CEC, SMUD make investment on backup peak power

By Electricity Forum


NFPA 70b Training - Electrical Maintenance

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today
VRB Power Systems Inc. announces that the California Energy Commission (CEC) and the Sacramento Municipal Utility District (SMUD) awarded funding towards the purchase of a 20kW x 9hr VRB Energy Storage System (VRB-ESS) to be installed at a major U.S. telecoms service providerÂ’s telecommunication site in Sacramento, California.

The system will provide three hours of back-up power and additionally power the site for six hours during peak power times, shifting demand on the site from peak to off peak times. The total contract value to VRB Power from this project will be approximately US$300,000 which will be borne equally by the CEC, SMUD and the customer.

The ability to provide both of these functions from the same system is a unique characteristic of VRB PowerÂ’s flow battery technology. Shifting demand from this site to off peak times will reduce peak demand on the local grid and potentially reduce the customerÂ’s electricity charges by switching to Time of Use versus standard rate charges.

This project has attracted support and funding from CEC because of the potential to roll out similar systems in many other sites in California with the intention to shift a significant portion of the StateÂ’s peak demand to off peak times which is directly in line with CaliforniaÂ’s Energy Policy goals.

“This project demonstrates the economic value of energy storage and the Energy Commission is pleased to be funding this endeavour,” said Energy Commissioner Art Rosenfeld. "Additionally, with the technology to shift electrical load from peak to off peak, it has the potential to reduce demand on California’s electrical transmission grid at times when we most need it,” added Rosenfeld.

“Shifting peak demand to off peak times is fully in line with our corporate goals and is in the best interests of generators and consumers alike,” said Cliff Murley of SMUD. “We believe that there is significant potential to roll out energy storage in a number of key sites across our grid and beyond.”

“We are very pleased with this development,” said John Davis, Director of Sales for VRB Power. “This sale follows evaluation of our technology by this customer and the ability of our products to fulfill other roles in addition to providing reliable, long-life back-up power. The VRB-ESS offers customers a much more versatile product which can also generate revenues for them and separates us from our competitors.”

“In on grid sites, such as this one in Sacramento, electricity is substantially more expensive at peak times than at off peak times. We can significantly reduce the customer’s electricity charges by using the VRB-ESS to run the site during peak demand and then re-charging it at off peak times. In off grid sites we can significantly reduce diesel consumption by using the system to run the site for several hours each day. In both examples the VRB-ESS also serves to provide reliable, uninterruptible power should the main source of power fail.”

“These applications open up a large number of sites within the overall telecoms market where we believe only VRB Power can provide this solution. The customer has dozens of similar sites across California where our systems could potentially be deployed and hundreds of similar sites across North America. Additionally, other major telecoms service providers are in a similar position. The ability to shave peak demand also provides benefits to the local utilities, local electricity grids and ultimately consumers,” concluded Davis.

Related News

Ontario Teachers' Plan Acquires Brazilian Electricity Transmission Firm Evoltz

Ontario Teachers' Evoltz Acquisition expands electricity transmission in Brazil, adding seven grid lines across ten states, aligning infrastructure strategy with inflation-linked cash flows, renewable energy integration, Latin America and net-zero objectives pending regulatory approvals.

 

Key Points

A 100% purchase of Brazil's Evoltz, adding seven grid lines and delivering stable, inflation-linked cash flows.

✅ 100% stake in Evoltz with seven transmission lines

✅ Aligns with net-zero and renewable energy strategy

✅ Inflation-linked, core infrastructure cash flows in Brazil

 

The Ontario Teachers’ Pension Plan has acquired Evoltz Participações, an electricity transmission firm in Brazil, from US asset manager TPG. 

The retirement system took a 100% stake in the energy firm, Ontario Teachers’ said Monday. The acquisition has netted the pension fund seven electricity transmission lines that service consumers and businesses across 10 states in Brazil, amid dynamics similar to electricity rate reductions for businesses seen in Ontario. The firm was founded by TPG just three years ago. 

“Our strategy focuses on allocating significant capital to high-quality core infrastructure assets with lower risks and stable inflation-linked cash flows,” Dale Burgess, senior managing director of infrastructure and natural resources at Ontario Teachers, said in a statement. “Electricity transmission businesses are particularly attractive given their importance in facilitating a transition to a low-carbon economy.” 

The pension fund has invested in other electricity distribution companies recently. In March, Ontario Teachers’ took a 40% stake in Finland’s Caruna, and agreed to acquire a 25% stake in SSEN Transmission in the UK grid. For more than a decade, it has maintained a 50% stake in Chile-based transmission firm Saesa. 

The investment into Evoltz demonstrates Ontario Teachers’ growing portfolio in Brazil and Latin America, while activity in Ontario such as the Peterborough Distribution sale reflects ongoing utility consolidation. In 2016, the firm, with the Canada Pension Plan Investment Board (CPPIB), invested in toll roads in Mexico. They took a 49% stake with Latin American infrastructure group IDEAL. 

Evoltz, which delivers renewable energy, will also help decarbonize the pension fund’s portfolio. In January, the fund pledged to reach net-zero carbon emissions by 2050. Last year, Ontario Teachers’ issued its first green bond offering. The $890 million 10-year bond will help the retirement system fund sustainable investments aligned with policy measures like Ontario's subsidized hydro plan during COVID-19. 

However, Ontario Teachers’ has also received criticism for its investment into parts of Abu Dhabi’s gas pipeline network, and investor concerns about Hydro One highlight sector uncertainties. Last summer, it joined other institutional investors in investing $10.1 billion for a 49% stake. 

As of December, Ontario Teachers’ reached a portfolio with C$221.2 billion (US$182.5 billion) in assets. Since 1990, the fund has maintained a 9.6% annualized return. Last year, it missed its benchmark with an 8.6% return, with examples such as Hydro One shares fall after shake-up underscoring market volatility.

The pension fund expects the deal will close later this fall, pending closing conditions and regulatory approvals, including decisions such as the OEB combined T&D rates ruling that shape utility economics. 

 

Related News

View more

Huge offshore wind turbine that can power 18,000 homes

Siemens Gamesa SG 14-222 DD advances offshore wind with a 14 MW direct-drive turbine, 108 m blades, a 222 m rotor, optional 15 MW boost, powering about 18,000 homes; prototype 2021, commercial launch 2024.

 

Key Points

A 14 MW offshore wind turbine with 108 m blades and a 222 m rotor, upgradable to 15 MW, targeting commercial use in 2024.

✅ 14 MW direct-drive, upgradable to 15 MW

✅ 108 m blades, 222 m rotor diameter

✅ Powers about 18,000 European homes annually

 

Siemens Gamesa Renewable Energy (SGRE) has released details of a 14-megawatt (MW) offshore wind turbine, as offshore green hydrogen production gains attention, in the latest example of how technology in the sector is increasing in scale.

With 108-meter-long blades and a rotor diameter of 222 meters, the dimensions of the SG 14-222 DD turbine are significant.

In a statement Tuesday, SGRE said that one turbine would be able to power roughly 18,000 average European households annually, while its capacity can also be boosted to 15 MW if needed. A prototype of the turbine is set to be ready by 2021, and it’s expected to be commercially available in 2024, as forecasts suggest a $1 trillion business this decade.

As technology has developed over the last few years, the size of wind turbines has increased, and renewables are set to shatter records globally.

Last December, for example, Dutch utility Eneco started to purchase power produced by the prototype of GE Renewable Energy’s Haliade-X 12 MW wind turbine. That turbine has a capacity of 12 MW, a height of 260 meters and a blade length of 107 meters.

The announcement of Siemens Gamesa’s new turbine plans comes against the backdrop of the coronavirus pandemic, which is impacting renewable energy companies around the world, even as wind power sees growth despite Covid-19 in many markets.

Earlier this month, the European company said Covid-19 had a “direct negative impact” of 56 million euros ($61 million) on its profitability between January and March, amid factory closures in Spain and supply chain disruptions. This, it added, was equivalent to 2.5% of revenues during the quarter.

The pandemic has, in some parts of the world, altered the sources used to power society. At the end of April, for instance, it was announced that a new record had been set for coal-free electricity generation in Great Britain, where UK offshore wind growth has accelerated, with a combination of factors — including coronavirus-related lockdown measures — playing a role.

On Tuesday, the CEO of another major wind turbine manufacturer, Danish firm Vestas, sought to emphasize the importance of renewable energy in the years and months ahead, and the lessons the U.S. can learn from the U.K. on wind deployment.

“I think we have actually, throughout this crisis, also shown to all society that renewables can be trusted,” Henrik Andersen said during an interview on CNBC’s Street Signs.

“But we both know ... that that transformation of energy sources is not going to happen overnight, it’s not going to happen from a quarter to a quarter, it’s going to happen by consistently planning year in, year out.”

 

Related News

View more

Canada and Manitoba invest in new turbines

Manitoba Clean Electricity Investment will upgrade hydroelectric turbines, expand a 230 kV transmission network, and deliver reliable, affordable low-carbon power, reducing greenhouse gas emissions and strengthening grid reliability across Portage la Prairie and Winnipeg River.

 

Key Points

Joint federal-provincial funding to upgrade hydro turbines and build a 230 kV grid, boosting reliable, low-carbon power.

✅ $314M for new turbines at Pointe du Bois (+52 MW capacity)

✅ $161.6M for 230 kV transmission in Portage la Prairie

✅ Cuts Brandon Generating Station emissions by ~37%

 

The governments of Canada and Manitoba have announced a joint investment of $475.6 million to strengthen Manitoba’s clean electricity grid that can support neighboring provinces with clean power and ensure continued supply of affordable and reliable low-carbon energy.

This federal-provincial investment provides $314 million for eight new hydroelectric turbines at the 75 MW Pointe du Bois Generating Station on the Winnipeg River, as well as $161.6 million to build a new 230 kV transmission network in the Portage la Prairie area, bolstering power sales to SaskPower and regional reliability.

The $314 million joint investment in the Pointe du Bois Renewable Energy Project includes $114.1 million from the Government of Canada and nearly $200 million from the Government of Manitoba. The joint investment will enable Manitoba Hydro to replace eight generating units that are at the end of their lifecycle, amid looming new generation needs for the province. The new, more efficient units will increase the capacity of the Pointe du Bois generating station by 52 MW.

The $161.6 million joint investment in the Portage Area Capacity Enhancement project includes $70.9 million from the Government of Canada and $90.6 million from the Government of Manitoba. The joint investment will support the construction of a new transmission line to enhance reliability for customers across southwest Manitoba and help Manitoba Hydro meet increasing demand, with projections that demand could double over the next two decades. By decreasing Manitoba’s reliance on its last grid-connected fossil-fuel generating station, this investment will reduce greenhouse gas emissions at the Brandon Generating Station by about 37%.

The federal government’s total contribution of $184.9 million is provided through the Green Infrastructure Stream of the Investing in Canada Plan, alongside efforts to improve interprovincial grid integration such as NB Power agreements with Hydro-Quebec that strengthen regional reliability. This federal funding is conditional on meeting Indigenous consultation requirements, as well as environmental assessment obligations. Including today’s announcement, the Green Infrastructure Stream has supported 38 infrastructure projects in Manitoba, for a total federal contribution of more than $766.8 million and a total provincial contribution of over $658.4 million.

“A key part of our economic plan is making Canada a clean electricity superpower. Today’s announcement in Manitoba will deliver clean, reliable, and affordable electricity to people and businesses across the province—and we will continue working to expand our clean electricity grid and create great careers for people from coast to coast to coast,” said Deputy Prime Minister and Finance Minister Chrystia Freeland.

The federal government will continue to invest in making Canada a clean electricity superpower, supporting provincial initiatives like Hydro-Quebec's fossil-free strategy that complement these investments to ensure Canadians from coast to coast to coast have the affordable and reliable clean electricity they need today and for generations to come.

“Manitoba Hydro is extremely pleased to be receiving this federal funding through the Green Infrastructure Stream of the Investing in Canada Infrastructure Program. The investments we are making in both these critical infrastructure projects will help provide Manitobans with energy for life and power our province’s economic growth with clean, reliable, renewable hydroelectricity. These projects build on our legacy of investments in renewable energy over the past 100 years, as we work towards a lower carbon future for all Manitobans,” said Jay Grewal, president and chief executive officer of Manitoba Hydro.

About 97% of Manitoba’s electricity is generated from clean hydro, with most of the remaining 3% coming from wind generation. Manitoba’s abundant clean electricity has resulted in Manitobans paying 9.455 ¢/kWh — the second-lowest electricity rate in Canada, though limits on serving new energy-intensive customers have been flagged recently.

 

Related News

View more

Japan's power demand hit by coronavirus outbreak: industry head

Japan Power Demand Slowdown highlights reduced electricity consumption as industrial activity stalls amid the coronavirus pandemic, pressuring utilities, the grid, and manufacturing, with economic impacts monitored by Chubu Electric and the federation of electric utilities.

 

Key Points

A drop in Japan's electricity use as industrial activity slows during the coronavirus pandemic, pressuring utilities.

✅ Industrial slowdown cuts electricity consumption

✅ Utilities monitor grid stability and demand trends

✅ Pandemic-linked economic risks weigh on power sector

 

Japan's power demand has been hit by a slowdown in industrial activity due to the coronavirus outbreak, reflecting broader shifts in electricity demand worldwide, Japanese utilities federation's head said on Friday, without giving specific figures.

Electricity load profiles during lockdowns revealed changes in daily routines, as shown by lockdown electricity data across multiple regions.

Analysts have identified key shifts in U.S. electricity consumption patterns that mirror industrial slowdowns.

"We are closely watching development of the pandemic, underscoring the need for electricity during such crises, as further reduction in corporate and economic activities would lead to serious impacts," Satoru Katsuno, the chairman of Japan's federation of electric utilities and president of Chubu Electric Power Co Inc, told a news conference.

In parallel, the power industry has intensified coordination with federal partners to sustain grid reliability and protect critical workers.

Some governments, including Brazil, considered emergency loans for the power sector to stabilize utilities amid revenue pressures.

Consumer advocates warned that pandemic-related electricity shut-offs and bill burdens could exacerbate energy insecurity for vulnerable households.

 

Related News

View more

City officials take clean energy message to Georgia Power, PSC

Georgia Cities Clean Energy IRP Coalition unites Savannah, Atlanta, Decatur, and Athens-Clarke to shape Georgia Power's Integrated Resource Plan, accelerating renewables, energy efficiency, community solar, and coal retirements through Georgia Public Service Commission hearings.

 

Key Points

Georgia cities working to steer Georgia Power's IRP toward renewables, energy efficiency, and community solar.

✅ Targets coal retirements and doubling renewables by 2035

✅ Advocates data access, transparency, and energy efficiency

✅ Seeks affordable community solar options for low-income customers

 

Savannah is among several Georgia cities that have led the charge forward in recent years to push for clean energy. Now, several of the state's largest municipalities are banding together to demand action from Georgia's largest energy provider.

Hearings regarding Georgia Power's Integrated Resource Plan (IRP) happen every three years, but this year for the first time the cities of Savannah, Decatur, Atlanta and Athens-Clarke and DeKalb counties were at the table.

"It's pretty unprecedented. It's such an important opportunity to get to represent ourselves and our citizens," said City of Savannah Energy Analyst Alicia Brown, the Savannah representative for the Georgia Coalition for Local Governments.

The IRP, which essentially maps out how the company will use its various forms of energy over the next 20 years was filed with the Georgia Public Service Commission (GPSC) in January, the 200-page IRP outlines Georgia Power's plans to shutter nearly all Georgia Power-controlled coal units, similar to Tucson Electric Power's coal exit timelines elsewhere, which could begin later this year.

The company is also planning to double its renewable energy generation by 2035. The IRP also outlines plans for several programs, including an Income-Qualified Community Solar Pilot, reflecting momentum for community energy programs in other states as well.

During the hearings the coalition, alongside the other groups, had the ability to question Georgia Power officials about the plan to include the proposed increase per kilowatt for the company's Simple Solar program, Behind-the-Meter Solar program study and various other components, amid debates over solar strategy in the South that could impact lower income customers.

"The established and open IRP process is central to effective, long-term energy planning in Georgia and is part of our commitment to 2.7 million customers to deliver clean, safe, reliable and affordable energy. In continuing our longstanding relationship with the City of Savannah, we welcome their interest and participation in the IRP process," John Kraft, Georgia Power spokesman said in an email.

Brown said the coalition's areas of interest fall into three categories: energy efficiency and demand response, data access and transparency and renewable energy for citizens as well as the governments in the coalition.

"We have these renewable goals and just the way the current regulations are set, the way the current laws are on the books, and developments like consumer choice in California show how policy shifts can reshape utility markets, it's very challenging for us to meet those renewable energy goals without Georgia Power setting up programs that are workable for us," she said.

The city of Savannah is already taking action locally to reduce carbon emissions and move toward clean and renewable energy through the 100% Savannah Clean Energy Plan, which was adopted by Savannah City Council in December.

The plan aims to achieve 100% renewable electricity community-wide by 2035 and 100% renewable energy for all energy needs by 2050.

Council previously approved the 100% Clean Energy Resolution needed to develop the plan in March 2020, making Savannah the fifth city in the state to pledge to pursue a lower carbon future to fight climate change.

The final plan includes 45 strategies that fall into five categories: energy efficiency; renewable energy; transportation and mobility; community and economic development; and education and engagement.

Brown said the education and engagement component is central to the plan, but the pandemic has hindered community education and awareness efforts, and utilities have warned customers about pandemic-related scams that complicate outreach, something the city hopes to catapult in the coming weeks.

"With the 100% Savannah resolution passing right before the pandemic, we haven't had as many opportunities to raise awareness about the initiative and to educate the public about clean energy as we would like. This transition will present a lot of opportunities for our communities, but only if people know that they are there to be taken," she said.

"... We also want to engage the community so that they feel like they are developing this vision for a healthy, prosperous, clean community alongside us. It's not just us telling them, 'we're going to have a clean energy future and it's going to look like this,' but really helping them to develop and realize a collective vision for what 100% Savannah should be."

The final round of IRP hearings are scheduled for next month. Those hearings will allow the coalition and other groups to put witnesses on the stand who will make the case for why Georgia Power's IRP should be different, Brown said.

In June, Georgia Power, following a June bill reduction for customers, will have a chance to offer rebuttal testimony and will again be subject to cross examination. Shortly after those hearings, the parties will join together for the settlement process, a sort of compromise on the plan that the commission will vote on toward the beginning of July.

 

Related News

View more

Roads Need More Electricity: They Will Make It Themselves

Electrically Smart Roads integrate solar road surfaces, inductive charging, IoT sensors, AI analytics, and V2X to power lighting, deicing, and monitoring, reducing grid dependence while enabling dynamic EV charging and real-time traffic management.

 

Key Points

Electrically smart roads generate power, sense conditions, and charge EVs using solar, IoT, AI, and dynamic infrastructure.

✅ Solar surfaces, verges, and gantries generate on-site electricity

✅ Inductive lanes enable dynamic EV charging at highway speeds

✅ Embedded IoT sensors and AI deliver real-time traffic insights

 

As more and more capabilities are added to roads instead of simply covering a country with extra roads, they are starting to make their own electricity, notably as solar road surface but then with added silent wind turbines, photovoltaic verges and barriers and more.

That toll gate, street light and traffic monitoring system all need electricity. Later, roads that deice and charge vehicles at speed will need huge amounts of electricity. For now, electricity for road systems is provided by very expensive infrastructure to the grid, and grid flexibility for EVs remains a concern, except for a few solar/ wind street lights in China and Korea for example. However, as more and more capabilities are added to roads instead of simply covering a country with extra roads, they are starting to make their own electricity, notably as solar road surface but then with added silent wind turbines, photovoltaic verges and barriers and more. There is also highly speculative work in the USA and UK on garnering power from road surface movement using piezoelectrics and electrodynamics and even its heat. 

#google#

China plans to create an intelligent transport system by 2030. The country hopes to build smart roads that will not only be able to charge electric cars as they drive but also monitor temperature, traffic flow and weight load using artificial intelligence. Indeed, like France, the Netherlands and the USA, where U.S. EV charging capacity is under scrutiny, it already has trials of extended lengths of solar road which cost no more than regular roads. In an alternative approach, vehicles go under tunnels of solar panels that also support lighting, light-emitting signage and monitoring equipment using the electricity made where it is needed. See the IDTechEx Research report, Electrically Smart Roads 2018-2028 for more.

Raghu Das, CEO of IDTechEx says, "The spiral vertical axis wind turbines VAWT in Asia rarely rotate because they are too low but much higher versions are planned on large UK roadside vehicle charging centres that should work well. H shaped VAWT is also gaining traction - much slower and quieter than the propeller shape which vibrates and keeps you awake at night in an urban area.

The price gap between the ubiquitous polycrystalline silicon solar cell and the much more efficient single crystal silicon is narrowing. That means that road furniture such as bus shelters and smart gantries will likely go for more solar rather than adding wind power in many cases, a shift mirrored by connected solar tech in homes, because wind power needs a lot of maintenance and its price is not dropping as rapidly."

The IDTechEx Research report, Off Grid Electric Vehicle Charging: Zero Emission 2018-2028 analyses that aspect, while vehicle-to-grid strategies may complement grid resources. The prototype of a smart road is already in place on an expressway outside of Jinan, providing better traffic updates as well as more accurate mapping. Verizon's IoT division has launched a project around intelligent asphalt, which it thinks has the potential to significantly reduce fossil fuel emissions and save time by reducing up to 44% of traffic backups. It has partnered with Sacramento, California, to test this theory.

"By embedding sensors into the pavement as well as installing cameras on traffic lights, we will be able to study and analyze the flow of traffic. Then, we will take all of that data and use it to optimize the timing of lights so that traffic flows easier and travel times are shorter," explains Sean Harrington, vice president of Verizon Smart Communities.

Colorado's Department of Transportation has recently announced its intention to be the first state to pilot smart roads by striking a five-year deal with a smart road company to test the technology. Like planned auto-deicing roads elsewhere, the aim of this project is, first and foremost, to save lives. The technology will detect when a car suddenly leaves a road and send emergency assistance to the area. The IDTechEx Research report Electrically Smart Roads 2018-2028 describes how others work on real time structural monitoring of roads and embedded interactive lighting and road surface signage.

"Smart pavement can make that determination and send that information directly into a vehicle," Peter Kozinski, director of CDOT's RoadX division, tells the Denver Post. "Data is the new asphalt of transportation."   Sensors, processors and other technology are embedded in the Colorado road to extend capability beyond accidents and reach into better road maintenance. Fast adoption relies on the ability to rapidly install sensor-laden pavement or lay concrete slabs. Attention therefore turns to fast adaptation of existing roads. Indeed, even for the heavy coil arrays used for dynamic vehicle charging, even as state power grids face new challenges, in Israel there are machines that can retrofit into the road surface at a remarkable two kilometres of cut and insert in a day.

"It's hard to imagine that these things are inexpensive, with all the electronics in them," Charles Schwartz, a professor of civil and environmental engineering at the University of Maryland, tells the Denver Post concerning the vehicle sensing project, "but CDOT is a fairly sophisticated agency, and this is an interesting pilot project. We can learn a lot, even if the test is only partially successful."

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified