An Old Steel Mill Retools to Produce Clean Energy

By New York Times


High Voltage Maintenance Training Online

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today
Empty grain elevators and dormant railroad tracks line the Buffalo River to the east and Lake Erie to the west, interspersed with empty fields overgrown with gnarled shrubbery. Test wells that monitor decades of buried industrial waste dot the landscape. A passenger ship, rust overtaking its aqua paint, sits beside a decaying mill.

The road from Buffalo to this city to the south offers a stark reminder of the regionÂ’s faded past as a hub of industry and shipping.

Yet in the past few months, a different sight has emerged on the 2.2-mile shoreline above a labyrinth of pipes, blackened buildings and crumbling coke ovens that was once home to a behemoth Bethlehem Steel plant: eight gleaming white windmills with 153-foot blades slowly turning in the wind off Lake Erie, on a former Superfund site where iron and steel slag and other industrial waste were dumped during 80 years of production.

“It’s changing the image of the city of Lackawanna,” said Norman L. Polanski Jr., the city’s mayor and a former Bethlehem worker who lost his job when the company stopped making steel here in 1983. “We were the old Rust Belt, with all the negatives. Right now, we are progressive and we are leading the way on the waterfront.”

Christine Real de Azua, of the American Wind Energy Association, said Steel Winds, as this wind farm is known, is the largest to rise in a city, and according to the state Department of Environmental Conservation, it is the first to rise on land overseen by New YorkÂ’s brownfields program. (Brownfields are low-level toxic waste sites concentrated mainly around abandoned factories.)

“It’s a way to convert the Rust Belt to the Wind Belt,” Ms. Real de Azua said.

The turbines, owned jointly by BQ Energy of Pawling, N.Y., and UPC Wind of Newton, Mass., are able to produce a total of 20 megawatts of electricity a year, enough to provide power to 7,000 homes, said the project manager, Mark Mitskovski. The companies involved in the project plan to sell the energy to individual customers or utilities.

The company began construction of the wind farm in September 2006, six months after the federal Environmental Protection Agency declared the site clean enough to be removed from the Superfund list, allowing the state Department of Environmental Conservation to oversee its development.

The windmills are a welcome change for an area buffeted by the loss of jobs and environmental problems since BethlehemÂ’s steep decline began in the mid-1970s as cheaper imported steel, mainly from Japan, began flooding the United States.

At its peak during World War II and through the boom years that followed, Bethlehem employed more than 20,000 people here, most living within walking distance of the plant. But as the jobs vanished, the cityÂ’s population fell from a high of 30,000 in the 1960s to about 19,000 today.

Smoke from the blast furnaces and coke ovens coated the mill town with a layer of red ore dust, and artificial clouds glowed several times each day, when rail cars tipped their loads of slag into Lake Erie, creating a lavalike flow visible from miles away.

“As a kid, we’d be at the beach and you’d see the ladle cars going out there 24 hours a day,” said Michael Malyak, of Lackawanna’s Steel Plant Museum, who was a shipping clerk at Bethlehem for eight years before becoming an elementary school teacher. “The sky would light up, and you’d see this red-hot slag rolling down the hillside.”

Mayor Polanski said that as dangerous and unhealthy as it was, “it was a way of life.”

And one that passed through generations. Like many of his classmates, Mr. Polanski, who is 58, followed his father to Bethlehem, getting hired as an apprentice pipe fitter.

“I graduated in June of ’67, and at the end of July, I had a job at the steel plant,” he said. “I never figured I’d lose that job.”

But as the lower-priced imported steel began to dominate the market, Bethlehem started to shrink. About 7,300 workers lost their jobs when the company stopped making steel in Lackawanna, leaving only the coke ovens and several finishing mills in operation.

Bethlehem ended coke production in 2001, the year the company filed for bankruptcy. A much smaller mill that finishes galvanized steel and employs about 250 is now operated by Mittal Steel, which acquired BethlehemÂ’s assets in 2005 in a merger with International Steel Group.

About $300,000 in state and federal assistance was used to research wind patterns and evaluate the environmental impact, and the windmills each cost $4.5 million to build. Power lines left from the plant carry the electricity from the turbines, while paved roads, rail lines and an industrial port built by Bethlehem were used to bring much of the construction material to the site.

“It’s much easier to do this on farmland somewhere,” Mr. Mitskovski said. “But all the things you would need to build in a green field setting are already here.”

Steel Winds has permits to build two more turbines and plans to put up as many as 27 in all. This month, local officials announced plans to move a rail line and build new roads in an effort to open 400 more acres of brownfields at the former Bethlehem site for redevelopment and to revitalize the Lake Erie port there, which is large enough to handle eight oceangoing ships at a time.

The economic effect of the wind farm on this city will never rival that of the steel giant. Mr. Mitskovski estimated that Steel Winds will ultimately employ a few dozen people, compared with the tens of thousands who punched the clock at Bethlehem. And though there are incentives for clean energy production, taxes generated by the wind farm will never match those paid by the steel mill, which at one time subsidized most of LackawannaÂ’s government.

The greatest effect of the eight windmills, however, may have more to do with attitude.

“A community that has had difficulty moving forward has accepted a technology that leapfrogs other forms of energy generation,” Mr. Mitskovski said. “Decades of steel-making created this environmental legacy. But that also created the opportunity to take this fallow, contaminated land and reuse it.”

Related News

Global CO2 emissions 'flatlined' in 2019, says IEA

2019 Global CO2 Emissions stayed flat, IEA reports, as renewable energy growth, wind and solar deployment, nuclear output, and coal-to-gas switching in advanced economies offset increases elsewhere, supporting climate goals and clean energy transitions.

 

Key Points

33 gigatonnes, unchanged YoY, as advanced economies cut power emissions via renewables, gas, and nuclear.

✅ IEA reports emissions flat at 33 Gt despite 2.9% GDP growth

✅ Advanced economies cut power-sector CO2 via wind, solar, gas

✅ Nuclear restarts and mild weather aided reductions

 

Despite widespread expectations of another increase, global energy-related CO2 emissions stopped growing in 2019, according to International Energy Agency (IEA) data released today. After two years of growth, global emissions were unchanged at 33 gigatonnes in 2019, a notable marker in the global energy transition narrative even as the world economy expanded by 2.9%.

This was primarily due to declining emissions from electricity generation in advanced economies, thanks to the expanding role of renewable sources (mainly wind and solar across many markets), fuel switching from coal to natural gas, and higher nuclear power generation, the Paris-based organisation says in the report.

"We now need to work hard to make sure that 2019 is remembered as a definitive peak in global emissions, not just another pause in growth," said Fatih Birol, the IEA's executive director. "We have the energy technologies to do this, and we have to make use of them all."

Higher nuclear power generation in advanced economies, particularly in Japan and South Korea, avoided over 50 Mt of CO2 emissions. Other factors included milder weather in several countries, and slower economic growth in some emerging markets. In China, emissions rose but were tempered by slower economic growth and higher output from low-carbon sources of electricity. Renewables continued to expand in China, and 2019 was also the first full year of operation for seven large-scale nuclear reactors in the country.

A significant decrease in emissions in advanced economies in 2019 offset continued growth elsewhere. The USA recorded the largest emissions decline on a country basis, with a fall of 140 million tonnes, or 2.9%. US emissions are now down by almost 1 gigatonne from their peak in 2000. Emissions in the European Union fell by 160 million tonnes, or 5%, in 2019 driven by reductions in the power sector as electricity producers move away from coal in the generation mix. Japan’s emissions fell by 45 million tonnes, or around 4%, the fastest pace of decline since 2009, as output from recently restarted nuclear reactors increased.

Emissions in the rest of the world grew by close to 400 million tonnes in 2019, with almost 80% of the increase coming from countries in Asia where coal-fired power generation continued to rise, and in Australia emissions rose 2% due to electricity and transport. Coal-fired power generation in advanced economies declined by nearly 15%, reflecting a sharp fall in coal-fired electricity across multiple markets, as a result of growth in renewables, coal-to-gas switching, a rise in nuclear power and weaker electricity demand.

The IEA will publish a World Energy Outlook Special Report in June that will map out how to cut global energy-related carbon emissions by one-third by 2030 and put the world on track for longer-term climate goals, a pathway that, in Canada, will require more electricity to hit net-zero. It will also hold an IEA Clean Energy Transitions Summit in Paris on 9 July, bringing together key government ministers, CEOs, investors and other major stakeholders.

Birol will discuss the results published today tomorrow at an IEA Speaker Series event at its headquarters with energy and climate ministers from Poland, which hosted COP24 in Katowice; Spain, which hosted COP25 in Madrid; and the UK, which will host COP26 in Glasgow this year, as greenhouse gas concentrations continue to break records worldwide.

 

Related News

View more

Seattle Apartment Fire Caused by Overheated Power Strip

Seattle Capitol Hill Apartment Fire highlights an electrical fire from an overheated power strip, a two-alarm response by 70 firefighters, safe evacuation, displaced resident aid, and prevention tips like smoke detectors and load limits.

 

Key Points

Two-alarm early-morning blaze in Seattle traced to an overheated power strip, displacing one resident and injuring none.

✅ Origin: overheated power strip ignited nearby combustibles

✅ Response: 70 firefighters, two-alarm, rapid containment

✅ Safety: avoid overloads; inspect cords; use smoke detectors

 

An early-morning fire in Seattle’s Capitol Hill neighborhood severely damaged a three-story apartment building, displacing one resident. The blaze, which broke out around 4:34 a.m. on a Friday, drew more than 70 firefighters to the scene, as other critical sectors have implemented on-site staffing during outbreaks to maintain operations, and was later traced to an overheated power strip.

The Fire Incident

The Seattle Fire Department responded to the fire, which had started on the second floor of the building in the 1800 block of 12th Avenue. Upon arrival, crews were met with heavy smoke and flames coming from one unit. The fire quickly spread to a unit on the third floor, prompting the Seattle Fire Department to escalate their response to a two-alarm fire due to its size and the potential threat to nearby structures.

Firefighters initially attempted to contain the blaze from the exterior before they moved inside the building to fully extinguish the fire. Thankfully, the fire was contained to the two affected units, preventing the destruction of the remaining seven apartments in the building.

All residents safely evacuated the building on their own. Despite the substantial damage to the two apartments, no injuries were reported. One resident was displaced by the fire and was assisted by the Red Cross in finding temporary accommodation.

Cause of the Fire

Investigators later determined that the fire was accidental, most likely caused by an overheated electrical power strip. The power strip had reportedly ignited nearby combustible materials, sparking the flames that quickly spread throughout the unit. Although the exact details are still under investigation, the fire serves as a stark reminder of the potential risks associated with overloaded or damaged electrical equipment and how electrical safety knowledge gaps can contribute to incidents.

The Risks of Power Strips

Power strips, while essential for providing multiple outlets, can pose a serious fire hazard if used improperly, and specialized arc flash training in Vancouver underscores the importance of understanding electrical hazards across settings.

This fire in Seattle highlights the importance of maintaining electrical devices and following proper usage guidelines. According to experts, it is crucial to regularly inspect power strips for any visible damage, such as frayed cords or scorch marks, and to replace them if necessary. It's also advisable to avoid using power strips with high-power appliances like space heaters, microwaves, or refrigerators.

Impact and Community Response

The fire has raised awareness about the dangers of electrical hazards in residential buildings, especially in older apartment complexes where wiring systems may not be up to modern standards. Local authorities and fire safety experts are urging residents to review safety guidelines and ensure that their living spaces are free from potential fire hazards and to avoid dangerous stunts at dams and towers that can lead to serious injuries.

Seattle's fire department, which responded to this incident, continues to emphasize fire prevention and safety education. This event also highlights the importance of having working smoke detectors and clear escape routes in apartment buildings, and ongoing fire alarm training can improve system reliability. The Seattle Fire Department recommends that all tenants know the locations of fire exits and practice safe evacuation procedures, especially in high-rise or multi-unit buildings.

Additionally, the Red Cross has stepped in to assist the displaced resident. The organization provides temporary shelter, food, and financial aid for those affected by disasters like fires. The fire underscores the importance of having emergency preparedness plans in place and the need for immediate relief for those who lose their homes in such incidents.

The Seattle apartment fire, which displaced one resident and caused significant damage to two units, serves as a reminder of the potential dangers associated with improperly maintained or overloaded electrical devices, especially power strips, and how industry recognition, such as a utility safety award, reinforces best practices. While the cause of this fire was linked to an overheated power strip, it could have easily been prevented with regular inspections and safer practices.

As fire departments continue to respond to similar incidents, it is critical for residents to stay informed about fire safety, particularly regarding electrical equipment and outdoor hazards like safety near downed power lines in storm conditions. Awareness, proper maintenance, and following safety protocols can significantly reduce the risk of electrical fires and help protect residents from harm.

 

Related News

View more

PG&E pleads guilty to 85 counts in 2018 Camp Fire

PG&E Camp Fire Guilty Plea underscores involuntary manslaughter charges as the utility admits sparking Paradise's wildfire; Butte County prosecution, CAL FIRE findings, bankruptcy oversight, victim compensation trust, and safety reforms shape accountability.

 

Key Points

The legal admission by PG&E to 84 involuntary manslaughter counts and unlawfully starting the 2018 Camp Fire.

✅ 84 involuntary manslaughter counts; unlawful ignition admitted.

✅ $3,486,950 fine, $500,000 DA costs; no prison terms.

✅ $13.5B victim trust, Paradise and Butte County payments.

 

California utility Pacific Gas and Electric Company pleaded guilty Tuesday to 84 counts of involuntary manslaughter and one count of unlawfully starting the Camp Fire, the deadliest blaze in the state's history.

Butte County District Attorney Michael L. Ramsey said the "historic moment" should be a signal that corporations will be held responsible for "recklessly endangering" lives.
The 84 people "did not need to die," Ramsey said. He said the deaths were "of the most unimaginable horror, being burned to death."

Before sentencing, survivors will testify Wednesday about the losses of their loved ones, and many have pursued lawsuits against the utility seeking accountability.

No individuals will be sent to prison, Ramsey said.

"This is the first time that PG&E or any major utility has been charged with homicide as the result of a reckless fire. It killed a town," Ramsey said, referring to Paradise, which was annihilated by the blaze.
According to court documents filed in March, the company will be fined "no more than $3,486,950," and it must reimburse the Butte County District Attorney's Office $500,000 for the costs of its investigation into the blaze, and under separate oversight a federal judge ordered dividends to be directed to wildfire risk reduction to prioritize safety.

Among other provisions, PG&E must establish a trust, compensating victims of the 2018 Camp Fire and other wildfires to the tune of $13.5 billion as part of its bankruptcy plan, according to the plea agreement included in a regulatory filing.
It has to pay hundreds of millions to the town of Paradise and Butte County and cooperate with prosecutors' investigation, the plea deal says.
PG&E also waived its right to appeal.

"I have heard the pain and the anguish of victims as they've described the loss they continue to endure, and the wounds that can't be healed," PG&E Corporation CEO and President Bill Johnson said after the plea. "No words from me could ever reduce the magnitude of such devastation or do anything to repair the damage. But I hope that the actions we are taking here today will help bring some measure of peace, including aid through a Wildfire Assistance Program the company announced."

Johnson was in court Tuesday, where Butte County Superior Court Judge Michael Deems read the names of each victim as their photos were shown on a screen, CNN affiliate KTLA reported.
Johnson said the utility would never put profits ahead of safety again. He told the judge that PG&E took responsibility for the devastation "with eyes wide open to what happened and to what must never happen again," KTLA reported.

In March, the utility and the state agreed to bankruptcy terms, which included an overhaul of PG&E's board selection process, financial structure and oversight, with rates expected to stabilize in 2025 as reforms take hold.
According to investigators with the California Department of Forestry and Fire Protection, PG&E was responsible for the devastating Camp Fire.

Electrical lines owned and operated by PG&E started the fire November 8, 2018, CAL Fire said in a news release, after the company acknowledged its power lines may have started two fires that day.

"The tinder dry vegetation and Red Flag conditions consisting of strong winds, low humidity and warm temperatures promoted this fire and caused extreme rates of spread," CAL Fire said.
PG&E had previously said it was "probable" that its equipment started the Camp Fire but that it wasn't conclusive whether its lines ignited a second fire, as CAL Fire alleged.
The power company filed for bankruptcy in January 2019 as it came under pressure from billions of dollars in claims tied to deadly wildfires, and other utilities such as Southern California Edison have faced similar lawsuits.

 

Related News

View more

Net-zero roadmap can cut electricity costs by a third in Germany - Wartsila

Germany net-zero roadmap charts coal phase-out by 2030, rapid renewables buildout, energy storage, and hydrogen-ready gas engines to cut emissions and lower LCOE by 34%, unlocking a resilient, flexible, low-cost power system by 2040.

 

Key Points

Plan to phase out coal by 2030 and gas by 2040, scaling renewables, storage, and hydrogen to cut LCOE and emissions.

✅ Coal out by 2030; gas phased 2040 with hydrogen-ready engines

✅ Add 19 GW/yr renewables; 30 GW storage by 2040

✅ 34% lower LCOE, 23% fewer emissions vs slower path

 

Germany can achieve significant reductions in emissions and the cost of electricity by phasing out coal in 2030 under its coal phase-out plan but must have a clear plan to ramp up renewables and pivot to sustainable fuels in order to achieve net-zero, according to a new whitepaper from Wartsila.

The modelling, published in Wärtsilä new white paper ‘Achieving net-zero power system in Germany by 2040’, compares the current plan to phase out coal by 2030 and gas by 2045 with an accelerated plan, where gas is phased out by 2040. By accelerating the path to net-zero, Germany can unlock a 34% reduction in the levelised cost of energy, as well as a 23% reduction in the total emissions, or 562 million tonnes of carbon dioxide in real terms.

The modelling offers a clear, three-step roadmap to achieve net-zero: rapidly increase renewables, energy storage and begin future-proofing gas engines in this decade; phase out coal by 2030; and phase out gas by 2040, converting remaining engines to run on sustainable fuels.

The greatest rewards are available if Germany front-loads decarbonisation. This can be done by rapidly increasing renewable capacity, adding 19 GW of wind and solar PV capacity per year. It must also add a total of 30GW of energy storage by 2040.

Håkan Agnevall, President and CEO of Wärtsilä Corporation said: “Germany stands on the precipice of a new, sustainable energy era. The new Federal Government has indicated its plans to consign coal to history by 2030. However, this is only step one. Our white paper demonstrates the need to implement a three-step roadmap to achieve net-zero. It is time to put a deadline on fossil fuels and create a clear plan to transition to sustainable fuels.”

While a rapid coal phase-out has been at the centre of recent climate policy debates, including the ongoing nuclear debate over Germany’s energy mix, the pathway to net-zero is less clear. Wärtsilä’s modelling shows that gas engines should be used to accelerate the transition by providing a short-term bridge to enable net zero and navigate the energy transition while balancing the intermittency of renewables until sustainable fuels are available at scale.

However, if Germany follows the slower pathway and reaches net-zero by 2045, it risks becoming reliant on gas as baseload power for much of the 2030s amid renewable expansion challenges that persist, potentially harming its ability to reach its climate goals. 

Creating the infrastructure to pivot to sustainable fuels is one of the greatest challenges facing the German system. The ability to convert existing capacity to run purely on hydrogen via hydrogen-ready power plants will be key to reaching net-zero by 2040 and unlocking the significant system-wide benefits on offer.

Jan Andersson, General Manager of Market Development in Germany, Wärtsilä Energy added: “To reach the 2040 target and unlock the greatest benefits, the most important thing that Germany can do is build renewables now. 19 GW is an ambitious target, but Germany can do it. History shows us that Germany has been able to achieve high levels of renewable buildout in previous years. It must now reach those levels consistently.

“Creating a clear plan which sets out the steps to net zero is essential. Renewable energy is inherently intermittent, so flexible energy capacity will play a vital role. While batteries provide effective short-term flexibility, gas is currently the only practical long-term option. If Germany is to unlock the greatest benefits from decarbonisation, it must have a clear plan to integrate sustainable fuel. From 2030, all new thermal capacity must run solely on hydrogen.”

Analysis of the last decade demonstrates that the rapid expansion of renewable energy is possible, and that renewables overtook coal and nuclear in generation. Previously, Germany has built large amounts of renewable capacity, including 8GW of solar PV in 2010 and 2011, 5.3 GW of onshore wind in 2017, and 2.5 GW of offshore wind in 2015.

The significant reductions in the cost of electricity demonstrated in the modelling are driven by the fact that renewables are far cheaper to run than coal or gas plants, even as coal still provides about a third of electricity in Germany. The initial capital investment is far outweighed by the ongoing operational expense of fossil fuel-based power.

As well as reducing emissions and costs, Germany’s rapid path to net-zero can also unlock a series of additional benefits. If coal is phased out by 2030 but capacity is not replaced by high levels of renewable energy, Germany risks becoming a significant energy importer, peaking at 162 TWh in 2035. The accelerated pathway would reduce imports by a third.

Likewise, more renewable energy will help to electrify district heating, meaning Germany can move away from carbon-intensive fuels sooner. If Germany follows the accelerated path, 57% of Germany’s heating could be electrified in 2045, compared to 10% under the slower plan.

Jan Andersson concluded: “The opportunities on offer are vast. Germany can provide the blueprint for net zero and galvanise an entire continent. Now is the time for the new government to seize the initiative.”

 

Related News

View more

Calgary electricity retailer urges government to scrap overhaul of power market

Alberta Capacity Market Overhaul faces scrutiny over electricity costs, reliability targets, investor certainty, and AESO design, as UCP reviews NDP reforms, renewables integration, and deregulated energy-only alternatives impacting generators, ratepayers, and future power price volatility.

 

Key Points

A shift paying generators for capacity and energy to improve reliability; critics warn of higher electricity costs.

✅ UCP reviewing NDP plan and subsidies amid market uncertainty

✅ AESO cites reliability needs as coal retires, renewables grow

✅ Critics predict overprocurement and premature launch cost spikes

 

Jason Kenney's government is facing renewed pressure to cancel a massive overhaul of Alberta's power market that one player says will needlessly spike costs by hundreds of millions of dollars, amid an electricity sector in profound change today.

Nick Clark, who owns the Calgary-based electricity retailer Spot Power, has sent the Alberta government an open letter urging it to walk away from the electricity market changes proposed by the former NDP government.

"How can you encourage new industry to open up when one of their raw material costs will increase so dramatically?" Clark said. "The capacity market will add more costs to the consumer and it will be a spiral downwards."

But NDP Leader Rachel Notley, whose government ushered in the changes, said fears over dramatic cost increases are unfounded.

"There are some players within the current electricity regime who have a vested interest in maintaining the current situation," Notley said

Kenney's UCP vowed during the recent election to review the current and proposed electricity market options, as the electricity market heads for a reshuffle, with plans to report on its findings within 90 days.

The party also promised to scrap subsidies for renewable power, while ensuring "a market-based electricity system" that emphasizes competition in Alberta's electricity market for consumers.

The New Democrats had opted to scrap the current deregulated power market — in place since the Klein era — after phasing out coal-fired generation and ushering in new renewable power as part of changes in how Alberta produces and pays for electricity under their climate change strategy.

The Alberta Electric System Operator, which oversees the grid, says the province will need new sources of electricity to replace shuttered coal plants and backstop wind and solar generators, while meeting new consumer demand.

After consulting with power companies and investors, the AESO concluded in late 2016 the electricity market couldn't attract enough investment to build the needed power generation under the current model.

The AESO said at the time investors were concerned their revenues would be uncertain once new plants are running. It recommended what's known as a capacity market, which compensates power generators for having the ability to produce electricity, even when they're not producing it.

In other words, producers would collect revenue for selling electricity into the grid and, separately, for having the capacity to produce power as a backstop, ensuring the lights stay on. Power generators would use this second source of income to help cover plant construction costs.

Clark said the complex system introduces unnecessary costs, which he believes would hurt consumers in the end. He said what's preventing investment in the power market is uncertainty over how the market will be structured in the future.

"What investors need to see in this market is price certainty, regulatory ease, and where the money they're putting into the marketplace is not at risk," he said.

"They can risk their own money, but if in fact the government comes in and changes the policy as it was doing, then money stayed away from the province."

Notley said a capacity market would not increase power bills but would avoid big price swings, with protections like a consumer price cap on power bills also debated, while bringing greener sources of energy into Alberta's grid.

"Moving back to the [deregulated] energy-only market would make a lot of money for a few people, and put consumers, both industrial and residential, at great risk."

Clark disagrees, citing Enmax's recent submissions to the Alberta Utilities Commission, in which the utility argues the proposed design of the capacity market is flawed.

In its submissions to the commission, which is considering the future of Alberta's power market, Enmax says the proposed system would overestimate the amount of generation capacity the province will need in the future. It says the calculation could result in Alberta procuring too much capacity.

The City of Calgary-owned utility says this could drive up costs by anywhere from $147 million to $849 million a year. It says a more conservative calculation of future electricity demand could avoid the extra expense.

An analysis by a Calgary energy consulting firm suggests a different feature of the proposed power market overhaul could also lead to a massive spike in costs.

EDC Associates, hired by the Consumers' Coalition of Alberta, argues the proposal to launch the new system in November 2021 may be premature, because it could bring in additional supplies of electricity before they're needed.

The consultant's report, also filed with the Alberta Utilities Commission, estimates the early launch date could require customers to pay 40 per cent more for electricity amid rising electricity prices in the province — potentially an extra $1.4 billion — in 2021/22.

"The target implementation date is politically driven by the previous government," said Duane Reid-Carlson, president of EDC Associates.

Reid-Carlson recommends delaying the launch date by several years and making another tweak: reducing the proposed target for system reliability, which would scale back the amount of power generation needed to backstop renewable sources.

"You could get a result in the capacity market that would give a similar cost to consumers that the [deregulated] energy-only market design would have done otherwise," he said.

"You could have a better risk profile associated with the capacity market that would serve consumers better through lower cost, lower price volatility, and it would serve generators better by giving them better access to capital at lower costs."

The UCP government did not respond to a request for comment.

 

Related News

View more

A new approach finds materials that can turn waste heat into electricity

Thermoelectric Materials convert waste heat into electricity via the Seebeck effect; quantum computations and semiconductors accelerate discovery, enabling clean energy, higher efficiency, and scalable heat-to-power conversion from abundant, non-toxic, cost-effective compounds.

 

Key Points

Thermoelectric materials turn waste heat into electricity via the Seebeck effect, improving energy efficiency.

✅ Convert waste heat to electricity via the Seebeck effect

✅ Quantum computations rapidly identify high-performance candidates

✅ Target efficient, low-thermal-conductivity, non-toxic, abundant compounds

 

The need to transition to clean energy is apparent, urgent and inescapable. We must limit Earth’s rising temperature to within 1.5 C to avoid the worst effects of climate change — an especially daunting challenge in the face of the steadily increasing global demand for energy and the need for reliable clean power, with concepts that can generate electricity at night now being explored worldwide.

Part of the answer is using energy more efficiently. More than 72 per cent of all energy produced worldwide is lost in the form of heat, and advances in turning thermal energy into electricity could recover some of it. For example, the engine in a car uses only about 30 per cent of the gasoline it burns to move the car. The remainder is dissipated as heat.

Recovering even a tiny fraction of that lost energy would have a tremendous impact on climate change. Thermoelectric materials, which convert wasted heat into useful electricity, can help, especially as researchers pursue low-cost heat-to-electricity materials for scalable deployment.

Until recently, the identification of these materials had been slow. My colleagues and I have used quantum computations — a computer-based modelling approach to predict materials’ properties — to speed up that process and identify more than 500 thermoelectric materials that could convert excess heat to electricity, and help improve energy efficiency.


Making great strides towards broad applications
The transformation of heat into electrical energy by thermoelectric materials is based on the “Seebeck effect.” In 1826, German physicist Thomas Johann Seebeck observed that exposing the ends of joined pieces of dissimilar metals to different temperatures generated a magnetic field, which was later recognized to be caused by an electric current.

Shortly after his discovery, metallic thermoelectric generators were fabricated to convert heat from gas burners into an electric current. But, as it turned out, metals exhibit only a low Seebeck effect — they are not very efficient at converting heat into electricity.

In 1929, the Russian scientist Abraham Ioffe revolutionized the field of thermoelectricity. He observed that semiconductors — materials whose ability to conduct electricity falls between that of metals (like copper) and insulators (like glass) — exhibit a significantly higher Seebeck effect than metals, boosting thermoelectric efficiency 40-fold, from 0.1 per cent to four per cent.

This discovery led to the development of the first widely used thermoelectric generator, the Russian lamp — a kerosene lamp that heated a thermoelectric material to power a radio.


Are we there yet?
Today, thermoelectric applications range from energy generation in space probes to cooling devices in portable refrigerators, and include emerging thin-film waste-heat harvesters for electronics as well. For example, space explorations are powered by radioisotope thermoelectric generators, converting the heat from naturally decaying plutonium into electricity. In the movie The Martian, for example, a box of plutonium saved the life of the character played by Matt Damon, by keeping him warm on Mars.

In the 2015 film, The Martian, astronaut Mark Watney (Matt Damon) digs up a buried thermoelectric generator to use the power source as a heater.

Despite this vast diversity of applications, wide-scale commercialization of thermoelectric materials is still limited by their low efficiency.

What’s holding them back? Two key factors must be considered: the conductive properties of the materials, and their ability to maintain a temperature difference, as seen in nighttime electricity from cold concepts, which makes it possible to generate electricity.

The best thermoelectric material would have the electronic properties of semiconductors and the poor heat conduction of glass. But this unique combination of properties is not found in naturally occurring materials. We have to engineer them, drawing on advances such as carbon nanotube energy harvesters to guide design choices.

Searching for a needle in a haystack
In the past decade, new strategies to engineer thermoelectric materials have emerged due to an enhanced understanding of their underlying physics. In a recent study in Nature Materials, researchers from Seoul National University, Aachen University and Northwestern University reported they had engineered a material called tin selenide with the highest thermoelectric performance to date, nearly twice that of 20 years ago. But it took them nearly a decade to optimize it.

To speed up the discovery process, my colleagues and I have used quantum calculations to search for new thermoelectric candidates with high efficiencies. We searched a database containing thousands of materials to look for those that would have high electronic qualities and low levels of heat conduction, based on their chemical and physical properties. These insights helped us find the best materials to synthesize and test, and calculate their thermoelectric efficiency.

We are almost at the point where thermoelectric materials can be widely applied, but first we need to develop much more efficient materials. With so many possibilities and variables, finding the way forward is like searching for a tiny needle in an enormous haystack.

Just as a metal detector can zero in on a needle in a haystack, quantum computations can accelerate the discovery of efficient thermoelectric materials. Such calculations can accurately predict electron and heat conduction (including the Seebeck effect) for thousands of materials and unveil the previously hidden and highly complex interactions between those properties, which can influence a material’s efficiency.

Large-scale applications will require themoelectric materials that are inexpensive, non-toxic and abundant. Lead and tellurium are found in today’s thermoelectric materials, but their cost and negative environmental impact make them good targets for replacement.

Quantum calculations can be applied in a way to search for specific sets of materials using parameters such as scarcity, cost and efficiency, and insights can even inform exploratory devices that generate electricity out of thin air in parallel fields. Although those calculations can reveal optimum thermoelectric materials, synthesizing the materials with the desired properties remains a challenge.

A multi-institutional effort involving government-run laboratories and universities in the United States, Canada and Europe has revealed more than 500 previously unexplored materials with high predicted thermoelectric efficiency. My colleagues and I are currently investigating the thermoelectric performance of those materials in experiments, and have already discovered new sources of high thermoelectric efficiency.

Those initial results strongly suggest that further quantum computations can pinpoint the most efficient combinations of materials to make clean energy from wasted heat and the avert the catastrophe that looms over our planet.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.