Renault to invest up to 1 billion in electric car

By Reuters


Substation Relay Protection Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
The head of an Israeli-backed electric car project estimated that its partner, the Renault-Nissan alliance, would likely invest $500 million to $1 billion in the swappable-battery electric cars.

"This is the cost for a three-year car program," Shai Agassi, the founder and chief executive of California-based Project Better Place, said on the sidelines of a news conference to introduce the electric car prototype.

Renault and Nissan signed a deal with Better Place in January to begin mass producing electric cars as a part of a project to develop alternative energy sources and slash oil dependency.

Better Place will build the first electric grids in Israel and Denmark, with initial deployment slated for 2010.

Denmark's DONG Energy recently signed a letter of intent with Better Place to introduce the electric cars to the Scandinavian country, where the batteries will be charged using wind power.

DONG Energy is the world's largest offshore wind power operator, with several wind farms in Denmark and Britain.

Agassi said that up to 20 percent of Denmark's electricity production comes from wind but that 7 percent was not being used - enough to power every car in Scandinavia.

A few dozen cars will be available in Israel later in 2008, mainly for demonstration.

In Israel, much of the electricity is generated using fossil fuels such as coal, though natural gas is now being introduced. But Agassi said the plan was to use solar energy generated in Israel's Negev Desert to power the batteries.

"If all of Israel traveled by electric cars, you would need to add 6 percent of electricity production," Agassi said.

Renault will provide Better Place with vehicles while Nissan, through its joint venture with NEC, has created a lithium-ion battery pack. The project will also use batteries made by A123 Systems.

The batteries, weighing about 200 kg, will have a range of 160 to 200 km before needing to be recharged or swapped.

Agassi said the project was open to anyone who wants to join.

The initial $200 million investment in Better Place is led by holding company Israel Corp, and includes Morgan Stanley, venture capital firm Vantage Point and a group of private investors.

Better Place in Israel will deploy more than 500,000 charging spots, including at the homes and offices of its clients, and hundreds of battery exchange stations.

Moshe Kaplinsky, CEO of Better Place Israel, said a study conducted by Israeli consultancy and research institute Geocartography Knowledge Group, showed that two thirds of the public have a positive opinion of electric cars.

"We are not operating in a climate of indifference. The Israeli public is interested in what we are doing," Kaplinsky said. "We need to stop our dependence on oil."

In Israel, where most of its oil comes from Russia, 1.2 million households own cars and 210,000 would consider purchasing an electric car, the study showed.

Agassi said Better Place was in discussions in other countries to introduce similar projects.

European countries are interested in Better Place for environmental reasons while Asia is seeking to reduce pollution, and Africa sees huge potential to generate solar energy in the Sahara Desert, Agassi said.

North America is seeking to reduce its oil dependence.

"What happens when oil producers say: 'We don't take dollars anymore,'" Agassi said.

Related News

GM president: Electric cars won't go mainstream until we fix these problems

Electric Vehicle Adoption Barriers include range anxiety, charging infrastructure, and cost parity; consumer demand, tax credits, lithium-ion batteries, and performance benefits are accelerating EV uptake, pushing SUVs and self-driving tech toward mainstream mobility.

 

Key Points

They are the key hurdles to mainstream EV uptake: range anxiety, sparse charging networks, and high upfront costs.

✅ Range targets of 300+ miles reduce anxiety and match ICE convenience

✅ Expanded home, work, and public charging speeds adoption

✅ Falling battery costs and incentives drive price parity

 

The automotive industry is hurtling toward a future that will change transportation the same way electricity changed how we light the world. Electric and self-driving vehicles will alter the automotive landscape forever — it's only a question of how soon, and whether the age of electric cars arrives ahead of schedule.

Like any revolution, this one will be created by market demand.
Beyond the environmental benefit, electric vehicle owners enjoy the performance, quiet operation, robust acceleration, style and interior space. And EV owners like not having to buy gasoline. We believe the majority of these customers will stay loyal to electric cars, and U.S. EV sales are soaring into 2024 as this loyalty grows.

But what about non-EV owners? Will they want to buy electric, and is it time to buy an electric car for them yet? About 25 years ago, when we first considered getting into the electric vehicle business with a small car that had about 70 miles of range, the answer was no. But today, the results are far more encouraging.

We recently held consumer clinics in Los Angeles and Chicago and presented people with six SUV choices: three gasoline and three electric. When we asked for their first choice to purchase, 40% of the Chicago respondents chose an electric SUV, and 45% in LA did the same. This is despite a several thousand-dollar premium on the price of the electric models, and despite that EV sales still lag gas cars nationally today, consumer interest was strong (but also before crucial government tax credits that we believe will continue to drive people toward electric vehicles and help fuel market demand).

They had concerns, to be sure. Most people said they want vehicles that can match gasoline-powered vehicles in range, ease of ownership and cost. The sooner we can break down these three critical barriers, the sooner electric cars will become mainstream.

Range
Range is the single biggest barrier to EV acceptance. Just as demand for gas mileage doesn't go down when there are more gas stations, demand for better range won't ease even as charging infrastructure improves. People will still want to drive as long as possible between charges.

Most consumers surveyed during our clinics said they want at least 300 miles of range. And if you look at the market today, which is driven by early adapters, electric cars have hit an inflection point in demand, and the numbers bear that out. The vast majority of electric vehicles sold — almost 90% — are six models with the highest range of 238 miles or more — three Tesla models, the Chevrolet Bolt EV, the Hyundai Kona and the Kia Niro, according to IHS Markit data.

Lithium-ion batteries, which power virtually all electric cars on the road today, are rapidly improving, increasing range with each generation. At GM, we recently announced that our 2020 Chevrolet Bolt EV will have a range of 259 miles, a 21-mile improvement over the previous model. Range will continue to improve across the industry, and range anxiety will dissipate.

Charging infrastructure
Our research also shows that, among those who have considered buying an electric vehicle, but haven't, the lack of charging stations is the number one reason why.

For EVs to gain widespread acceptance, manufacturers, charging companies, industry groups and governments at all levels must work together to make public charging available in as many locations as possible. For example, we are seeing increased partnership activity between manufacturers and charging station companies, as well as construction companies that build large infrastructure projects, as the American EV boom approaches, with the goal of adding thousands of additional public charging stations in the United States.

Private charging stations are just as important. Nearly 80% of electric vehicle owners charge their vehicles at home, and almost 15% at work, with the rest at public stations, our research shows. Therefore, continuing to make charging easy and seamless is vital. To that end, more partnerships with companies that will install the chargers in consumers' homes conveniently and affordably will be a boon for both buyers and sellers.

Cost
Another benefit to EV ownership is a lower cost of operation. Most EV owners report that their average cost of operation is about one-third of what a gasoline-powered car owner pays. But the purchase price is typically significantly higher, and that's where we should see change as each generation of battery technology improves efficiency and reduces cost.

Looking forward, we think electric vehicle propulsion systems will achieve cost parity with internal combustion engines within a decade or sooner, and will only get better after that, driving sticker prices down and widening the appeal to the average consumer. That will be driven by a number of factors, including improvements with each generation of batteries and vehicles, as well as expected increased regulatory costs on gasoline and diesel engines.

Removing these barriers will lead to what I consider the ultimate key to widespread EV adoption — the emergence of the EV as a consumer's primary vehicle — not a single-purpose or secondary vehicle. That will happen when we as an industry are able to offer the utility, cost parity and convenience of today's internal combustion-based cars and trucks.

To get the electric vehicle to first-string status, manufacturers simply must make it as good or better than the cars, trucks and crossovers most people are used to driving today. And we must deliver on our promise of making affordable, appealing EVs in the widest range of sizes and body styles possible. When we do that, electric vehicle adoption and acceptance will be widespread, and it can happen sooner than most people think.

Mark Reuss is president of GM. The opinions expressed in this commentary are his own.

 

Related News

View more

Flowing with current, Frisco, Colorado wants 100% clean electricity

Frisco 100% Renewable Electricity Goal outlines decarbonization via Xcel Energy, wind, solar, and battery storage, enabling beneficial electrification and a smarter grid for 100% municipal power by 2025 and community-wide clean electricity by 2035.

 

Key Points

Frisco targets 100% renewable electricity: municipal by 2025, community by 2035, via Xcel decarbonization.

✅ Municipal operations to reach 100% renewable electricity by 2025

✅ Community-wide electricity to be 100% carbon-free by 2035

✅ Partnerships: Xcel Energy, wind, solar, storage, grid markets

 

Frisco has now set a goal of 100-per-cent renewable energy, joining communities on the road to 100% renewables across the country. But unlike some other resolutions adopted in the last decade, this one isn't purely aspirational. It's swimming with a strong current.

With the resolution adopted last week by the town council, Frisco joins 10 other Colorado towns and cities, plus Pueblo and Summit counties, a trend reflected in tracking progress on clean energy targets reports nationwide, in adopting 100-per-cent goals.

The goal is to get the municipality's electricity to 100-per-cent by 2025 and the community altogether by 2035, a timeline aligned with scenarios showing zero-emissions electricity by 2035 is possible in North America.

Decarbonizing electricity will be far easier than transportation, and transportation far easier than buildings. Many see carbon-free electricity as being crucial to both, a concept called "beneficial electrification," and point to ways to meet decarbonization goals that leverage electrified end uses.

Electricity for Frisco comes from Xcel Energy, an investor-owned utility that is making giant steps toward decarbonizing its power supply.

Xcel first announced plans to close its work-horse power plants early to take advantage of now-cheap wind and solar resources plus what will be the largest battery storage project east of the Rocky Mountains. All this will be accomplished by 2026 and will put Xcel at 55 per cent renewable generation in Colorado.

In December, a week after Frisco launched the process that produced the resolution, Xcel announced further steps, an 80 percent reduction in carbon dioxide emissions by 2030 as compared to 2050 levels. By 2050, the company vows to be 100 per cent "carbon-free" energy by 2050.

Frisco's non-binding goals were triggered by Fran Long, who is retired and living in Frisco. For eight years, though, he worked for Xcel in helping shape its response to the declining prices of renewables. In his retirement, he has also helped put together the aspirational goal adopted by Breckenridge for 100-per-cent renewables.

A task force that Long led identified a three-pronged approach. First, the city government must lead by example. The resolution calls for the town to spend $25,000 to $50,000 annually during the next several years to improve energy efficiency in its municipal facilities. Then, through an Xcel program called Renewable Connect, it can pay an added cost to allow it to say it uses 100-per-cent electricity from renewable sources.

Beyond that, Frisco wants to work with high-end businesses to encourage buying output from solar gardens or other devices that will allow them to proclaim 100-per-cent renewable energy. The task force also recommends a marketing program directed to homes and smaller businesses.

Goals of 100-per-cent renewable electricity are problematic, given why the grid isn't 100% renewable today for technical and economic reasons. Aspen Electric, which provides electricity for about two-thirds of the town, by 2015 had secured enough wind and hydro, mostly from distant locations, to allow it to proclaim 100 per cent renewables.

In fact, some of those electrons in Aspen almost certainly originate in coal or gas plants. That doesn't make Aspen's claim wrong. But the fact remains that nobody has figured out how, at least at affordable cost, to deliver 100-per-cent clean energy on a broad basis.

Xcel Energy, which supplies more than 60 per cent of electricity in Colorado, one of six states in which it operates, has a taller challenge. But it is a very different utility than it was in 2004, when it spent heavily in advertising to oppose a mandate that it would have to achieve 10 per cent of its electricity from renewable sources by 2020.

Once it lost the election, though, Xcel set out to comply. Integrating renewables proved far more easily than was feared. It has more than doubled the original mandate for 2020. Wind delivers 82 per cent of that generation, with another 18 per cent coming from community, rooftop, and utility-scale solar.

The company has become steadily more proficient at juggling different intermittent power supplies while ensuring lights and computers remain on. This is partly the result of practice but also of relatively minor technological wrinkles, such as improved weather forecasting, according to an Energy News Network story published in March.

For example, a Boulder company, Global Weather corporation, projects wind—and hence electrical production—from turbines for 10 days ahead. It updates its forecasts every 15 minutes.

Forecasts have become so good, said John T. Welch, director of power operations for Xcel in Colorado, that the utility uses 95 per cent to 98 per cent of the electricity generated by turbines. This has allowed the company to use its coal and natural gas plants less.M

Moreover, prices of wind and then solar declined slowly at first and then dramatically.

Xcel is now comfortable that existing technology will allow it to push from 55 per cent renewables in 2026 to an 80 per cent carbon reduction goal by 2030.

But when announcing their goal of emissions-free energy by mid-century in December, the company's Minneapolis-based chief executive, Ben Fowke, and Alice Jackson, the chief executive of the company's Colorado subsidiary, freely admitted they had no idea how they will achieve it. "I have a lot of confidence they will be developed," Fowke said of new technologies.

Everything is on the table, they said, including nuclear. But also including fossil fuels, if the carbon dioxide can be sequestered. So far, such technology has proven prohibitively expensive despite billions of dollars in federal support for research and deployment. They suggested it might involve new technology.

Xcel's Welch told Energy News Network that he believes solar must play a larger role, and he believes solar forecasting must improve.

Storage technology must also improve as batteries are transforming solar economics across markets. Batteries, such as produced by Tesla at its Gigafactory near Reno, can store electricity for hours, maybe even a few days. But batteries that can store large amounts of electricity for months will be needed in Colorado. Wind is plentiful in spring but not so much in summer, when air conditioners crank up.

Increased sharing of cheap renewable generation among utilities will also allow deeper penetration of carbon-free energy, a dynamic consistent with studies finding wind and solar could meet 80% of demand with improved transmission. Western US states and Canadian provinces are all on one grid, but the different parts are Balkanized. In other words, California is largely its own energy balancing authority, ensuring electricity supplies match electricity demands. Ditto for Colorado. The Pacific Northwest has its own balancing authority.

If they were all orchestrated as one in an expanded energy market across the West, however, electricity supplies and demands could more easily be matched. California's surplus of solar on summer afternoons, for example, might be moved to Colorado.

Colorado legislators in early May adopted a bill that requires the state's Public Utilities Commission to begin study by late this year of an energy imbalance market or regional transmission organization.

 

Related News

View more

New York State Moratorium on Utility Disconnections During Emergencies

New York Utility Disconnection Ban protects residents during state emergencies, covering electric, gas, water, telecommunications, cable, and internet services, with penalties for noncompliance and options like deferred payment agreements and consumer protections.

 

Key Points

A proposed law barring shutoffs in state emergencies across electric, gas, water, telecom, cable, and internet.

✅ Applies during declared state and local emergencies statewide.

✅ Covers electric, gas, water, telecom, cable, and internet services.

✅ Noncompliance triggers penalties; payment plans required for arrears.

 

Governor Andrew M. Cuomo has announced a proposal to prohibit utility disconnections in regions that are under a state of emergency, addressing the energy insecurity many households face, as part of the 2021 State of the State. The Governor will propose legislation that will apply to electric, gas, water, telecommunications, cable and internet services. Utilities that fail to comply will be subject to penalties.

“In a year in which we dealt with an unprecedented pandemic, ferocious storms added insult to injury by knocking out power for hundreds of thousands of New Yorkers,” Governor Cuomo said. “Utility companies provide essential services, and we need to make sure they continue to provide them, rain or shine. That’s why we’re proposing legislation to make sure that New Yorkers, especially those living in regions under states of emergency, have access to these critical services to provide for themselves and their families.”

Governor Cuomo has taken a series of actions to protect New Yorkers’ access to utilities during the COVID-19 pandemic, including a suspension of shut-offs in New York and New Jersey, among other measures. Last year, the Governor signed legislation extending a moratorium that prevents utility companies from disconnecting utilities to residential households that are struggling with their bills due to the COVID-19 pandemic, a move mirrored by reconnection efforts in Ontario by Hydro One. Utility companies must instead offer these individuals a deferred payment agreement on any past-due balance. 

On November 19, Governor Cuomo announced that Con Edison now faces $25 million in penalties and possible license revocation from the New York State Public Service Commission, amid a broader review of retail energy markets by state regulators, following an investigation into the utility’s failed response during large-scale power outages in Manhattan and Brooklyn in July 2019. On November 2, Governor Cuomo announced that more than $328 million in home heating aid is now available, similar to Ontario bill support during the pandemic, for low- and middle-income New Yorkers who need assistance keeping their homes warm during the coming winter season.

The Governor has previously enacted some of the strongest and most progressive consumer protection and assistance programs in the country, including smart streetlights in Syracuse that reduce energy costs, and other initiatives. Governor Cuomo established New York’s energy affordability policy in 2016, as states pursue renewable energy ambitions that can affect rates, underscoring the need for affordability. The policy extended energy bill support to more than 152,000 additional New York families, ensuring that more than 920,000 New York families spend no more than 6 percent of their income on energy bills. Through this program, New York commits more than $238 million annually helping to keep the lights and heat on for our most vulnerable New Yorkers, while actively striving to expand coverage to additional families.

 

Related News

View more

Key Ontario power system staff may end up locked down at work sites due to COVID-19, operator says

Ontario IESO COVID-19 Control Room Measures detail how essential operators safeguard the electricity grid with split shifts, backup control centres, real-time balancing, deep cleaning, social distancing, and shelter-in-place readiness to maintain reliable power.

 

Key Points

Measures that protect essential grid operators with split shifts, backup sites, and hygiene to keep power reliable.

✅ Split teams across primary and backup control centres

✅ 12-hour shifts with remote handoffs and deep cleaning

✅ Real-time grid modeling to balance demand and supply

 

A group of personnel key to keeping Ontario's electricity system functioning may end up locked down in their control centres due to the COVID-19 crisis, according to the head of the province's power operator.

But that has so far proven unnecessary with a change-up in routine, Independent Electricity System Operator CEO Peter Gregg said.

While about 90 per cent of staff were sent to work from home on March 13, another 48 control-room operators deemed essential are still going into work, Gregg said in an interview.

"We identified a smaller cohort of critical operations room staff that need to go in to operate the system out of our control centres," Gregg said. "My biggest concern is to maintain their health, their safety as we rely on them to do this critical work."

Some of the operators manage power demand and supply in real time as Ontario electricity demand shifts, by calling for more or less generation and keeping an eye on the distribution grid, which also allows power to flow to and from Ontario's neighbours. Others do scenario planning and modelling to prepare for changes.

The essential operators have been split into eight teams of six each working 12-hour shifts. The day crew works out of a control centre near Toronto and the night shift out of a backup centre in the city's west end, Gregg said.

"That means that we're not having physical hand-off between control room operators on shift change -- we can do it remotely -- and it also allows us to do deep cleansing," Gregg said. "We're fortunate that the way the room is set up allows us to practice good social distancing."

Should it become necessary, he said, bed, food and other on-site arrangements have been made to allow the operators to stay at their workplaces as a similar agency in New York has done.

"If we do need to shelter these critical employees in place, we've got the ability to do so."

IESO is responsible for ensuring a balance between supply and demand for electricity across the province. Because power cannot be stored, the IESO ensures generators produce enough power to meet peak demand while making sure they don't produce too much.

"You're seeing, obviously, commercial demand drop, some industrial demand drop," Gregg said. "But you're also seeing a shift in the demand curve as well, where normally you have people heading off to work and so residential demand would go down. But obviously with them staying home, you're seeing an increase in residential electricity use across the province."

Some utilities have indicated no cuts to peak rates for self-isolating customers, with Hydro One peak pricing remaining in place for now.

IESO also runs and settles the wholesale electricity markets. Market prices are set based on accepted offers to supply electricity, while programs supporting stable electricity pricing for industrial and commercial users can affect costs against forecast demand.

With the pandemic forcing many businesses to close and people to stay home, and provincial electricity relief for families and small businesses in place, typical power needs fallen about seven per cent at a time of year that would normally see demand soften anyway. It remains to be seen whether, and how much, power needs shift further amid stringent isolation measures and the ongoing economic impact of the outbreak.

Gregg said the operator is constantly modeling different possibilities.

"What we do normally is prepare for all of these sort of emergency scenarios, as reflected in the U.S. grid response coverage, and test and drill for these," he said. "What we're experiencing over the last few weeks is that those drills come in handy because they help us prepare for when the real-time situation actually happens."

 

Related News

View more

Roads Need More Electricity: They Will Make It Themselves

Electrically Smart Roads integrate solar road surfaces, inductive charging, IoT sensors, AI analytics, and V2X to power lighting, deicing, and monitoring, reducing grid dependence while enabling dynamic EV charging and real-time traffic management.

 

Key Points

Electrically smart roads generate power, sense conditions, and charge EVs using solar, IoT, AI, and dynamic infrastructure.

✅ Solar surfaces, verges, and gantries generate on-site electricity

✅ Inductive lanes enable dynamic EV charging at highway speeds

✅ Embedded IoT sensors and AI deliver real-time traffic insights

 

As more and more capabilities are added to roads instead of simply covering a country with extra roads, they are starting to make their own electricity, notably as solar road surface but then with added silent wind turbines, photovoltaic verges and barriers and more.

That toll gate, street light and traffic monitoring system all need electricity. Later, roads that deice and charge vehicles at speed will need huge amounts of electricity. For now, electricity for road systems is provided by very expensive infrastructure to the grid, and grid flexibility for EVs remains a concern, except for a few solar/ wind street lights in China and Korea for example. However, as more and more capabilities are added to roads instead of simply covering a country with extra roads, they are starting to make their own electricity, notably as solar road surface but then with added silent wind turbines, photovoltaic verges and barriers and more. There is also highly speculative work in the USA and UK on garnering power from road surface movement using piezoelectrics and electrodynamics and even its heat. 

#google#

China plans to create an intelligent transport system by 2030. The country hopes to build smart roads that will not only be able to charge electric cars as they drive but also monitor temperature, traffic flow and weight load using artificial intelligence. Indeed, like France, the Netherlands and the USA, where U.S. EV charging capacity is under scrutiny, it already has trials of extended lengths of solar road which cost no more than regular roads. In an alternative approach, vehicles go under tunnels of solar panels that also support lighting, light-emitting signage and monitoring equipment using the electricity made where it is needed. See the IDTechEx Research report, Electrically Smart Roads 2018-2028 for more.

Raghu Das, CEO of IDTechEx says, "The spiral vertical axis wind turbines VAWT in Asia rarely rotate because they are too low but much higher versions are planned on large UK roadside vehicle charging centres that should work well. H shaped VAWT is also gaining traction - much slower and quieter than the propeller shape which vibrates and keeps you awake at night in an urban area.

The price gap between the ubiquitous polycrystalline silicon solar cell and the much more efficient single crystal silicon is narrowing. That means that road furniture such as bus shelters and smart gantries will likely go for more solar rather than adding wind power in many cases, a shift mirrored by connected solar tech in homes, because wind power needs a lot of maintenance and its price is not dropping as rapidly."

The IDTechEx Research report, Off Grid Electric Vehicle Charging: Zero Emission 2018-2028 analyses that aspect, while vehicle-to-grid strategies may complement grid resources. The prototype of a smart road is already in place on an expressway outside of Jinan, providing better traffic updates as well as more accurate mapping. Verizon's IoT division has launched a project around intelligent asphalt, which it thinks has the potential to significantly reduce fossil fuel emissions and save time by reducing up to 44% of traffic backups. It has partnered with Sacramento, California, to test this theory.

"By embedding sensors into the pavement as well as installing cameras on traffic lights, we will be able to study and analyze the flow of traffic. Then, we will take all of that data and use it to optimize the timing of lights so that traffic flows easier and travel times are shorter," explains Sean Harrington, vice president of Verizon Smart Communities.

Colorado's Department of Transportation has recently announced its intention to be the first state to pilot smart roads by striking a five-year deal with a smart road company to test the technology. Like planned auto-deicing roads elsewhere, the aim of this project is, first and foremost, to save lives. The technology will detect when a car suddenly leaves a road and send emergency assistance to the area. The IDTechEx Research report Electrically Smart Roads 2018-2028 describes how others work on real time structural monitoring of roads and embedded interactive lighting and road surface signage.

"Smart pavement can make that determination and send that information directly into a vehicle," Peter Kozinski, director of CDOT's RoadX division, tells the Denver Post. "Data is the new asphalt of transportation."   Sensors, processors and other technology are embedded in the Colorado road to extend capability beyond accidents and reach into better road maintenance. Fast adoption relies on the ability to rapidly install sensor-laden pavement or lay concrete slabs. Attention therefore turns to fast adaptation of existing roads. Indeed, even for the heavy coil arrays used for dynamic vehicle charging, even as state power grids face new challenges, in Israel there are machines that can retrofit into the road surface at a remarkable two kilometres of cut and insert in a day.

"It's hard to imagine that these things are inexpensive, with all the electronics in them," Charles Schwartz, a professor of civil and environmental engineering at the University of Maryland, tells the Denver Post concerning the vehicle sensing project, "but CDOT is a fairly sophisticated agency, and this is an interesting pilot project. We can learn a lot, even if the test is only partially successful."

 

Related News

View more

Is tidal energy the surge remote coastal communities need?

BC Tidal Energy Micro-Grids harness predictable tidal currents to replace diesel in remote Indigenous coastal communities, integrating marine renewables, storage, and demand management for resilient off-grid power along Vancouver Island and Haida Gwaii.

 

Key Points

Community-run tidal turbines and storage deliver reliable, diesel-free electricity to remote B.C. coastal communities.

✅ Predictable power from tidal currents reduces diesel dependence

✅ Integrates storage, demand management, and microgrid controls

✅ Local jobs via marine supply chains and community ownership

 

Many remote West Coast communities are reliant on diesel for electricity generation, which poses a number of negative economic and environmental effects.

But some sites along B.C.’s extensive coastline are ideal for tidal energy micro-grids that may well be the answer for off-grid communities to generate clean power, suggested experts at a COAST (Centre for Ocean Applied Sustainable Technologies) virtual event Wednesday.

There are 40 isolated coastal communities, many Indigenous communities, and 32 of them are primarily reliant on diesel for electricity generation, said Ben Whitby, program manager at PRIMED, a marine renewable energy research lab at the University of Victoria (UVic).

Besides being a costly and unreliable source of energy, there are environmental and community health considerations associated with shipping diesel to remote communities and running generators, Whitby said.

“It's not purely an economic question,” he said.

“You've got the emissions associated with diesel generation. There's also the risks of transporting diesel … and sometimes in a lot of remote communities on Vancouver Island, when deliveries of diesel don't come through, they end up with no power for three or four days at a time.”

The Heiltsuk First Nation, which suffered a 110,000-litre diesel spill in its territorial waters in 2016, is an unfortunate case study for the potential environmental, social, and cultural risks remote coastal communities face from the transport of fossil fuels along the rough shoreline.

A U.S. barge hauling fuel for coastal communities in Alaska ran aground in Gale Pass, fouling a sacred and primary Heiltsuk food-harvesting area.

There are a number of potential tidal energy sites near off-grid communities along the mainland, on both sides of Vancouver Island, and in the Haida Gwaii region, Whitby said.

Tidal energy exploits the natural ebb and flow of the coast’s tidal water using technologies like underwater kite turbines to capture currents, and is a highly predictable source of renewable energy, he said.

Micro-grids are self-reliant energy systems drawing on renewables from ocean, wave power resources, wind, solar, small hydro, and geothermal sources.

The community, rather than a public utility like BC Hydro, is responsible for demand management, storage, and generation with the power systems running independently or alongside backup fuel generators — offering the operators a measure of energy sovereignty.

Depending on proximity, cost, and renewable solutions, tidal energy isn’t necessarily the solution for every community, Whitby noted, adding that in comparison to hydro, tidal energy is still more expensive.

However, the best candidates for tidal energy are small, off-grid communities largely dependent on costly fossil fuels, Whitby said.

“That's really why the focus in B.C. is at a smaller scale,” he said.

“The time it would take (these communities) to recoup any capital investment is a lot shorter.

“And the cost is actually on a par because they're already paying a significant amount of money for that diesel-generated power.”

Lisa Kalynchuk, vice-president of research and innovation at UVic, said she was excited by the possibilities associated with tidal power, not only in B.C., but for all of Canada’s coasts.

“Canada has approximately 40,000 megawatts available on our three coastlines,” Kalynchuk said.

“Of course, not all this power can be realized, but it does exist, so that leads us to the hard part — tapping into this available energy and delivering it to those remote communities that need it.”

Challenges to establishing tidal power include the added cost and complexity of construction in remote communities, the storage of intermittent power for later use, the economic model, though B.C.’s streamlined regulatory process may ease approvals, the costs associated with tidal power installations, and financing for small communities, she said.

But smaller tidal energy projects can potentially set a track record for more nascent marine renewables, as groups like Marine Renewables Canada pivot to offshore wind development, at a lower cost and without facing the same social or regulatory resistance a large-scale project might face.

A successful tidal energy demo project was set up using a MAVI tidal turbine in Blind Channel to power a private resort on West Thurlow Island, part of the outer Discovery Islands chain wedged between Vancouver Island and the mainland, Whitby said.

The channel’s strong tidal currents, which routinely reach six knots and are close to the marina, proved a good site to test the small-scale turbine and associated micro-grid system that could be replicated to power remote communities, he said.

The mooring system, cable, and turbine were installed fairly rapidly and ran through the summer of 2017. The system is no longer active as provincial and federal funding for the project came to an end.

“But as a proof of concept, we think it was very successful,” Whitby said, adding micro-grid tidal power is still in the early stages of development.

Ideally, the project will be revived with new funding, so it can continue to act as a test site for marine renewable energy and to showcase the system to remote coastal communities that might want to consider tidal power, he said.

In addition to harnessing a local, renewable energy source and increasing energy independence, tidal energy micro-grids can fuel employment and new business opportunities, said Whitby.

The Blind Channel project was installed using the local supply chain out of nearby Campbell River, he said.

“Most of the vessels and support came from that area, so it was all really locally sourced.”

Funding from senior levels of government would likely need to be provided to set up a permanent tidal energy demonstration site, with recent tidal energy investments in Nova Scotia offering a model, or to help a community do case studies and finance a project, Whitby said.

Both the federal and provincial governments have established funding streams to transition remote communities away from relying on diesel.

But remote community projects funded federally or provincially to date have focused on more established renewables, such as hydro, solar, biomass, or wind.

The goal of B.C.’s Remote Community Energy Strategy, part of the CleanBC plan and aligned with zero-emissions electricity by 2035 targets across Canada, is to reduce diesel use for electricity 80 per cent by 2030 by targeting 22 of the largest diesel locations in the province, many of which fall along the coast.

The province has announced a number of significant investments to shift Indigenous coastal communities away from diesel-generated electricity, but they predominantly involve solar or hydro projects.

A situation that’s not likely to change, as the funding application guide in 2020 deemed tidal projects as ineligible for cash.

Yet, the potential for establishing tidal energy micro-grids in B.C. is good, Kalynchuk said, noting UVic is a hub for significant research expertise and several local companies, including ocean and river power innovators working in the region, are employing and developing related service technologies to install and maintain the systems.

“It also addresses our growing need to find alternative sources of energy in the face of the current climate crisis,” she said.

“The path forward is complex and layered, but one essential component in combating climate change is a move away from fossil fuels to other sources of energy that are renewable and environmentally friendly.”

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified