generate their own power through renewable means but still wish to be connected to Jersey’s grid as a back-up, echoing Ontario energy storage efforts to shore up reliability.

The States recently unanimously backed a proposal lodged by Deputy Carolyn Labey to delay administering the levy until a review could be carried out, as seen in the UK grid's net-zero transformation debates influencing policy. The charge, was due to be implemented next month but will now not be introduced until May, or later if the review has not concluded.

But Chris Ambler, JE chief executive, warned that failing to implement the standby charge could lead to additional costs for customers.

Some of JE’s commercial customers have already been charged a standby fee after generating their own power through non-renewable means.

The charge does not apply to businesses which export all of their electricity back into the system as part of a buy-back scheme or those which install self-generation facilities before the charge is implemented.

Deputy Labey argued that the Island had done ‘absolutely nothing’ to support the use of renewable energies and instead were discouraging locally generated power by allowing JE to set a standby charge.

She added that she was pleased that the Council of Ministers had already starting reviewing the charges but the debate needed to go ahead to ensure the work continued after the May election.

During a States debate last month, she said: ‘It is increasingly concerning that we, as an island in the 21st century, are happy for our electricity to be provided to us by an unregulated, publicly listed for-profit company with a monopoly on energy.

‘I also think that introducing a charge on renewables at a time when the world is experiencing a revolution in renewable energies, including offshore vessel charging solutions, which are becoming increasingly economic, is something that needs to be investigated.

‘Jersey should be looking to diversify our electricity production and supply, to help protect us from price and currency fluctuations and to ensure that we, as an island, receive the best deal possible for Islanders.’

Mr Ambler said that any price increase would be dependent on the future take-up and use of renewable-energy technology in Jersey.

He said: ‘The cost impact would not be significant in the short term but in the long term it could be significant. I think that we are obliged to let our customers know that.

‘It is very difficult to assess but if we are not able to levy a fair charge, then, as electricity shortages in Canada have shown, we could see prices rise by ten to 15 per cent over time.’

Mr Ambler added that his company was in favour of the use of renewable energy, with a third of the company’s electricity being generated by hydroelectric sources, but that the costs of implementing it needed to be fairly distributed, given how big battery rule changes can affect project viability elsewhere in the market.

And he said that, while it was difficult to quantify how much could be lost if the standby charge was not implemented, it could cost the company over £10 million.

‘In 2014, we only increased our prices by one per cent,’ he said. ‘We are reviewing our prices at the moment but if we did put an increase in place it would be modest and it would not be linked to the standby charge.’

 

Related News

View more

Which of the cleaner states imports dirty electricity?

Hourly Electricity Emissions Tracking maps grid balancing areas, embodied emissions, and imports/exports, revealing carbon intensity shifts across PJM, ERCOT, and California ISO, and clarifying renewable energy versus coal impacts on health and climate.

 

Key Points

An hourly method tracing generation, flows, and embodied emissions to quantify carbon intensity across US balancing areas.

✅ Hourly traces of imports/exports and generation mix

✅ Consumption-based carbon intensity by balancing area

✅ Policy insights for renewables, coal, health costs

 

In the United States, electricity generation accounts for nearly 30% of our carbon emissions. Some states have responded to that by setting aggressive renewable energy standards; others are hoping to see coal propped up even as its economics get worse. Complicating matters further is the fact that many regional grids are integrated, and as America goes electric the stakes grow, meaning power generated in one location may be exported and used in a different state entirely.

Tracking these electricity exports is critical for understanding how to lower our national carbon emissions. In addition, power from a dirty source like coal has health and environment impacts where it's produced, and the costs of these aren't always paid by the parties using the electricity. Unfortunately, getting reliable figures on how electricity is produced and where it's used is challenging, even for consumers trying to find where their electricity comes from in the first place, leaving some of the best estimates with a time resolution of only a month.

Now, three Stanford researchers—Jacques A. de Chalendar, John Taggart, and Sally M. Benson—have greatly improved on that standard, and they have managed to track power generation and use on an hourly basis. The researchers found that, of the 66 grid balancing areas within the United States, only three have carbon emissions equivalent to our national average, and they have found that imports and exports of electricity have both seasonal and daily changes. de Chalendar et al. discovered that the net results can be substantial, with imported electricity increasing California's emissions/power by 20%.

Hour by hour
To figure out the US energy trading landscape, the researchers obtained 2016 data for grid features called balancing areas. The continental US has 66 of these, providing much better spatial resolution on the data than the larger grid subdivisions. This doesn't cover everything—several balancing areas in Canada and Mexico are tied in to the US grid—and some of these balancing areas are much larger than others. The PJM grid, serving Pennsylvania, New Jersey, and Maryland, for example, is more than twice as large as Texas' ERCOT, in a state that produces and consumes the most electricity in the US.

Despite these limitations, it's possible to get hourly figures on how much electricity was generated, what was used to produce it, and whether it was used locally or exported to another balancing area. Information on the generating sources allowed the researchers to attach an emissions figure to each unit of electricity produced. Coal, for example, produces double the emissions of natural gas, which in turn produces more than an order of magnitude more carbon dioxide than the manufacturing of solar, wind, or hydro facilities. These figures were turned into what the authors call "embodied emissions" that can be traced to where they're eventually used.

Similar figures were also generated for sulfur dioxide and nitrogen oxides. Released by the burning of fossil fuels, these can both influence the global climate and produce local health problems.

Huge variation
The results were striking. "The consumption-based carbon intensity of electricity varies by almost an order of magnitude across the different regions in the US electricity system," the authors conclude. The low is the Bonneville Power grid region, which is largely supplied by hydropower; it has typical emissions below 100kg of carbon dioxide per megawatt-hour. The highest emissions come in the Ohio Valley Electric region, where emissions clear 900kg/MW-hr. Only three regional grids match the overall grid emissions intensity, although that includes the very large PJM (where capacity auction payouts recently fell), ERCOT, and Southern Co balancing areas.

Most of the low-emissions power that's exported comes from the Pacific Northwest's abundant hydropower, while the Rocky Mountains area exports electricity with the highest associated emissions. That leads to some striking asymmetries. Local generation in the hydro-rich Idaho Power Company has embodied emissions of only 71kg/MW-hr, while its imports, coming primarily from Rocky Mountain states, have a carbon content of 625kg/MW-hr.

The reliance on hydropower also makes the asymmetry seasonal. Local generation is highest in the spring as snow melts, but imports become a larger source outside this time of year. As solar and wind can also have pronounced seasonal shifts, similar changes will likely be seen as these become larger contributors to many of these regional grids. Similar things occur daily, as both demand and solar production (and, to a lesser extent, wind) have distinct daily profiles.

The Golden State
California's CISO provides another instructive case. Imports represent less than 30% of its total electric use in 2016, yet California electricity imports provided 40% of its embodied emissions. Some of these, however, come internally from California, provided by the Los Angeles Department of Water and Power. The state itself, however, has only had limited tracking of imported emissions, lumping many of its sources as "other," and has been exporting its energy policies to Western states in ways that shape regional markets.

Overall, the 2016 inventory provides a narrow picture of the US grid, as plenty of trends are rapidly changing our country's emissions profile, including the rise of renewables and the widespread adoption of efficiency measures and other utility trends in 2017 that continue to evolve. The method developed here can, however, allow for annual updates, providing us with a much better picture of trends. That could be quite valuable to track things like how the rapid rise in solar power is altering the daily production of clean power.

More significantly, it provides a basis for more informed policymaking. States that wish to promote low-emissions power can use the information here to either alter the source of their imports or to encourage the sites where they're produced to adopt more renewable power. And those states that are exporting electricity produced primarily through fossil fuels could ensure that the locations where the power is used pay a price that includes the health costs of its production.

 

Related News

View more

New Power Grid “Report Card” Reveal Dangerous Vulnerabilities

U.S. Power Grid D+ Rating underscores aging infrastructure, rising outages, cyber threats, EMP and solar flare risks, strained transmission lines, vulnerable transformers, and slow permitting, amplifying reliability concerns and resilience needs across national energy systems.

 

Key Points

ASCE's D+ grade flags aging infrastructure, rising outages, and cyber, EMP, and weather risks needing investment.

✅ Major outages rising; weather remains top disruption driver.

✅ Aging transformers, transmission lines, limited maintenance.

✅ Cybersecurity gaps via smart grid, EV charging, SCADA.

 

The U.S. power grid just received its “grade card” from the American Society of Civil Engineers (ASCE) and it barely passed.

The overall rating of our antiquated electrical system was a D+. Major power outages in the United States, including widespread blackouts, have grown from 76 in 2007 to 307 in 2011, according to the latest available statistics. The major outage figures do not take into account all of the smaller outages which routinely occur due to seasonal storms.

The American Society of Civil Engineers power grid grade card rating means the energy infrastructure is in “poor to fair condition and mostly below standard, with many elements approaching the end of their service life.” It further means a “large portion of the system exhibits significant deterioration” with a “strong risk of failure.”

Such a designation is not reassuring and validates those who purchased solar generators over the past several years.

#google#

The vulnerable state of the power grid gets very little play by mainstream media outlets. Concerns about a solar flare or an electromagnetic pulse (EMP) attack instantly sending us back to an 1800s existence are legitimate, but it may not take such an extreme act to render the power grid a useless tangle of wires. The majority of the United States’ infrastructure and public systems evaluated by the ASCE earned a “D” rating. A “C” ranking (public parks, rail and bridges) was the highest grade earned. It would take a total of $3.6 trillion in investments by 2020 to fix everything, the report card stated. To put that number in perspective, the federal government’s budget for all of 2012 was slightly more, $3.7 trillion.

“America relies on an aging electrical grid and pipeline distribution systems, some of which originated in the 1880s,” the report read. “Investment in power transmission has increased since 2005, but ongoing permitting issues, weather events, including summer blackouts that strain local systems, and limited maintenance have contributed to an increasing number of failures and power interruptions. While demand for electricity has remained level, the availability of energy in the form of electricity, natural gas, and oil will become a greater challenge after 2020 as the population increases. Although about 17,000 miles of additional high-voltage transmission lines and significant oil and gas pipelines are planned over the next five years, permitting and siting issues threaten their completion. The electric grid in the United States consists of a system of interconnected power generation, transmission facilities, and distribution facilities.”

 

Harness the power of the sun when the power goes out…

There are approximately 400,000 miles of electrical transmission lines throughout the United States, and thousands of power generating plants dot the landscape. The ASCE report card also stated that new gas-fired and renewable generation issues increase the need to add new transmission lines. Antiquated power grid equipment has reportedly prompted even more “intermittent” power outages in recent years.

The American Society of Civil Engineers accurately notes that the power grid is more vulnerable to cyber attacks than ever before, including Russian intrusions documented in recent years, and it cites the aging electrical system as the primary culprit. Although the decades-old transformers and other equipment necessary to keep power flowing around America are a major factor in the enhanced vulnerability of the power grid, moving towards a “smart grid” system is not the answer. As previously reported by Off The Grid News, smart grid systems and even electric car charging stations make the power grid more accessible to cyber hackers. During the Hack in the Box Conference in Amsterdam, HP ArcSight Product Manager Ofer Sheaf stated that electric car charging stations are in essence a computer on the street. The roadway fueling stations are linked to the power grid electrical system. If cyber hackers garner access to the power grid via the charging stations, they could stop the flow of power to a specific area or alter energy distribution levels and overload the system.

While a relatively small number of electric car charging stations exist in America now, that soon will change. Ongoing efforts by both federal and state governments to reduce our reliance on fossil fuels have resulted in grants and privately funded vehicle charging station projects. New York Governor Andrew Cuomo in April announced plans to build 360 such electrical stations in his state. A total of 3,000 car charging stations are in the works statewide and are slated for completion over the next five years.

SHIELD ActWeather-related events were the primary cause of power outages from 2007 to 2012, according to the infrastructure report card. Power grid reliability issues are emerging as the greatest threat to the electrical system, with rising attacks on substations compounding the risks. The ASCE grade card also notes that retiring and rotating in “new energy sources” is a “complex” process. Like most items we routinely purchase in our daily lives, many of the components needed to make the power grid functional are not manufactured in the United States.

The SHIELD Act is the first real piece of federal legislation in years drafted to address power grid vulnerabilities. While the single bill will not fix all of the electrical system issues, it is a big step in the right direction – if it ever makes it out of committee. Replacing aging transformers, encasing them in a high-tech version of a Faraday cage, and stockpiling extra units so instant repairs are possible would help preserve one of the nation’s most critical and life-saving pieces of infrastructure after a weather-related incident or man-made disaster.

“Geomagnetic storm environments can develop instantaneously over large geographic footprints,” solar geomagnetic researcher John Kappenman said about the fragile state of the power grid. He was quoted in an Oak Ridge National Laboratory report. “They have the ability to essentially blanket the continent with an intense threat environment and … produce significant collateral damage to critical infrastructures. In contrast to well-conceived design standards that have been successfully applied for more conventional threats, no comprehensive design criteria have ever been considered to check the impact of the geomagnetic storm environments. The design actions that have occurred over many decades have greatly escalated the dangers posed by these storm threats for this critical infrastructure.”

The power grid has morphed in size tenfold during the past 50 years. While solar flares, cyber attacks, and an EMP are perhaps the most extensive and frightening threats to the electrical system, the infrastructure could just as easily fail in large portions due to weather-related events exacerbated by climate change across regions. The power grid is basically a ticking time bomb which will spawn civil unrest, lack of food, clean water, and a multitude of fires if it does go down.

 

Related News

View more

TransAlta Scraps Wind Farm as Alberta's Energy Future Blusters

Alberta Wind Energy Policy Changes highlight TransAlta's Riplinger cancellation amid UCP buffer zones for pristine viewscapes, regulatory uncertainty, and market redesign debates, reshaping Alberta's renewables investment climate and clean energy diversification plans.

 

Key Points

UCP rules and market shifts reshaping wind siting, permits, and finance, increasing uncertainty and delays for new projects.

✅ 35-km buffer near pristine viewscapes limits wind siting

✅ TransAlta cancels 300 MW Riplinger project

✅ Market redesign uncertainty chills renewables investment

 

The winds of change are blowing through Alberta's energy landscape today, and they're not necessarily carrying good news for renewable energy development. TransAlta, a major Canadian energy company, recently announced the cancellation of a significant wind farm project, citing a confluence of factors that create uncertainty for the future of wind power in the province. This decision throws a spotlight on the ongoing debate between responsible development and fostering a clean energy future in Alberta.

The scrapped project, the Riplinger wind farm near Cardston, Alberta, was envisioned as a 300-megawatt facility capable of providing clean electricity to the province. However, TransAlta pointed to recent regulatory changes implemented by the United Conservative Party (UCP) government, following the end of the renewable energy moratorium in Alberta, as a key reason for the project's demise. These changes include the establishment of a 35-kilometer buffer zone around designated "pristine viewscapes," which significantly restricts potential wind farm locations.

John Kousinioris, CEO of TransAlta, expressed frustration with the lack of clarity surrounding the future of renewable energy policy in Alberta. He highlighted this, along with the aforementioned rule changes, as major factors in the project's cancellation. TransAlta has also placed three other power projects on hold, indicating a broader concern about the current investment climate for renewable energy in the province.

The news has been met with mixed reactions. While some residents living near the proposed wind farm site celebrate the decision due to concerns about potential impacts on tourism and the environment, others worry about the implications for Alberta's clean energy ambitions, including renewable energy job growth in the province. The province, a major energy producer in Canada, has traditionally relied heavily on fossil fuels, and this decision might be seen as a setback for its goals of diversifying its energy mix.

The Alberta government defends its changes to renewable energy policy, arguing that they are necessary to ensure responsible development and protect sensitive ecological areas. However, the TransAlta decision raises questions about the potential unintended consequences of these changes. Critics argue that the restrictions might discourage investment in renewable energy and the province's ability to sell clean power to wider markets altogether, hindering Alberta's progress towards a more sustainable future.

Adding to the uncertainty is the ongoing process of redesigning Alberta's energy market. The aim is to incorporate more renewable energy sources, including solar energy expansion across the grid, but the details of this redesign remain unclear. This lack of transparency makes it difficult for companies like TransAlta to make sound investment decisions, further dampening enthusiasm for renewable energy projects.

The future of wind energy development in Alberta remains to be seen. TransAlta's decision to scrap the Riplinger project is a significant development, and it will be interesting to observe how other companies respond to the changing regulatory landscape, as a Warren Buffett-linked developer pursues a $200 million wind project in Alberta. Striking a balance between responsible development, protecting the environment, and fostering a clean energy future will be a crucial challenge for Alberta moving forward.

This situation highlights the complex considerations involved in transitioning to a renewable energy future, where court rulings on wind projects can influence policy and investment decisions. While environmental concerns are paramount, ensuring a stable and predictable investment climate is equally important. Open communication and collaboration between industry, government, and stakeholders will be key to navigating these challenges and ensuring Alberta can harness the power of wind energy for a sustainable future.

 

Related News

View more

Ontario will refurbish Pickering B NGS

Pickering nuclear refurbishment will modernize Ontario's Candu reactors at Pickering B, sustaining 2,000 MW of clean electricity, aiding net-zero goals, and aligning with Ontario Power Generation plans and Canadian Nuclear Safety Commission reviews.

 

Key Points

An 11-year overhaul of Pickering B Candu reactors to extend life, keep 2,000 MW online, and back Ontario net-zero grid.

✅ 11-year project; 11,000 annual jobs; $19.4B GDP impact.

✅ Refurbishes four Pickering B Candu units; maintains 2,000 MW.

✅ Requires Canadian Nuclear Safety Commission license approvals.

 

The Ontario government has announced its intention to pursue a Pickering refurbishment at the venerable nuclear power station, which has been operational for over fifty years. This move could extend the facility's life by another 30 years.

This decision is timely, as Ontario anticipates a significant surge in electricity demand and a growing electricity supply gap in the forthcoming years. Additionally, all provinces are grappling with new federal mandates for clean electricity, necessitating future power plants to achieve net-zero carbon emissions.

Todd Smith, the Energy Minister, is expected to endorse Ontario Power Generation's proposal for the plant's overhaul, as per a preliminary version of a government press release.

The renovation will focus on four Candu reactors, known collectively as Pickering B, which were originally commissioned in the early 1980s. This upgrade is projected to continue delivering 2,000 megawatts of power, equivalent to the current output of these units.

According to the press release, the project will span 11 years, create approximately 11,000 annual jobs, and contribute $19.4 billion to Ontario's GDP. However, the total budget for the project remains unspecified.

The project follows the ongoing refurbishment of four units at the nearby Darlington nuclear station, which is more than halfway completed with a budget of $12.8 billion.

The proposal awaits the Canadian Nuclear Safety Commission's approval, and officials face extension request timing considerations before key deadlines.

The Commission is also reviewing a prior request from OPG to extend the operational license of the existing Pickering B units until 2026. This extension would allow the plant to safely continue operating until the commencement of its renovation, pending approval.

 

Ontario's Ambitious Nuclear Strategy

The announcement regarding Pickering is part of Ontario's broader clean energy plan for an unprecedented expansion of nuclear power in Canada.

Last summer, the province announced its intention to nearly double the output at Bruce Power, currently the world's largest nuclear generating station.

Additionally, Ontario revealed SMR plans to construct three more alongside the existing project at Darlington. These reactors are expected to supply enough electricity to power around 1.2 million homes.

Discussions about revitalizing the Pickering facility began in 2022, after the station had been slated to close as planned amid debate, with Ontario Power Generation submitting a feasibility report to the government last summer.

The Ford government emphasized the necessity of this nuclear expansion to meet the increasing electricity demands anticipated from the auto sector's shift to electric vehicles, the steel industry's move away from coal-fired furnaces, and the growing population in Ontario.

Ontario's capability to attract major international car manufacturers like Volkswagen and Stellantis to produce electric vehicles and batteries is partly attributed to the fact that 90% of the province's electricity comes from non-fossil fuel sources.

 

Related News

View more

Idaho Power Settlement Could Close Coal Plant, Raise Rates

Idaho Power Valmy Settlement outlines early closure of the North Valmy coal-fired plant in Nevada, accelerated depreciation recovery, a 1.17% base-rate increase, and impacts for customers, NV Energy co-ownership, and Idaho Public Utilities Commission review.

 

Key Points

A proposed agreement to close North Valmy early, recover costs via a 1.17% rate hike, and seek PUC approval.

✅ Unit 1 closes 2019; Unit 2 closes 2025 in Nevada.

✅ 1.17% base-rate hike; about $1.20 per 1,000 kWh monthly bill.

✅ Idaho PUC comment deadline May 25; NV Energy co-owner.

 

State regulators have set a May 25 deadline for public comment on a proposed settlement related to the early closure of a coal-fired plant co-owned by Idaho Power, even as some utilities plan to keep a U.S. coal plant running indefinitely in other jurisdictions.

The settlement calls for shuttering Unit 1 of the North Valmy Power Plant in Nevada in 2019, with Unit 2 closing in 2025, amid regional coal unit retirements debates. The units had been slated for closure in 2031 and 2035, respectively.

If approved by the Idaho Public Utilities Commission, the settlement would increase base rates by approximately $13.3 million, or 1.17 percent, in order to allow the company to recover its investment in the plant on an accelerated basis.

That equates to an additional $1.20 on the monthly bill of the typical residential customer using 1,000 kilowatt-hours of energy per month.

Idaho Power, which co-owns the plant with NV Energy, maintains that closing Valmy early rather than continuing to operate it until it is fully depreciated in 2035, will ultimately save customers $103 million in today's dollars.

The company said a significant decrease in market prices for electricity has made it uneconomic to operate the plant except during extremely cold or hot weather, when the demand for energy peaks, a trend underscored by transactions involving the San Juan Generating Station deal elsewhere. The company also said plant balances have increased by approximately $70 million since its last general rate case in 2011, due to routine maintenance and repairs, as well as investments required to meet environmental regulations.

The proposed settlement reflects a number of changes to Idaho Power's original proposal regarding Valmy, and comes in the wake of discussions with interested parties in February and April, against the backdrop of a broader energy debate over plant closures and reliability.

In its initial application, filed in October, Idaho Power proposed closing both units in 2025. The original proposal would have increased base rates by $28.5 million, or about 2.5 percent, in order to allow the company to recover its costs associated with the plant's accelerated depreciation, decommissioning and anticipated investments, with cautionary examples such as the Kemper power plant costs illustrating potential risks.

Concurrently, Idaho Power asked for commission approval to adjust depreciation rates for its other plants and equipment based on the result of a study it conducts every five years, as outlined in Case IPC-E-16-23. The adjustment would have led to a $6.7 million increase to base rates.

The two requests filed in October would have increased customer costs by a total of $35.2 million or 3.1 percent, leading to a $3.08 increase on the bills of the typical residential customer who uses 1,000 kilowatt-hours per month.

The proposed settlement submitted to the Commission on May 4 calls for $13,285,285 to be recovered from all customer classes through base rates until 2028, all related to the Valmy shutdown. That is an increase of 1.17 percent and would result in a $1.20 increase on the bills of the typical residential customer who uses 1,000 kilowatt-hours per month.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.