By Hydro Ottawa Holding Inc. owns and operates: Hydro Ottawa Limited, Ottawa's local distribution utility serving 250,000 customers and is regulated by the Ontario Energy Board; Energy Ottawa Inc., a generation and energy services company; and Telecom


Substation Relay Protection Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
-- Hydro Ottawa Limited, the local electricity distribution company for the City of Ottawa, has chosen J.D. Edwards collaborative enterprise software to reduce operating costs and consolidate its business processes on one IT platform.

Formed from the amalgamation of five Ontario utilities, Hydro Ottawa needs to integrate operations of all formerly separate companies. At the same time, Hydro Ottawa faces the competitive challenges of a restructured energy market in Ontario. With 500 employees, half a billion dollars (Canadian) in revenue and an equal value in assets, Hydro Ottawa currently services a quarter of a million customers in an area that now covers over 2,700 square kilometres.

"With the amalgamation of five companies, we inherited a mix of technologies and business philosophies. We needed to find a truly integrated solution that we could leverage throughout the combined business to achieve improvements in critical areas of performance, quality, service, and cost," said Sergio Dinis, Hydro Ottawa's chief information officer. "J.D. Edwards enterprise software provides the flexibility and scalability to help re-align, integrate and adopt business processes in all parts of the organization."

Hydro Ottawa is already running a smaller J.D. Edwards implementation at one of its divisions, the former Kanata Hydro. After a thorough evaluation process for the larger company, Hydro Ottawa decided to go with J.D. Edwards. "The restructured market demands that we're able to manage growth and react to changes quickly, and J.D. Edwards is the best fit with our technology and business needs. J.D. Edwards has a proven track record in the energy industry, which will help us to thrive in a competitive environment," said Dinis.

Speed of implementation was also a key factor in the decision. Hydro Ottawa will implement J.D. Edwards OneWorld(R) Financials and Workforce Management applications. The system is expected to be up and running this fall. Starting in early 2003, Hydro Ottawa will also use J.D. Edwards Enterprise Asset Management to track performance, reduce maintenance expenses, and improve return on investment.

"Hydro Ottawa told us they needed a solution to quickly integrate diverse technologies and new business processes. They also needed a platform that accommodates future growth, and helps the company to constantly improve business performance while servicing more customers more efficiently," said Bob Pozzobon, vice president and general manager, J.D. Edwards Canada Ltd. "J.D. Edwards strives to be a long-term business partner by providing Hydro Ottawa with the collaborative enterprise solution necessary to make their business stronger in a deregulated energy market."

J.D. Edwards, together with its partner PricewaterhouseCoopers, will be providing implementation and training support to Hydro Ottawa. Two hundred employees at Hydro Ottawa will use the new system. Future plans for Hydro Ottawa include applications for the mobile workforce, which will allow work orders to be transmitted and processed from remote locations.

Hydro Ottawa Limited is the second largest local electricity distribution company in the province of Ontario, running 5,000 km of wire to service roughly 90 percent of the area's population.

About Hydro Ottawa

Related News

Major U.S. utilities spending more on electricity delivery, less on power production

U.S. Utility Spending Shift highlights rising transmission and distribution costs, grid modernization, and smart meters, while generation expenses decline amid fuel price volatility, capital and labor pressures, and renewable integration across the power sector.

 

Key Points

A decade-long trend where utilities spend more on delivery and grid upgrades, and less on electricity generation costs.

✅ Delivery O&M, wires, poles, and meters drive rising costs

✅ Generation spending declines amid fuel price changes and PPI

✅ Grid upgrades add reliability, resilience, and renewable integration

 

Over the past decade, major utilities in the United States have been spending more on delivering electricity to customers and less on producing that electricity, a shift occurring as electricity demand is flat across many regions.

After adjusting for inflation, major utilities spent 2.6 cents per kilowatthour (kWh) on electricity delivery in 2010, using 2020 dollars. In comparison, spending on delivery was 65% higher in 2020 at 4.3 cents/kWh, and residential bills rose in 2022 as inflation persisted. Conversely, utility spending on power production decreased from 6.8 cents/kWh in 2010 (using 2020 dollars) to 4.6 cents/kWh in 2020.

Utility spending on electricity delivery includes the money spent to build, operate, and maintain the electric wires, poles, towers, and meters that make up the transmission and distribution system. In real 2020 dollar terms, spending on electricity delivery increased every year from 1998 to 2020 as utilities worked to replace aging equipment, build transmission infrastructure to accommodate new wind and solar generation amid clean energy transition challenges that affect costs, and install new technologies such as smart meters to increase the efficiency, reliability, resilience, and security of the U.S. power grid.

Spending on power production includes the money spent to build, operate, fuel, and maintain power plants, as well as the cost to purchase power in cases where the utility either does not own generators or does not generate enough to fulfill customer demand. Spending on electricity production includes the cost of fuels including natural gas prices alongside capital, labor, and building materials, as well as the type of generators being built.

Other utility spending on electricity includes general and administrative expenses, general infrastructure such as office space, and spending on intangible goods such as licenses and franchise fees, even as electricity sales declined in recent years.

The retail price of electricity reflects the cost to produce and deliver power, the rate of return on investment that regulated utilities are allowed, and profits for unregulated power suppliers, and, as electricity prices at 41-year high have been reported, these components have drawn increased scrutiny.

In 2021, demand for consumer goods and the energy needed to produce them has been outpacing supply, though power demand sliding in 2023 with milder weather has also been noted. This difference has contributed to higher prices for fuels used by electric generators, especially natural gas. The increased cost for fuel, capital, labor, and building materials, as seen in the U.S. Bureau of Labor Statistics’ Producer Price Index, is increasing the cost of power production for 2021. U.S. average electricity prices have been higher every month of this year compared with 2020, according to our Monthly Electric Power Industry Report.

 

Related News

View more

U.S. Electricity Sales Projections Continue to Fall

US Electricity Demand Outlook examines EIA forecasts, GDP decoupling, energy efficiency, electrification, electric vehicles, grid load growth, and weather variability to frame long term demand trends and utility planning scenarios.

 

Key Points

An analysis of EIA projections showing demand decoupling from GDP, with EV adoption and efficiency shaping future grid load.

✅ EIA lowers load growth; demand decouples from GDP.

✅ Efficiency and sector shifts depress kWh sales.

✅ EV adoption could revive load and capacity needs.

 

Electricity producers and distributors are in an unusual business. The product they provide is available to all customers instantaneously, literally at the flip of a switch. But the large amount of equipment, both hardware and software to do this takes years to design, site and install.

From a long range planning perspective, just as important as a good engineering design is an accurate sales projections. For the US electric utility industry the most authoritative electricity demand projec-tions come from the Department of Energy’s Energy Information Administration (EIA). EIA's compre-hensive reports combine econometric analysis with judgment calls on social and economic trends like the adoption rate of new technologies that could affect future electricity demand, things like LED light-ing and battery powered cars, and the rise of renewables overtaking coal in generation.

Before the Great Recession almost a decade ago, the EIA projected annual growth in US electricity production at roughly 1.5 percent per year. After the Great Recession began, the EIA lowered its projections of US electricity consumption growth to below 1 percent. Actual growth has been closer to zero. While the EIA did not antici-pate the last recession or its aftermath, we cannot fault them on that.

After the event, though, the EIA also trimmed its estimates of economic growth. For the 2015-2030 period it now predicts 2.1 percent economic and 0.3 percent electricity growth, down from previously projections of 2.7 percent and 1.3 percent respectively. (See Figures 1 and 2.)



 

Table 1. EIA electric generation projections by year of forecast (kWh billions)

 


 

Table 2. EIA forecast of GDP by year of forecast (billion 2009 $)

Back in 2007, the EIA figured that every one percent increase in economic activity required a 0.48 percent in-crease in electric generation to support it. By 2017, the EIA calculated that a 1 percent growth in economic activity now only required a 0.14 percent increase in electric output. What accounts for such a downgrade or disconnect between electricity usage and economic growth? And what factors might turn the numbers 
around?

First, the US economy lost energy intensive heavy industry like smelting, steel mills and refineries; patterns in China's electricity sector highlight how industrial shifts can reshape power demand. A more service oriented economy (think health care) relies more heavily on the movement of data or information and uses far less power than a manufacturing-oriented economy.

A small volcano in Argentina is about to fuel the next tech boom – and a little known company is going to be right at the center. Early investors stand to gain incredible profits and you can too. Read the report.

Second, internet shopping has hurt so-called "brick and mortar" retailers. Despite the departure of heavy industry, in years past a burgeoning US commercial sector increased its demand and usage of electricity to offset the industrial decline. But not anymore. Energy efficiency measures as well as per-haps greater concern about global warming and greenhouse gas emissions and have cut into electricity sales. “Do more with less” has the right ring to it.

But there may be other components to the ongoing decline in electricity usage. Academic studies show that electricity usage seems to increase with income along an S curve, and flattens out after a certain income level. That is, if you earn $1 billion per year you do not (or cannot) use ten times a much electricity as someone earning only $100 million.

But people at typical, middle income levels increase or decrease electricity usage when incomes rise or fall. The squeeze on middle income families was discussed often in the late presidential campaign. In recent decades an increasing percentage of income has gone to a small percentage of the population at the top of the income scale. This trend probably accounts for some weakness in residential sales. This suggests that government policy addressing income inequality would also boost electricity sales.

Population growth affects demand for electricity as well as the economy as a whole. The EIA has made few changes in its projections, showing 0.7 percent per year population growth in 2015- 2030 in both the 2007 and 2017 forecasts. Recent studies, however, have shown a drop in the birth rate to record lows. More troubling, from a national health perspective is that the average age of death may have stopped rising. Those two factors point to lower population growth, especially if the government also restricts immi-gration. Thus, the US may be approaching a period of rather modest population growth.

All of the above factors point to minimal sales growth for electricity producers in the US--perhaps even lower than the seemingly conservative EIA estimates. But the cloud on the horizon has a silver lining in the shape of an electric car. Both the United Kingdom and France have set dates to end of production of automobiles with internal combustion engines. Several European car makers have declared that 20 percent of their output will be electric vehicles by the early 2020s. If we adopt automobiles powered by electricity and not gasoline or diesel, electricity sales would increase by one third. For the power indus-try, electric vehicles represent the next big thing.

We don’t pretend to know how electric car sales will progress. But assume vehicle turnover rates re-main at the current 7 percent per year and electric cars account for 5 percent of sales in the first five years (as op-posed to 1 percent now), 20 percent in the next five years and 50 percent in the third five year period. Wildly optimistic assumptions? Maybe. By 2030, electric cars would constitute 28 percent of the vehicle fleet. They would add about 10 percent to kilowatt hour sales by that date, assuming that battery efficiencies do not improved by then. Those added sales would require increased electric generation output, with low-emissions sources expected to cover almost all the growth globally. They would also raise long term growth rates for 2015-2030 from the present 0.3 percent to 1.0 percent. The slow upturn in demand should give the electric companies time to gear up so to speak.

In the meantime, weather will continue to play a big role in electricity consumption. Record heat-induced demand peaks are being set here in the US even as surging global demand puts power systems under strain worldwide.

Can we discern a pattern in weather conditions 15 years out? Maybe we can, but that is one topic we don’t expect a government agency to tackle in public right now. Meantime, weather will affect sales more than anything else and we cannot predict the weather. Or can we?

 

Related News

View more

Electricity alert ends after Alberta forced to rely on reserves to run grid

Alberta Power Grid Level 2 Alert signals AESO reserve power usage, load management, supply shortage from generator outages, low wind, and limited imports, urging peak demand conservation to avoid blackouts and preserve grid reliability.

 

Key Points

An AESO status where reserves power the grid and load management is used during supply constraints to prevent blackouts.

✅ Triggered by outages, low wind, and reduced import capacity

✅ Peak hours 4 to 7 pm saw conservation requests

✅ Several hundred MW margin from Level 3 load shedding

 

Alberta's energy grid ran on reserves Wednesday, after multiple factors led to a supply shortage, a scenario explored in U.S. grid COVID response discussions as operators plan for contingencies.

At 3:52 p.m. Wednesday, the Alberta Electric System Operator issued a Level 2 alert, meaning that reserves were being used to supply energy requirements and that load management procedures had been implemented, while operators elsewhere adopted Ontario power staffing lockdown measures during COVID-19 for continuity. The alert ended at 6:06 p.m.

"This is due to unplanned generator outages, low wind and a reduction of import capability," the agency said in a post to social media. "Supply is tight but still meeting demand."

AESO spokesperson Mike Deising said the intertie with Saskatchewan had tripped off, and an issue on the British Columbia side of the border, as seen during BC Hydro storm response events, meant the province couldn't import power. 

"There are no blackouts … this just means we're using our reserve power, and that's a standard procedure we'll deploy," he said. 

AESO had asked that people reduce their energy consumption between 4 and 7 p.m., similar to Cal ISO conservation calls during grid strain, which is typically when peak use occurs. 

Deising said the system was several hundred MWs away from needing to move to an alert Level 3, with utilities such as FortisAlberta precautions in place to support continuity, which is when power is cut off to some customers in order to keep the system operating. Deising said Level 2 alerts are fairly rare and occur every few years. The last Level 3 alert was in 2013. 

According to the supply and demand report on AESO's website, the load on the grid at 5 p.m. was 10,643 MW.

That's down significantly from last week, when a heat wave pushed demand to record highs on the grid, with loads in the 11,700 MW range, contrasting with Ontario demand drop during COVID when many stayed home. 

A heat warning was issued Wednesday for Edmonton and surrounding areas shortly before 4 p.m., with temperatures above 29 C expected over the next three days, with many households seeing residential electricity use up during such periods. 

 

Related News

View more

America’s Electricity is Safe From the Coronavirus—for Now

US Grid Pandemic Response coordinates control rooms, grid operators, and critical infrastructure, leveraging hydroelectric plants, backup control centers, mutual assistance networks, and deep cleaning protocols to maintain reliability amid reduced demand and COVID-19 risks.

 

Key Points

US Grid Pandemic Response encompasses measures by utilities and operators to safeguard power reliability during COVID-19

✅ Control rooms staffed on-site; operators split across backup centers

✅ Health screenings, deep cleaning, and isolation protocols mitigate contagion

✅ Reduced demand and mutual assistance improve grid resilience

 

Control rooms are the brains of NYPA’s power plants, which are mostly hydroelectric and supply about a quarter of all the electricity in New York state. They’re also a bit like human petri dishes. The control rooms are small, covered with frequently touched switches and surfaces, and occupied for hours on end by a half-dozen employees. Since social distancing and telecommuting isn’t an option in this context, NYPA has instituted regular health screenings and deep cleanings to keep the coronavirus out.

The problem is that each power plant relies on only a handful of control room operators. Since they have a specialized skill set, they can’t be easily replaced if they get sick. “They are very, very critical,” says Gil Quiniones, NYPA president and CEO. If the pandemic worsens, Quiniones says that NYPA may require control room operators to live on-site at power plants to reduce the chance of the virus making it in from the outside world. It sounds drastic, but Quiniones says NYPA has done it before during emergencies—once during the massive 2003 blackout, and again during Hurricane Sandy.

Meanwhile, PJM is one of North America’s nine regional grid operators and manages the transmission lines that move electricity from power plants to millions of customers in 13 states on the Eastern seaboard, including Washington, DC. PJM has had a pandemic response plan on the books for 15 years, but Mike Bryson, senior vice president of operations, says that this is the first time it’s gone into full effect. As of last week, about 80 percent of PJM’s 750 full-time employees have been working from home. But PJM also requires a skeleton crew of essential workers to be on-site at all times in its control centers. As part of its emergency planning, PJM built a backup control center years ago, and now it is splitting control center operators between the two to limit contact.

Past experience with large-scale disasters has helped the energy sector keep the lights on and ventilators running during the pandemic. Energy is one of 16 sectors that the US government has designated as “critical infrastructure,” which also includes the communications industry, transportation sector, and food and water systems. Each is seen as vital to the country and therefore has a duty to maintain operations during national emergencies.

“We need to be treated as first responders,” says Scott Aaronson, the vice president of security and preparedness at the Edison Electric Institute, a trade group representing private utilities. “Everybody's goal right now is to keep the public healthy, and to keep society functioning as best we can. A lack of electricity will certainly create a challenge for those goals.”

America’s electricity grid is a patchwork of regional grid operators connecting private and state-owned utilities. This means simply figuring out who’s in charge and coordinating among the various organizations is one of the biggest challenges to keeping the electricity flowing during a national emergency, according to Aaronson.

Generally, a lot of this responsibility falls on formal energy organizations like the nonprofit North American Electric Reliability Corporation and the Federal Energy Regulatory Commission. But during the coronavirus outbreak, an obscure organization run by the CEOs of electric utilities called the Electricity Subsector Coordinating Council has also served as a primary liaison between the federal government and the thousands of utility companies around the US. Aaronson says the organization has been meeting twice a week for the past three weeks to ensure that utilities are implementing best practices in their response to the coronavirus, as well as to inform the government of material needs to keep the energy sector running smoothly.

This tight-knit coordination will be especially important if the pandemic gets worse, as many forecasts suggest it will. Most utilities belong to at least one mutual assistance group, an informal network of electricity suppliers that help each other out during a catastrophe. These mutual assistance networks are usually called upon following major storms that threaten prolonged outages. But they could, in principle, be used to help during the coronavirus pandemic too. For example, if a utility finds itself without enough operators to manage a power plant, it could conceivably borrow trained operators from another company to make sure the power plant stays online.

So far, utilities and grid operators have managed to make it work on their own. There have been a handful of coronavirus cases reported at power plants, but they haven’t yet affected these plants’ ability to deliver energy. The challenges of running a power plant with a skeleton crew is partially offset by the reduced power demand as businesses shut down and more people work from home, says Robert Hebner, the director of the Center for Electromechanics at the University of Texas. “The reduced demand for power gives utilities a little breathing room,” says Hebner.

A recent study by the University of Chicago’s Energy Policy Institute found that electricity demand in Italy has plunged by 18 percent following the severe increase in coronavirus cases in the country. Energy demand in China also plummeted as a result of the pandemic. Bryson, at PJM, says the grid operator has seen about a 6 percent decrease in electricity demand in recent weeks, but expects an even greater drop if the pandemic gets worse.

Generally speaking, problems delivering electricity in the US occur when the grid is overloaded or physically damaged, such as during California wildfires or a hurricane.

An open question among coronavirus researchers is whether there will be a second wave of the pandemic later this year. During the Spanish flu pandemic in the early 20th century, the second wave turned out to be deadlier than the first. If the coronavirus remerges later this year, it could be a serious threat to reliable electricity in the US, says John MacWilliams, a former associate deputy secretary of the Department of Energy and a senior fellow at Columbia University’s Center on Global Energy Policy.

“If this crisis extends into the fall, we're going to hit hurricane season along the coasts,” MacWilliams says. “Utilities are doing a very good job right now, but if we get unlucky and have an active hurricane season, they're going to get very stressed because the number of workers that are available to repair damage and restore power will become more limited.”

This was a sentiment echoed by Bryson at PJM. “Any one disaster is manageable, but when you start layering them on top of each other, it gets much more challenging,” he adds. The US electricity grid struggles to handle major storms as it is, and these challenges will be heightened if too many workers are home sick. In this sense, the energy sector’s ability to deliver the electricity needed to keep manufacturing medical supplies or keep ventilators running depends to a large extent on our ability to flatten the curve today. The coronavirus is bad enough without having to worry about the lights going out.

 

Related News

View more

Environmentalist calls for reduction in biomass use to generate electricity

Nova Scotia Biomass Energy faces scrutiny as hydropower from Muskrat Falls via the Maritime Link increases, raising concerns over carbon emissions, biodiversity, ratepayer costs, and efficiency versus district heating in the province's renewable mix.

 

Key Points

Electricity from wood chips and waste wood in Nova Scotia, increasingly questioned as hydropower from the Maritime Link grows.

✅ Hydropower deliveries reduce need for biomass on the grid

✅ Biomass is inefficient, costly, and impacts biodiversity

✅ District heating offers better use of forestry residuals

 

The Ecology Action Centre's senior wilderness coordinator is calling on the Nova Scotia government to reduce the use of biomass to generate electricity now that more hydroelectric power is flowing into the province.

In 2020, the government of the day signed a directive for Nova Scotia Power to increase its use of biomass to generate electricity, including burning more wood chips, waste wood and other residuals from the forest industry. At the time, power from Muskrat Falls hydroelectric project in Labrador was not flowing into the province at high enough levels to reach provincial targets for electricity generated by renewable resources.

In recent months, however, the Maritime Link from Muskrat Falls has delivered Nova Scotia's full share of electricity, and, in some cases, even more, as the province also pursues Bay of Fundy tides projects to diversify supply.

Ray Plourde with the Ecology Action Centre said that should be enough to end the 2020 directive.

Ray Plourde is senior wilderness coordinator for the Ecology Action Centre. (CBC)
Biomass is "bad on a whole lot of levels," said Plourde, including its affects on biodiversity and the release of carbon into the atmosphere, he said. The province's reliance on waste wood as a source of fuel for electricity should be curbed, said Plourde.

"It's highly inefficient," he said. "It's the most expensive electricity on the power grid for ratepayers."

A spokesperson for the provincial Natural Resources and Renewables Department said that although the Maritime Link has "at times" delivered adequate electricity to Nova Scotia, "it hasn't done so consistently," a context that has led some to propose an independent planning body for long-term decisions.

"These delays and high fossil fuel prices mean that biomass remains a small but important component of our renewable energy mix," Patricia Jreiga said in an email, even as the province plans to increase wind and solar projects in the years ahead.

But to Plourde, that explanation doesn't wash.

The Nova Scotia Utility and Review Board recently ruled that Nova Scotia Power could begin recouping costs of the Maritime Link project from ratepayers. As for the rising cost of fossil fuels, Ploude noted that the inefficiency of biomass means there's no deal to be had using it as a fuel source.

"Honestly, that sounds like a lot of obfuscation," he said of the government's position.

No update on district heating plans
At the time of the directive, government officials said the increased use of forestry byproducts at biomass plants in Point Tupper and Brooklyn, N.S., including the nearby Port Hawkesbury Paper mill, would provide a market for businesses struggling to replace the loss of Northern Pulp as a customer. Brooklyn Power has been offline since a windstorm damaged that plant in February, however. Repairs are expected to be complete by the end of the year or early 2023.

Ploude said a better use for waste wood products would be small-scale district heating projects, while others advocate using more electricity for heat in cold regions.

Although the former Liberal government announced six public buildings to serve as pilot sites for district heating in 2020, and a list of 100 other possible buildings that could be converted to wood heat, there have been no updates.

"Currently, we're working with several other departments to complete technical assessments for additional sites and looking at opportunities for district heating, but no decisions have been made yet," provincial spokesperson Steven Stewart said in an email.

 

Related News

View more

Ontario Businesses To See Full Impact of 2021 Electricity Rate Reductions

Ontario Comprehensive Electricity Plan delivers Global Adjustment reductions for industrial and commercial non-RPP customers, lowering electricity rates, shifting renewable energy costs, and enhancing competitiveness across Ontario businesses in 2022, with additional 4 percent savings.

 

Key Points

Ontario's plan lowers Global Adjustment by shifting renewable costs, cutting industrial and commercial bills 15-17%.

✅ Shifts above-market non-hydro renewable costs to the Province

✅ Reduces GA for industrial and commercial non-RPP customers

✅ Additional 4% savings on 2022 bills after GA deferral

 

As of January 1, 2022, industrial and commercial electricity customers will benefit from the full savings introduced through the Ontario government’s Comprehensive Electricity Plan, which supports stable electricity pricing for industrial and commercial companies, announced in Budget 2020, and first implemented in January 2021. This year customers could see an additional four percent savings compared to their bills last year, bringing the full savings from the Comprehensive Electricity Plan to between 15 and 17 per cent, making Ontario a more competitive place to do business.

“Our Comprehensive Electricity Plan has helped reverse the trend of skyrocketing electricity prices that drove jobs out of Ontario,” said Todd Smith, Minister of Energy. “Over 50,000 customers are benefiting from our government’s plan which has reduced electricity rates on clean and reliable power, allowing them to focus on reinvesting in their operations and creating jobs here at home.”

Starting on January 1, 2021, the Comprehensive Electricity Plan reduced overall Global Adjustment (GA) costs for industrial and commercial customers who do not participate in the Regulated Price Plan (RPP) by shifting the forecast above-market costs of non-hydro renewable energy, such as wind, solar and bioenergy, from the rate base to the Province, alongside energy-efficiency programs that complement demand reduction efforts.

“Since taking office, our government has listened to job creators and worked to lower the costs of doing business in the province. Through these significant reductions in electricity prices through the Comprehensive Electricity Plan, customers all across Ontario will benefit from significant savings in their business operations in 2022,” said Vic Fedeli, Minister of Economic Development, Job Creation and Trade. “By continuing to reduce electricity costs, lowering taxes, and cutting red tape our government has reduced the cost of doing business in Ontario by nearly $7 billion annually to ensure that we remain competitive, innovative and poised for economic recovery.”

As part of its COVID response, including electricity relief for families and small businesses, Ontario had deferred a portion of GA between April and June 2020 for industrial and non-RPP commercial customers, with more than 50,000 customers benefiting. Those same businesses paid back these deferred GA costs over 12 months, between January 2021 and December 2021, while the province prepared to extend disconnect moratoriums for residential customers.

During the pandemic, residential electricity use rose even as overall consumption dropped, underscoring shifts in load patterns.

Now that the GA deferral repayment period is over, industrial and non-RPP commercial customers will benefit from the full cost reductions provided to them by the Comprehensive Electricity Plan, alongside temporary off-peak rate relief that supported families and small businesses. This means that, beginning January 1, 2022, these businesses could see an additional four per cent savings on their bills compared to 2021, as new ultra-low overnight pricing options emerge depending on their location and consumption.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.