Alberta changing how it produces and pays for electricity


CSA Z463 Electrical Maintenance

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today

Alberta Capacity Market shifts from energy-only to capacity auctions, paying generators for available reserve to ensure grid reliability, reduce price volatility, support renewable energy integration, and attract investor confidence across Alberta's electricity sector.

 

Key Points

Alberta's capacity market pays generators to keep power ready, improving grid reliability and price stability.

✅ Pays generators to maintain reserve capacity via auctions

✅ Aims to cut price volatility and improve grid reliability

✅ Supports renewables and attracts long-term investment

 

Alberta Energy Minister Margaret McCuaig-Boyd said Wednesday the province is moving away from full deregulation to what is known as a capacity market, part of a market overhaul underway.

Power producers will be paid to build up capacity — even if it isn’t all needed — to ensure there is always enough electricity in reserve.

Alberta will switch to a “capacity” market by 2021, in which electricity generators such as gas-fired power stations, wind and solar farms are paid to keep capacity available to produce power when needed. Contracts for providing capacity will be awarded through an auction process under the proposed market changes now underway.

Right now, the province has an “energy-only” market, one of only two still left in North America, in which generators are paid wholesale market prices only for the electricity they produce. The other energy-only jurisdiction is Texas.

McCuaig-Boyd said the new structure will deliver more affordable prices over the long term for consumers, reduce volatility, enhance market competition and lure investors because of the stable revenue stream it provides.

A year ago, the NDP government introduced a climate plan in which it pledged to phase out coal emissions and ensure 30 per cent of Alberta’s emissions come from renewable sources by 2030.

Electricity prices are expected to rise as the capacity market is implemented, but no more than they would have in an energy-only market, according to the government.

Over the next 14 years, Alberta said it will need up to $25 billion in new investment in electricity generation to support the transition toward renewable sources of energy and meet its electricity needs.

The move to a new market structure was recommended by the Alberta Electrical Systems Operator, which oversees the province’s electricity system.

Enmax, a company that generates, distributes and sells energy in Alberta, urged the government, amid calls from Calgary retailers to scrap the overhaul, to make sure the consultation proces is “comprehensive, inclusive and transparent.”

In a statement to Global News, the company said:

“This process must engage all industry participants in a meaningful process to influence and shape the new market’s design. 

“As we said yesterday in response to the government’s announcement on the Regulated Rate Option (RRO), restructuring a complex electricity market demands full understanding, careful planning and proper consultation. There are many interconnected elements of the electricity system that must be considered in terms of how each component impacts others, and impacts the system as a whole.

“This ‘big picture’ system plan is key to ensuring the market can attract investment, and effectively, safely and reliably meet the energy needs of Albertans. We’ve all seen examples in other jurisdictions that have taken a piecemeal approach, and consumers have paid a significant price in the long term.”

“A well-designed and fairly implemented capacity market can deliver an affordable power supply for Albertans, reduce market price volatility, and provide certainty that generation capacity will be there when needed,” Brian Vaasjo, president and  CEO of Capital Power, said.

“We welcome a shift to a capacity market in Alberta,” Dawn Farrell, president and CEO of TransAlta said. “It will enhance our ability to make investments in existing and new generation to the benefit of customers and other stakeholders in the services we provide.”

Don MacIntyre, energy critic for the Opposition Wildrose party, says the changes are unnecessary, as Kenney’s influence over the sector grows, and he suggests all the risk will be transferred from power producers to consumers.

Source: The Canadian Press and Globe News

 

 

 

Related News

Why Is Georgia Importing So Much Electricity?

Georgia Electricity Imports October 2017 surged as hydropower output fell and thermal power plants underperformed; ESCO balanced demand via low-cost imports, mainly from Azerbaijan, amid rising tariffs, kWh consumption growth, and a widening generation-consumption gap.

 

Key Points

They mark a record import surge due to costly local generation, lower hydropower, ESCO balancing costs, and rising demand.

✅ Imports rose 832% YoY to 157 mln kWh, mainly from Azerbaijan

✅ TPP output fell despite capacity; only low-tariff plants ran

✅ Balancing price 13.8 tetri/kWh signaled costly domestic PPAs

 

In October 2017, Georgian power plants generated 828 mln. KWh of electricity, marginally up (+0.79%) compared to September. Following the traditional seasonal pattern and amid European concerns over dispatchable power shortages affecting markets, the share of electricity produced by renewable sources declined to 71% of total generation (87% in September), while thermal power generation’s share increased, accounting for 29% of total generation (compared to 13% in September). When we compare last October’s total generation with the total generation of October 2016, however, we observe an 8.7% decrease in total generation (in October 2016, total generation was 907 mln. kWh). The overall decline in generation with respect to the previous year is due to a simultaneous decline in both thermal power and hydro power generation. 

Consumption of electricity on the local market in the same period was 949 mln. kWh (+7% compared to October 2016, and +3% with respect to September 2017), and reflected global trends such as India's electricity growth in recent years. The gap between consumption and generation increased to 121 mln. kWh (15% of the amount generated in October), up from 100 mln. kWh in September. Even more importantly, the situation was radically different with respect to the prior year, when generation exceeded consumption.

The import figure for October was by far the highest from the last 12 years (since ESCO was established), occurring as Ukraine electricity exports resumed regionally, highlighting wider cross-border dynamics. In October 2017, Georgia imported 157 mln. kWh of electricity (for 5.2 ¢/kWh – 13 tetri/kWh). This constituted an 832% increase compared to October 2016, and is about 50% larger than the second largest import figure (104.2 mln. kWh in October 2014). Most of the October 2017 imports (99.6%) came from Azerbaijan, with the remaining 0.04% coming from Russia.

The main question that comes to mind when observing these statistics is: why did Georgia import so much? One might argue that this is just the result of a bad year for hydropower generation and increased demand. This argument, however, is not fully convincing. While it is true that hydropower generation declined and demand increased, the country’s excess demand could have been easily satisfied by its existing thermal power plants, even as imported coal volumes rose in regional markets. Instead of increasing, however, the electricity coming from thermal power plants declined as well. Therefore, that cannot be the reason, and another must be found. The first that comes to mind is that importing electricity may have been cheaper than buying it from local TPPs, or from other generators selling electricity to ESCO under power purchase agreements (PPAs). We can test the first part of this hypothesis by comparing the average price of imported electricity to the price ceiling on the tariff that TPPs can charge for the electricity they sell. Looking at the trade statistics from Geostat, the average price for imported electricity in October 2017 remained stable with respect to the same month of the previous year, at 5.2 ¢ (13 tetri) per kWh. Only two thermal power plants (Gardabani and Mtkvari) had a price ceiling below 13 tetri per kWh. Observing the electricity balance of Georgia, we see that indeed more than 98% of the electricity generated by TPPs in October 2017 was generated by those two power plants.

What about other potential sources of electricity amid Central Asia's power shortages at the time? To answer this question, we can use the information derived from the weighted average price of balancing electricity. Why balancing electricity? Because it allows us to reconstruct the costs the market operator (ESCO) faced during the month of October to make sure demand and supply were balanced, and it allows us to gain an insight about the price of electricity sold through PPAs.

ESCO reports that the weighted average price of balancing electricity in October 2017 was 13.8 tetri/kWh, (25% higher than in October 2016, when it was below the average weighted cost of imports – 11 vs. 13 – and when the quantity of imported electricity was substantially smaller). Knowing that in October 2017, 61% of balancing electricity came from imports, while 39% came from hydropower and wind power plants selling electricity to ESCO under their PPAs, we can deduce that in this case, internal generation was (on average) also substantially more expensive than imports. Therefore, the high cost of internally generated electricity, rather than the technical impossibility of generating enough electricity to satisfy electricity demand, indeed appears to be one the main reasons why electricity imports spiked in October 2017.

 

Related News

View more

Kaspersky Lab Discovers Russian Hacker Infrastructure

Crouching Yeti APT targets energy infrastructure with watering-hole attacks, compromising servers to steal credentials and stage intrusions; Kaspersky Lab links the Energetic Bear group to ICS threats across Russia, US, Europe, and Turkey.

 

Key Points

Crouching Yeti APT, aka Energetic Bear, is a threat group that targets energy firms using watering-hole attacks.

✅ Targets energy infrastructure via watering-hole compromises

✅ Uses open-source tools and backdoored sshd for persistence

✅ Scans global servers to stage intrusions and steal credentials

 

A hacker collective known for attacking industrial companies around the world have had some of their infrastructure identified by Russian security specialists.

Kaspersky Lab said that it has discovered a number of servers compromised by the group, belonging to different organisations based in Russia, the US, and Turkey, as well as European countries.

The Russian-speaking hackers, known as Crouching Yeti or Energetic Bear, mostly focus on energy facilities, as seen in reports of infiltration of the U.S. power grid targeting critical infrastructure, for the main purpose of stealing valuable data from victim systems.

 

Hacked servers

Crouching Yeti is described as an advanced persistent threat (APT) group that Kaspersky Lab has been tracking since 2010.

#google#

Kaspersky Lab said that the servers it has compromised are not just limited to industrial companies. The servers were hit in 2016 and 2017 with different intentions. Some were compromised to gain access to other resources or to be used as intermediaries to conduct attacks on other resources.

Others, including those hosting Russian websites, were used as watering holes.

It is a common tactic for Crouching Yeti to utilise watering hole attacks where the attackers inject websites with a link redirecting visitors to a malicious server.

“In the process of analysing infected servers, researchers identified numerous websites and servers used by organisations in Russia, US, Europe, Asia and Latin America that the attackers had scanned with various tools, possibly to find a server that could be used to establish a foothold for hosting the attackers’ tools and to subsequently develop an attack,” said the security specialists in a blog posting.

“The range of websites and servers that captured the attention of the intruders is extensive,” the firm said. “Kaspersky Lab researchers found that the attackers had scanned numerous websites of different types, including online stores and services, public organisations, NGOs, manufacturing, etc.

Kaspersky Lab said that the hackers used publicly available malicious tools, designed for analysing servers, and for seeking out and collecting information. The researchers also found a modified sshd file with a preinstalled backdoor. This was used to replace the original file and could be authorised with a ‘master password’.

“Crouching Yeti is a notorious Russian-speaking group that has been active for many years and is still successfully targeting industrial organisations through watering hole attacks, among other techniques,” explained Vladimir Dashchenko, head of vulnerability research group at Kaspersky Lab ICS CERT.

 

Russian government?

“Our findings show that the group compromised servers not only for establishing watering holes, but also for further scanning, and they actively used open-sourced tools that made it much harder to identify them afterwards,” he said.

“The group’s activities, such as initial data collection, the theft of authentication data, and the scanning of resources, are used to launch further attacks,” said Dashchenko. “The diversity of infected servers and scanned resources suggests the group may operate in the interests of the third parties.”

This may well tie into a similar conclusion from a rival security vendor.

In 2014 CrowdStrike claimed that the ‘Energetic Bear’ group was also tracked in Symantec's Dragonfly research and had been hacking foreign companies on behalf of the Russian state.

The security vendor had said the group had been carrying out attacks on foreign companies since 2012, with reports of breaches at U.S. power plants that underscored the campaign, and there was evidence that these operations were sanctioned by the Russian government.

Last month the United States for the first time publicly accused Russia in a condemnation of Russian grid hacking of attacks against the American power grid.

Symantec meanwhile warned last year of a resurgence in cyber attacks on European and US energy companies, including reports of access to U.S. utility control rooms that could result in widespread power outages.

And last July the UK’s National Cyber Security Centre (NCSC) acknowledged it was investigating a broad wave of attacks on companies in the British energy and manufacturing sectors.

 

Related News

View more

Manitoba Hydro hikes face opposition as hearings begin

Manitoba Hydro rate hikes face public hearings over electricity rates, utility bills, and debt, with impacts on low-income households, Indigenous communities, and Winnipeg services amid credit rating pressure and rising energy costs.

 

Key Points

Manitoba Hydro seeks 7.9% annual increases to stabilize finances and debt, impacting electricity costs for households.

✅ Proposed hikes: 7.9% yearly through 2023/24

✅ Driven by debt, credit rating declines, rising interest

✅ Disproportionate impact on low-income and Indigenous communities

 

Hearings began Monday into Manitoba Hydro’s request for consecutive annual rate hikes of 7.9 per cent.  The crown corporation is asking for the steep hikes to commence April 1, 2018.

The increases would continue through 2023/2024, under a multi-year rate plan before dropping to what Hydro calls “sustainable” levels.

Patti Ramage, legal counsel for Hydro, said while she understands no one welcomes the “exceptional” rate increases, the company is dealing with exceptional circumstances.

It’s the largest rate increase Hydro has ever asked for, though a scaled-back increase was discussed later, saying rising debt and declining credit ratings are affecting its financial stability.

President and CEO Kelvin Shepherd said Hydro is borrowing money to fund its interest payments, and acknowledged that isn’t an effective business model.

Hydro’s application states that it will be spending up to 63 per cent of its revenue on paying financial expenses if the current request for rate hikes is not approved.

If it does get the increase it wants, that number could shrink to 45 per cent – which Ramage says is still quite high, but preferable to the alternative.

She cited the need to take immediate action to fix Hydro’s finances instead of simply hoping for the best.

“The worst thing we can do is defer action… that’s why we need to get this right,” Ramage said.

A number of intervenors presented varying responses to Hydro’s push for increased rates, with many focusing on how the hikes would affect Manitobans with lower incomes.

Senwung Luk spoke on behalf of the Assembly of Manitoba Chiefs, and said the proposed rates would hit First Nations reserves particularly hard.

He noted that 44.2 per cent of housing on reserves in the province needs significant improvement, which means electricity use tends to be higher to compensate for the lower quality of infrastructure.

Luk says this problem is compounded by the higher rates of poverty in Indigenous populations, with 76 per cent of children on reserves in Manitoba living below the poverty line.

If the increase goes forward, he said the AMC hopes to see a reduced rate for those living on reserves, despite a recent appeal court ruling on such pricing.

Byron Williams, speaking on behalf of the Consumers Coalition, said the 7.9 per cent increase unreasonably favours the interests of Hydro, and is unjustly biased against virtually everyone else.

In Saskatchewan, the NDP criticized an SaskPower 8 per cent rate hike as unfair to customers, highlighting regional concerns.

Williams said customers using electric space heating would be more heavily targeted by the rate increase, facing an extra $13.14 a month as opposed to the $6.88 that would be tacked onto the bills of those not using electric space heating.

Williams also called Hydro’s financial forecasts unreliable, bringing the 7.9 per cent figure into question.

Lawyer George Orle, speaking for the Manitoba Keewatinowi Okimakanak, said the proposed rate hikes would “make a mockery” of the sacrifices made by First Nations across the province, given that so much of Hydro’s infrastructure is on Indigenous land.

The city of Winnipeg also spoke out against the jump, saying property taxes could rise or services could be cut if the hikes go ahead to compensate for increased, unsustainable electricity costs.

In British Columbia, a BC Hydro 3 per cent increase also moved forward, drawing attention to affordability.

A common theme at the hearing was that Hydro’s request was not backed by facts, and that it was heading towards fear-mongering.

Manitoba Hydro’s CEO begged to differ as he plead his case during the first hearing of a process that is expected to take 10 weeks.

 

Related News

View more

Americans Keep Using Less and Less Electricity

U.S. Electricity Demand Decoupling signals GDP growth without higher load, driven by energy efficiency, LED adoption, services-led output, and rising renewables integration with the grid, plus EV charging and battery storage supporting decarbonization.

 

Key Points

GDP grows as electricity use stays flat, driven by efficiency, renewables, and a shift toward services and output.

✅ LEDs and codes cut residential and commercial load intensity.

✅ Wind, solar, and gas gain share as coal and nuclear struggle.

✅ EVs and storage can grow load and enable grid decarbonization.

 

By Justin Fox

Economic growth picked up a little in the U.S. in 2017. But electricity use fell, with electricity sales projections continuing to decline, according to data released recently by the Energy Information Administration. It's now been basically flat for more than a decade:


 

Measured on a per-capita basis, electricity use is in clear decline, and is already back to the levels of the mid-1990s.

 


 

Sources: U.S. Energy Information Administration, U.S. Bureau of Economic Analysis

*Includes small-scale solar generation from 2014 onward

 

I constructed these charts to go all the way back to 1949 in part because I can (that's how far back the EIA data series goes) but also because it makes clear what a momentous change this is. Electricity use rose and rose and rose and then ... it didn't anymore.

Slower economic growth since 2007 has been part of the reason, but the 2017 numbers make clear that higher gross domestic product no longer necessarily requires more electricity, although the Iron Law of Climate is often cited to suggest rising energy use with economic growth. I wrote a column last year about this big shift, and there's not a whole lot new to say about what's causing it: mainly increased energy efficiency (driven to a remarkable extent by the rise of LED light bulbs), and the continuing migration of economic activity away from making tangible things and toward providing services and virtual products such as games and binge-watchable TV series (that are themselves consumed on ever-more-energy-efficient electronic devices).

What's worth going over, though, is what this means for those in the business of generating electricity. The Donald Trump administration has made saving coal-fired electric plants a big priority; the struggles of nuclear power plants have sparked concern from multiple quarters. Meanwhile, U.S. natural gas production has grown by more than 40 percent since 2007, thanks to hydraulic fracturing and other new drilling techniques, while wind and solar generation keep making big gains in cost and market share. And this is all happening within the context of a no-growth electricity market.

In China, a mystery in China's electricity data has complicated global comparisons.

 

Here are the five main sources of electric power in the U.S.:


 

The big story over the past decade has been coal and natural gas trading places as the top fuel for electricity generation. Over the past year and a half coal regained some of that lost ground as natural gas prices rose from the lows of early 2016. But with overall electricity use flat and production from wind and solar on the rise, that hasn't translated into big increases in coal generation overall.

Oh, and about solar. It's only a major factor in a few states (California especially), so it doesn't make the top five. But it's definitely on the rise.

 

 

What happens next? For power generators, the best bet for breaking out of the current no-growth pattern is to electrify more of the U.S. economy, especially transportation. A big part of the attraction of electric cars and trucks for policy-makers and others is their potential to be emissions-free. But they're only really emissions-free if the electricity used to charge them is generated in an emissions-free manner -- creating a pretty strong business case for continuing "decarbonization" of the electric industry. It's conceivable that electric car batteries could even assist in that decarbonization by storing the intermittent power generated by wind and solar and delivering it back onto the grid when needed.

I don't know exactly how all this will play out. Nobody does. But the business of generating electricity isn't going back to its pre-2008 normal. 

 

Related News

View more

The Rise of Data Centers in Alberta

Alberta Data Centers fuel the digital economy with cloud computing, AI, and streaming, leveraging renewable energy and low-cost power; yet grid capacity, sustainability, efficient cooling, and regulatory frameworks remain critical considerations for reliable growth.

 

Key Points

Alberta facilities for cloud, AI, and digital services, balancing energy demand, renewable power, and grid reliability.

✅ Low electricity costs and renewables attract hyperscale builds

✅ Grid upgrades needed to meet rising, 24/7 workloads and cooling

✅ Workforce training aligns with IT, HVAC, and electrical roles

 

As Alberta continues to evolve its energy landscape, the recent surge in data center projects is making headlines. With companies investing heavily in this sector, Alberta is positioning itself as a key player in the digital economy. This trend, however, brings both opportunities and challenges that need careful consideration.

The Digital Economy Boom

Data centers are essential for supporting the growing demands of the digital economy, which includes everything from cloud computing to streaming services and artificial intelligence. As businesses increasingly rely on digital infrastructure, the need for reliable and efficient data centers has skyrocketed. Alberta has become an attractive destination for these facilities due to its relatively low electricity costs, abundant renewable energy resources, and favorable regulatory environment, according to a 2023 clean grids outlook that highlighted the province.

The influx of major tech companies establishing data centers in Alberta not only promises job creation but also contributes to the provincial economy. With investments pouring in, local businesses may see increased opportunities for partnerships, supplies, and services, ultimately benefiting the broader economic landscape, though proposed market changes could influence procurement and siting decisions.

Energy Demand and Infrastructure

While the growth of data centers can drive economic benefits, it also raises important questions about energy demand and infrastructure capacity, questions that have intensified since Kenney-era electricity changes in the sector. Data centers are energy-intensive, often requiring significant amounts of electricity to operate and cool their servers. As these facilities multiply, they will place additional pressure on Alberta's power grid.

The province has made strides in transitioning to renewable energy sources, with a defined path to clean electricity that aligns well with the goals of many data center operators seeking to reduce their carbon footprint. However, the challenge lies in ensuring that the electricity grid can meet the increasing demand without compromising reliability. The integration of more renewable energy into the grid requires careful planning and investment in infrastructure to handle variable supply and maintain a stable energy flow.

Environmental Concerns

The environmental implications of expanding data centers are also a point of concern. While many tech companies prioritize sustainability and aim for carbon neutrality, the reality is that increased energy consumption can contribute to greenhouse gas emissions if not managed properly, especially when regional export restrictions constrain low-carbon power flows. Alberta’s reliance on fossil fuels for a significant portion of its energy supply raises questions about how these data centers will impact the province's climate goals.

To address these concerns, there is a need for policies that encourage the use of renewable energy sources specifically for data center operations. Incentives for companies to invest in green technologies, such as energy-efficient cooling systems or on-site renewable energy generation, could help mitigate the environmental impact.

Workforce Development

Another critical aspect of this data center boom is the potential for job creation. Data centers require a range of skilled workers, from IT professionals to engineers and maintenance staff. However, there is a pressing need for workforce development initiatives to ensure that Albertans are equipped with the necessary skills to fill these roles.

Educational institutions and training programs must adapt to the changing demands of the job market. Collaborations between tech companies and local colleges can foster specialized training programs that prepare workers for careers in this evolving sector. By investing in workforce development, Alberta can maximize the benefits of data center growth while ensuring that its residents are prepared for the jobs of the future.

The Future of Alberta's Data Center Landscape

Looking ahead, Alberta’s data center landscape is poised for continued growth. The province's commitment to diversifying its economy, coupled with its abundant energy resources, makes it an appealing choice for tech companies. However, as the industry expands, careful consideration must be given to energy management, environmental impact, and workforce readiness, especially as Alberta changes how it produces and pays for electricity.

Regulatory frameworks will play a crucial role in shaping the future of data centers in Alberta, as the province pursues a market overhaul that could affect costs and reliability. Policymakers will need to balance the interests of businesses, environmental concerns, and the need for a reliable energy supply. By creating a supportive environment for innovation while addressing these challenges, Alberta can emerge as a leader in the digital economy.

The rise of data centers in Alberta marks an exciting chapter in the province's economic evolution. With the potential for job creation, technological advancement, and economic diversification, the opportunities are significant. However, it is essential to navigate the associated challenges thoughtfully. By prioritizing sustainability, infrastructure investment, and workforce development, Alberta can harness the full potential of this burgeoning sector, positioning itself as a key player in the global digital landscape.

 

Related News

View more

Massachusetts stirs controversy with solar demand charge, TOU pricing cut

Massachusetts Solar Net Metering faces new demand charges and elimination of residential time-of-use rates under an MDPU order, as Eversource cites grid cost fairness while clean energy advocates warn of impacts on distributed solar growth.

 

Key Points

Policy letting solar customers net out usage with exports; MDPU now adds demand charges and ends TOU rates.

✅ New residential solar demand charges start Dec 31, 2018.

✅ Optional residential TOU rates eliminated by MDPU order.

✅ Eversource cites grid cost fairness; advocates warn slower solar.

 

A recent Massachusetts Department of Public Utilities' rate case order changes the way solar net metering works and eliminates optional residential time-of-use rates, stirring controversy between clean energy advocates and utility Eversource and potential consumer backlash over rate design.

"There is a lot of room to talk about what net-energy metering should look like, but a demand charge is an unfair way to charge customers," Mark LeBel, staff attorney at non-profit clean energy advocacy organization Acadia Center, said in a Tuesday phone call. Acadia Center is an intervenor in the rate case and opposed the changes.

The Friday MDPU order implements demand charges for new residential solar projects starting on December 31, 2018. Such charges are based on the highest peak hourly consumption over the course of a month, regardless of what time the power is consumed.

Eversource contends the demand charge will more fairly distribute the costs of maintaining the local power grid, echoing minimum charge proposals aimed at low-usage customers. Net metering is often criticized for not evenly distributing those costs, which are effectively subsidized by non-net-metered customers.

"What the demand charge will do is eliminate, to the extent possible, the unfair cross subsidization by non-net-metered customers that currently exists with rates that only have kilowatt-hour charges and no kilowatt demand, Mike Durand, Eversource spokesman, said in a Tuesday email. 

"For net metered facilities that use little kilowatt-hours, a demand charge is a way to charge them for their fair share of the cost of the significant maintenance and upgrade work we do on the local grid every day," Durand said. "Currently, their neighbors are paying more than their share of those costs."

It will not affect existing facilities, Durand said, only those installed after December 31, 2018.

Solar advocates are not enthusiastic about the change and see it slowing the growth of solar power, particularly residential rooftop solar, in the state.

"This is a terrible outcome for the future of solar in Massachusetts," Nathan Phelps, program manager of distributed generation and regulatory policy at solar power advocacy group Vote Solar, said in a Tuesday phone call.

"It's very inconsistent with DPU precedent and numerous pieces of legislation passed in the last 10 years," Phelps said. "The commonwealth has passed several pieces of legislation that are supportive of renewable energy and solar power. I don't know what the DPU was thinking."

 

TIME-OF-USE PRICING ELIMINATED

It does not matter when during the month peak demand occurs -- which could be during the week in the evening -- customers will be charged the same as they would on a hot summer day, LeBel said. Because an individual customer's peak usage does not necessarily correspond to peak demand across the utility's system, consumers are not being provided incentives to reduce energy usage in a way that could benefit the power system, Acadia Center said in a Tuesday statement.

However, Eversource maintains that residential customer distribution peaks based on customer load profiles do not align with basic service peak periods, which are based on Independent System Operator New England's peaks that reflect market-based pricing, even as a Connecticut market overhaul advances in the region, according to the MDPU order.

"The residential Time of Use rates we're eliminating are obsolete, having been designed decades ago when we were responsible for both the generation and the delivery of electricity," Eversource's Durand said.

"We are no longer in the generation business, having divested of our generation assets in Massachusetts in compliance with the law that restructured of our industry back in the late 1990s. Time Varying pricing is best used with generation rates, where the price for electricity changes based on time of day and electricity demand and can significantly alter electric bills for households," he said.

Additionally, only 0.02% of residential customers take service on Eversource's TOU rates and it would be difficult for residential customers to avoid peak period rates because they do not have the ability to shift or reduce load, according to the order.

"The Department allowed the Companies' proposal to eliminate their optional residential TOU rates in order to consolidate and align their residential rates and tariffs to better achieve the rate structure goal of simplicity," the MDPU said in the order.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified