Where the growth is: Infrastructure

By Frank E. Holmes, Financial Planning


Electrical Testing & Commissioning of Power Systems

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today
U.S. investors have increasingly bought into the idea that they should have overseas exposure as a way to diversify their portfolios. Well, the start to 2008 has done its best to bash that thinking — the subprime debt and derivatives crisis that has wreaked so much havoc at home has also buckled the knees of international markets.

So what's a global-minded investor to do? Before answering that, allow me a few observations:

• An estimated 500 million rural Chinese are expected to migrate to cities and towns during the next few decades, and India's urban population will double.

• Saudi Arabia is no longer content to pump massive quantities of crude oil out of the ground and ship it elsewhere for processing into more lucrative products.

• The American Society of Civil Engineers estimates that the U.S. would have to lay out more than $1 trillion in the next few years to bring our nation's highways, airports, water systems and other facilities into good repair.

The common thread among these three points is that they all relate to infrastructure. The scale of spending under way or envisioned both here and abroad is enormous. That's why I believe infrastructure will be one of the best global investment opportunities for years to come.

The Organization for Economic Cooperation and Development, better known as OECD, estimates that the world will require more than $1.8 trillion per year in infrastructure investment in the coming decades — an annual tab that the public sector can't be expected to pick up in full. That's similar to a recent figure from the consulting firm Booz Allen Hamilton, which pegs the cost of modernizing urban water, electricity and transportation systems over the next 25 years at $41 trillion — a figure roughly equal to the 2006 market capitalization of all shares held in all stock markets in the world.

For emerging markets like China, India and the Middle East, the play is the massive build-out of infrastructure to support future growth ambitions. For North America, Western Europe and the rest of the developed world, there is a pressing need to repair or replace aging roads, bridges and the like.

You get a vague sense of this need when you're dodging potholes or cursing a "no service available" message on your mobile phone. But things came into clearer focus last summer when a highway bridge in Minneapolis collapsed into the Mississippi River, killing 13 people and injuring more than 100 others. "A bridge in America shouldn't just fall down," U.S. Sen. Amy Klobuchar of Minnesota said at the time, and she's right. But that's how it is with infrastructure: People really don't think much about it until something falls down.

Before the Minneapolis bridge, there was Hurricane Katrina. The worst property damage and hundreds of fatalities occurred when the swollen Mississippi River broke open sections of the levee system protecting New Orleans. On a less-tragic note, Chicago's crumbling mass transit system has been called the biggest hurdle to its bid for the 2016 Summer Olympics.

Infirm infrastructure is hardly unique to the United States. A recent study in Canada found that the country's roadways, sewer systems, wastewater treatment facilities and bridges were either at or had passed the halfway point of their useful life. A drought in London a few years back exposed a network of leak-riddled water pipes under the Thames that dated back to Queen Victoria's reign, and in Russia and Eastern Europe, the post-Communist period has been one of growth and modernization.

Among developing nations, much of the demand for infrastructure boils down to a pair of key trends: population growth and urbanization. The global population is expected to grow at an average rate of 1.6% annually, according to the United Nations. At that rate, by 2030 there will be 8.3 billion people on Earth, with six out of every 10 living in cities.

More than 80% of the planet's people live in the emerging world, the giants being China and India. In sheer numbers, China's and India's combined populations comprise 40% of humanity and their economies are growing around 10% annually.

I've already mentioned how the rural Chinese are flocking to cities in search of economic opportunities. The same phenomenon is true of India: an estimated 540 million Indians will be urban dwellers in 2025, roughly double today's levels. Like the upwardly mobile in the West, these urban dwellers will expect better transportation and communication services, so they can remain connected to the countryside.

Many of the top government and business leaders in China and India were educated at U.S. universities and have brought the "American dream" back to their homeland. China's current five-year plan, which runs through 2010, calls for spending $200 billion for airports and subways, $175 billion for railroads and $80 billion for highways, and $70 billion for water and wastewater treatment. Morgan Stanley estimates that China will need $346 billion for electricity generation and distribution between 2006 and 2010.

India, which significantly lags China in its current state of development, announced in late 2007 that it intends to spend 8% of its GDP — that is, $500 billion — on infrastructure over the next five years in order to hit its desired economic growth rate of 10%. The country is plagued by power shortages, a dearth of multilane highways, and antiquated and overwhelmed ports.

I went to India recently and found many of the same frustrations as a decade ago. The airport in New Delhi remains dirty and disorganized. In Bangalore, the country's high-tech capital, a new airport is opening this year, but the roads leading there are so congested that travelers must plan on a two- to three-hour drive to travel the 20 miles from downtown.

India's leaders can see the cost of these shortcomings by looking east to China, where the roads and airports are modern and efficient. Tens of billions of dollars in direct foreign investment pour into China annually, while India struggles to persuade potential investors to buy into the country's future.

Over the coming years, spending by the Gulf countries is expected to exceed that of India, even though their total population is just a small fraction of India's billion-plus one. Oil prices around $100 a barrel have created a mind-boggling revenue stream. Unlike during previous oil booms, Gulf nations are investing those petrodollars in their own infrastructure this time.

Of course, Dubai is the world's poster child for infrastructure, with its lavish and imaginative projects, including what is expected to be the world's tallest building, and manmade islands in the shape of the world's continents. Less well known is what is happening in Saudi Arabia: A half-dozen "economic cities" are being built from scratch as part of a government plan to attract foreign capital and to capitalize on its location between Europe and Asia.

Many companies will be involved in this work, including heavy-equipment makers, cement suppliers, steel manufacturers, utilities, and engineering firms. On a broader level, there will be continued strong demand for copper, steel and other commodities.

Governmental involvement is what separates the infrastructure build-out from regular construction activity, and I believe the political will exists to support long-term infrastructure creation worldwide, regardless of short-term economic conditions. We have spoken to many companies that agree with this outlook. They are upgrading their capacity to participate in both public-sector and private projects. Leaders of emerging nations acknowledge that future economic growth in their countries depends directly on infrastructure improvements. A similar argument can be applied to the United States and other developed markets.

Related News

Electricity prices may go up by 15 per cent

Jersey Electricity Standby Charge proposes a grid-backup fee for commercial self-generators of renewable energy, with a review delaying implementation; potential tariff impacts include 10-15 percent price rises, cost recovery, and network reliability.

 

Key Points

A grid-backup fee for Jersey self-generating businesses to share network costs fairly and curb electricity price rises.

✅ Applies to commercial self-generation using renewables or not

✅ Excludes full exporters and pre-charge installations

✅ Aims to recover grid costs and avoid 10-15% price rises

 

Electricity prices could rise by ten to 15 per cent if a standby charge for some commercial customers is not implemented, the chief executive of Jersey Electricity has warned.

Jersey Electricity has proposed extending a monthly fee to commercial customers who generate their own power through renewable means but still wish to be connected to Jersey’s grid as a back-up, echoing Ontario energy storage efforts to shore up reliability.

The States recently unanimously backed a proposal lodged by Deputy Carolyn Labey to delay administering the levy until a review could be carried out, as seen in the UK grid's net-zero transformation debates influencing policy. The charge, was due to be implemented next month but will now not be introduced until May, or later if the review has not concluded.

But Chris Ambler, JE chief executive, warned that failing to implement the standby charge could lead to additional costs for customers.

Some of JE’s commercial customers have already been charged a standby fee after generating their own power through non-renewable means.

The charge does not apply to businesses which export all of their electricity back into the system as part of a buy-back scheme or those which install self-generation facilities before the charge is implemented.

Deputy Labey argued that the Island had done ‘absolutely nothing’ to support the use of renewable energies and instead were discouraging locally generated power by allowing JE to set a standby charge.

She added that she was pleased that the Council of Ministers had already starting reviewing the charges but the debate needed to go ahead to ensure the work continued after the May election.

During a States debate last month, she said: ‘It is increasingly concerning that we, as an island in the 21st century, are happy for our electricity to be provided to us by an unregulated, publicly listed for-profit company with a monopoly on energy.

‘I also think that introducing a charge on renewables at a time when the world is experiencing a revolution in renewable energies, including offshore vessel charging solutions, which are becoming increasingly economic, is something that needs to be investigated.

‘Jersey should be looking to diversify our electricity production and supply, to help protect us from price and currency fluctuations and to ensure that we, as an island, receive the best deal possible for Islanders.’

Mr Ambler said that any price increase would be dependent on the future take-up and use of renewable-energy technology in Jersey.

He said: ‘The cost impact would not be significant in the short term but in the long term it could be significant. I think that we are obliged to let our customers know that.

‘It is very difficult to assess but if we are not able to levy a fair charge, then, as electricity shortages in Canada have shown, we could see prices rise by ten to 15 per cent over time.’

Mr Ambler added that his company was in favour of the use of renewable energy, with a third of the company’s electricity being generated by hydroelectric sources, but that the costs of implementing it needed to be fairly distributed, given how big battery rule changes can affect project viability elsewhere in the market.

And he said that, while it was difficult to quantify how much could be lost if the standby charge was not implemented, it could cost the company over £10 million.

‘In 2014, we only increased our prices by one per cent,’ he said. ‘We are reviewing our prices at the moment but if we did put an increase in place it would be modest and it would not be linked to the standby charge.’

 

Related News

View more

Coronavirus could stall a third of new U.S. utility solar this year: report

U.S. Utility-Scale Solar Delays driven by the coronavirus pandemic threaten construction timelines, supply chains, and financing, with interconnection and commissioning setbacks, module sourcing risks in Southeast Asia, and tax credit deadline pressures impacting project delivery.

 

Key Points

Setbacks to large U.S. solar builds from COVID-19 impacting construction, supply, financing, and permitting.

✅ Construction, interconnection, commissioning site visits delayed

✅ Supply chain risks for modules from Southeast Asia

✅ Tax credit deadline extensions sought by developers

 

About 5 gigawatts (GW) of big U.S. solar energy projects, enough to power nearly 1 million homes, could suffer delays this year if construction is halted for months due to the coronavirus pandemic, as the Covid-19 crisis hits renewables across the sector, according to a report published on Wednesday.

The forecast, a worst-case scenario laid out in an analysis by energy research firm Wood Mackenzie, would amount to about a third of the utility-scale solar capacity expected to be installed in the United States this year, even as US solar and wind growth continues under favorable plans.

The report comes two weeks after the head of the top U.S. solar trade group called the coronavirus pandemic (as solar jobs decline nationwide) "a crisis here" for the industry. Solar and wind companies are pleading with Congress to extend deadlines for projects to qualify for sunsetting federal tax credits.

Even the firm’s best-case scenario would result in substantial delays, mirroring concerns that wind investments at risk across the industry. With up to four weeks of disruption, the outbreak will push out 2 GW of projects, or enough to power about 380,000 homes. Before factoring in the impact of the coronavirus, Wood Mackenzie had forecast 14.7 GW of utility-scale solar projects would be installed this year.

In its report, the firm said the projects are unlikely to be canceled outright. Rather, they will be pushed into the second half of 2020 or 2021. The analysis assumes that virus-related disruptions subside by the end of the third quarter.

Mid-stage projects that still have to secure financing and receive supplies are at the highest risk, Wood Mackenzie analyst Colin Smith said in an interview, adding that it was too soon to know whether the pandemic would end up altering long-term electricity demand and therefore utility procurement plans, where policy shifts such as an ITC extension could reshape priorities.

Currently, restricted travel is the most likely cause of project delays, the report said. Developers expect delays in physical site visits for interconnection and commissioning, and workers have had difficulty reaching remote construction sites.

For earlier-stage projects, municipal offices that process permits are closed and in-person meetings between developers and landowners or local officials have slowed down.

Most solar construction is proceeding despite stay at home orders in many states because it is considered critical infrastructure, and long-term proposals like a tenfold increase in solar could reshape the outlook, the report said, adding that “that could change with time.”

Risks to supplies of solar modules include potential manufacturing shutdowns in key producing nations in Southeast Asia such as Malaysia, Vietnam and Thailand. Thus far, solar module production has been identified as an essential business and has been allowed to continue.

 

Related News

View more

BC residents split on going nuclear for electricity generation: survey

BC Energy Debate: Nuclear Power and LNG divides British Columbia, as a new survey weighs zero-emission clean energy, hydroelectric capacity, the Site C dam, EV mandates, energy security, rising costs, and blackout risks.

 

Key Points

A BC-wide debate on power choices balancing nuclear, LNG, hydro, costs, climate goals, EVs, and grid reliability.

✅ Survey: 43% support nuclear, 40% oppose in BC

✅ 55% back LNG expansion, led by Southern BC

✅ Hydro at 90%; Site C adds 1,100 MW by 2025

 

There is a long-term need to produce more electricity to meet population and economic growth needs and, in particular, create new clean energy sources, with two new BC generating stations recently commissioned contributing to capacity.

Increasingly, in the worldwide discourse on climate change, nuclear power plants are being touted as a zero-emission clean energy source, with Ontario exploring large-scale nuclear to expand capacity, and a key solution towards meeting reduced emissions goals. New technological advancements could make nuclear power far safer than existing plant designs.

When queried on whether British Columbia should support nuclear power for electricity generation, respondents in a new province-wide survey by Research Co. were split, with 43% in favour and 40% against.

Levels of support reached 46% in Metro Vancouver, 41% in the Fraser Valley, 44% in Southern BC, 39% in Northern BC, and 36% on Vancouver Island.

The closest nuclear power plant to BC is the Columbia Generating Station, located in southern Washington State.

The safe use of nuclear power came to the forefront following the 2011 Fukushima nuclear disaster when the most powerful earthquake ever recorded in Japan triggered a large tsunami that damaged the plant’s emergency generators. Japan subsequently shut off many of its nuclear power plants and increased its reliance on fossil fuel imports, but in recent years there has been a policy reversal to restart shuttered nuclear plants to provide the nation with improved energy security.

Over the past decade, Germany has also been undergoing a transition away from nuclear power. But in an effort to replace Russian natural gas, Germany is now using more coal for power generation than ever before in decades, while Ontario’s electricity outlook suggests a shift to a dirtier mix, and it is looking to expand its use of liquefied natural gas (LNG).

Last summer, German chancellor Olaf Scholz told the CBC he wants Canada to increase its shipments of LNG gas to Europe. LNG, which is greener compared to coal and oil, is generally seen as a transitionary fuel source for parts of the world that currently depend on heavy polluting fuels for power generation.

When the Research Co. survey asked BC residents whether they support the further development of the province’s LNG industry, including LNG electricity demand that BC Hydro says justifies Site C, 55% of respondents were supportive, while 29% were opposed and 17% undecided.

Support for the expansion of the LNG is highest in Southern BC (67%), followed by the Fraser Valley (56%), Metro Vancouver (also 56%), Northern BC (55%), and Vancouver Island (41%).

A larger proportion of BC residents are against any idea of the provincial government moving to ban the use of natural gas for stoves and heating in new buildings, with 45% opposed and 39% in support.

Significant majorities of BC residents are concerned that energy costs could become too expensive, and a report on coal phase-outs underscores potential cost and effectiveness concerns, with 84% expressing concern for residents and 66% for businesses. As well, 70% are concerned that energy shortages could lead to measures such as rationing and rolling blackouts.

Currently, about 90% of BC’s electricity is produced by hydroelectric dams, but this fluctuates throughout the year — at times, BC imports coal- and gas-generated power from the United States when hydro output is low.

According to BC Hydro’s five-year electrification plan released in September 2021, it is estimated BC has a sufficient supply of clean electricity only by 2030, including the capacity of the Site C dam, which is slated to open in 2025. The $16 billion dam will have an output capacity of 1,100 megawatts or enough power for the equivalent of 450,000 homes.

The provincial government’s strategy for pushing vehicles towards becoming dependent on the electrical grid also necessitates a reliable supply of power, prompting BC Hydro’s first call for power in 15 years to prepare for electrification. Most BC residents support the provincial government’s requirement for all new car and passenger truck sales to be zero-emission by 2035, with 75% supporting the goal and 21% opposed.
 

 

Related News

View more

Energy Vault Secures $28M for California Green Hydrogen Microgrid

Calistoga Resiliency Centre Microgrid delivers grid resilience via green hydrogen and BESS, providing island-mode backup during PSPS events, wildfire risk, and outages, with black-start and grid-forming capabilities for reliable community power.

 

Key Points

A hybrid green hydrogen and BESS facility ensuring resilient, islanded power for Calistoga during PSPS and outages.

✅ 293 MWh capacity with 8.5 MW peak for critical backup

✅ Hybrid lithium-ion BESS plus green hydrogen fuel cells

✅ Island mode with black-start and grid-forming support

 

Energy Vault, a prominent energy storage and technology company known for its gravity storage, recently secured US$28 million in project financing for its innovative Calistoga Resiliency Centre (CRC) in California. This funding will enable the development of a microgrid powered by a unique combination of green hydrogen and battery energy storage systems (BESS), marking a significant step forward in enhancing grid resilience in the face of natural disasters such as wildfires.

Located in California's fire-prone regions, the CRC is designed to provide critical backup power during Public Safety Power Shutoff (PSPS) events—periods when utility companies proactively cut power to prevent wildfires. These events can leave communities without electricity for extended periods, making the need for reliable, independent power sources more urgent as many utilities see benefits in energy storage today. The CRC, with a capacity of 293 MWh and a peak output of 8.5 MW, will ensure that the Calistoga community maintains power even when the grid is disconnected.

The CRC features an integrated hybrid system that combines lithium-ion batteries and green hydrogen fuel cells, even as some grid-scale projects adopt vanadium flow batteries for long-duration needs. During a PSPS event or other grid outages, the system will operate in "island mode," using hydrogen to generate electricity. This setup not only guarantees power supply but also contributes to grid stability by supporting black-start and grid-forming functions. Energy Vault's proprietary B-VAULT DC battery technology complements the hydrogen fuel cells, enhancing the overall performance and resilience of the microgrid.

One of the key aspects of the CRC project is the utilization of green hydrogen. Unlike traditional hydrogen, which is often produced using fossil fuels, green hydrogen is generated through renewable energy sources like solar or wind power, with large-scale initiatives such as British Columbia hydrogen project accelerating supply, making it a cleaner and more sustainable alternative. This aligns with California’s ambitious clean energy goals and is expected to reduce the carbon footprint of the region’s energy infrastructure.

The CRC project also sets a precedent for future hybrid microgrid deployments across California and other wildfire-prone areas, with utilities like SDG&E Emerald Storage highlighting growing adoption. Energy Vault has positioned the CRC as a model for scalable, utility-scale microgrids that can be adapted to various locations facing similar challenges. Following the success of this project, Energy Vault is expanding its portfolio with additional projects in Texas, where it anticipates securing up to US$25 million in financing.

The funding for the CRC also includes the sale of an investment tax credit (ITC), a key component of the financing structure that helps make such ambitious projects financially viable. This structure is crucial as it allows companies to leverage government incentives to offset development costs, including CEC long-duration storage funding, thus encouraging further investment in green energy infrastructure.

Despite some skepticism regarding the transportation of hydrogen rather than producing it onsite, the project has garnered strong support. California’s Public Utilities Commission (CPUC) acknowledged the potential risks of transporting green hydrogen but emphasized that it is still preferable to using more harmful fuel sources. This recognition is important as it validates Energy Vault’s approach to using hydrogen as part of a broader strategy to transition to clean, reliable energy solutions.

Energy Vault's shift from its traditional gravity-based energy storage systems to battery energy storage systems, such as BESS in New York, reflects the company's adaptation to the growing demand for versatile, efficient energy solutions. The hybrid approach of combining BESS with green hydrogen represents an innovative way to address the challenges of energy storage, especially in regions vulnerable to natural disasters and power outages.

As the CRC nears mechanical completion and aims for full commercial operations by Q2 2025, it is poised to become a critical part of California’s grid resilience strategy. The microgrid's ability to function autonomously during emergencies will provide invaluable benefits not only to Calistoga but also to other communities that may face similar grid disruptions in the future.

Energy Vault’s US$28 million financing for the Calistoga Resiliency Centre marks a significant milestone in the development of hybrid microgrids that combine the power of green hydrogen and battery energy storage. This project exemplifies the future of energy resilience, showcasing a forward-thinking approach to mitigating the impact of natural disasters and ensuring a reliable, sustainable energy future for communities at risk. With its innovative use of renewable energy sources and cutting-edge technology, the CRC sets a strong example for future energy storage projects worldwide.

 

Related News

View more

FortisAlberta Takes Necessary Precautions to Provide Electricity Service for Alberta

FortisAlberta COVID-19 response delivers safe electricity distribution across Alberta, with remote monitoring, 24/7 support, outage alerts, dispersed crews, and business continuity measures to sustain essential services for customers and communities.

 

Key Points

Plan ensuring reliable electricity in Alberta through 24/7 support, remote monitoring, outage alerts, and dispersed crews.

✅ 24/7 customer support via 310-WIRE and mobile app

✅ Remote monitoring and rapid outage restoration

✅ Dispersed crews in 50 communities for faster response

 

As the COVID-19 pandemic continues to evolve in Alberta (and around the world), FortisAlberta is taking the necessary actions and precautions informed by utility disaster planning to protect the health and well-being of its employees and to provide electricity service to its customers. FortisAlberta serves more than half a million customers with the electricity they depend on to take care of their families and community members throughout our province.

"We recognize these are challenging times as while most Albertans are asked to stay home others continue to work in the community to provide essential services, including utility workers in Ontario demonstrating support efforts. As your electricity distribution provider, please be assured you can count on us to do what we do best – provide our customers with safe and reliable electricity service wherever and whenever they need it," says Michael Mosher, FortisAlberta President and CEO.

FortisAlberta is proud to be a part of the communities it serves and commits to keeping the lights on for its customers. The company is providing a full range of services for its customers and has instilled best practices within critical parts of its business. The company's control centre continues to remotely monitor, control, and restore, where possible, the delivery of power across the entire province, including during events such as an Alberta grid alert that stress the system. Early in March, FortisAlberta implemented its business continuity plan and the company remains fully accessible to customers 24/7 by phone at 310-WIRE (9473) or through its mobile app where customers can report outages online or view details of an outage. Customers can also sign up for outage alerts to their mobile phone and/or email address to let them know if an outage does occur.

FortisAlberta's power line employees are geographically dispersed across 50 different communities so they can quickly address any issues that may arise. The company has implemented work from home measures and isolation best practices, and is planning for potential on-site lockdowns where necessary to ensure no disruption to customers.

FortisAlberta will continue to remain in close communication with its stakeholders to provide updates to customers and with industry associations to share guidance specific to the electricity sector, including insights on the evolving U.S. grid response to COVID-19 from peer utilities. FortisAlberta will also continue to invest in and empower its communities by contributing to organizations that offer programs and services aligned with the greatest needs in the communities it serves.

With the Alberta Government's recent announcement to provide relief to eligible Albertans by deferring electricity and gas charges for up to 90 days, similar to some B.C. relief measures being implemented, FortisAlberta is committed to working with stakeholders and retail partners to ensure this option is available to customers quickly and efficiently, and to learn from initiatives like the Hydro One relief fund that support customers.

 

Related News

View more

UK to End Coal Power After 142 Years

UK Coal Phase-Out signals an energy transition, accelerating decarbonization with offshore wind, solar, and storage, advancing net-zero targets, cleaner air, and a just transition for communities impacted by fossil fuel decline.

 

Key Points

A policy to end coal power in the UK, boosting renewables and net-zero goals while improving air quality.

✅ Coal electricity fell from 40% in 2012 to under 3% by 2022

✅ Offshore wind and solar expand capacity; storage enhances reliability

✅ Just transition funds retrain workers and support coal regions

 

The United Kingdom is poised to mark a significant milestone in its energy history by phasing out coal power entirely, ending a reliance that has lasted for 142 years. This decision underscores the UK’s commitment to combating climate change and transitioning toward cleaner energy sources, reflecting a broader global energy transition away from fossil fuels. As the country embarks on this journey, it highlights both the achievements and challenges of moving towards a sustainable energy future.

A Historic Transition

The UK’s relationship with coal dates back to the Industrial Revolution, when coal was the backbone of its energy supply, driving factories, trains, and homes. However, as concerns over air quality and climate change have mounted, the nation has progressively shifted its focus toward renewable energy sources amid a global decline in coal-fired electricity worldwide. The decision to end coal power represents the culmination of this transformation, signaling a definitive break from a past heavily reliant on fossil fuels.

In recent years, the UK has made remarkable strides in reducing its carbon emissions. From 2012 to 2022, coal's contribution to the country's electricity generation plummeted from around 40% to less than 3%, as policies like the British carbon tax took effect across the power sector. This dramatic decline is largely due to the rise of renewable energy sources, such as wind, solar, and hydroelectric power, which have increasingly filled the gap left by coal.

Environmental and Health Benefits

The move away from coal power has significant environmental benefits. Coal is one of the most carbon-intensive energy sources, releasing substantial amounts of carbon dioxide (CO2) and other harmful pollutants into the atmosphere. By phasing out coal, the UK aims to significantly reduce its greenhouse gas emissions and improve air quality, which has been linked to serious health issues such as respiratory diseases and cardiovascular problems.

The UK government has set ambitious net zero policies, aiming to achieve net-zero carbon emissions by 2050. Ending coal power is a critical step in reaching this target, demonstrating leadership on the global stage and setting an example for other countries still dependent on fossil fuels. This transition not only addresses climate change but also promotes a healthier environment for future generations.

The Role of Renewable Energy

As the UK phases out coal, renewable energy sources are expected to play a central role in meeting the country's energy needs. Wind power, in particular, has surged in prominence, with the UK leading the world in offshore wind capacity. In 2020, wind energy surpassed coal for the first time, accounting for over 24% of the country's electricity generation.

Solar energy has also seen significant growth, contributing to the diversification of the UK’s energy mix. The government’s investments in renewable energy infrastructure and technology have facilitated this rapid transition, providing the necessary framework for a sustainable energy future.

Economic Implications

While the transition away from coal power presents environmental benefits, it also carries economic implications. The coal industry has historically provided jobs and economic activity, particularly in regions where coal mining was a mainstay, a dynamic echoed in analyses of the decarbonization of Canada's electricity grid and its regional impacts. As the UK moves toward a greener economy, there is an urgent need to support communities that may be adversely affected by this transition.

To address potential job losses, the government has emphasized the importance of investing in retraining programs and creating new opportunities in the renewable energy sector. This will be vital in ensuring a just transition that supports workers and communities as the energy landscape evolves.

Challenges Ahead

Despite the progress made, the journey toward a coal-free UK is not without challenges. One significant concern is the need for reliable energy storage solutions to complement intermittent renewable sources like wind and solar. Ensuring a stable energy supply during periods of low generation will be critical for maintaining grid reliability.

Moreover, public acceptance and engagement will be crucial, as illustrated by debates over New Zealand's electricity transition and its pace, as the UK navigates this transition. Engaging communities in discussions about energy policies and developments can foster understanding and support for the changes ahead.

Looking to the Future

The UK’s decision to phase out coal power after 142 years marks a significant turning point in its energy policy and environmental strategy. This historic shift not only aligns with the country’s climate goals but also showcases its commitment to a cleaner, more sustainable future.

As the UK continues to invest in renewable energy and transition away from fossil fuels, it sets an important example for other nations, including those on China's path to carbon neutrality, grappling with similar challenges. By embracing this transition, the UK is not only addressing pressing environmental concerns but also paving the way for a greener economy that can thrive in the decades to come.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified