The wind versus nuclear debate

By Toronto Star


Electrical Testing & Commissioning of Power Systems

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today
Replacing nuclear generators with wind turbines would lead to huge increases in power bills and eat up vast swaths of countryside, says a hypothetical model of the idea.

But advocates of renewable energy say the comparison doesn't acknowledge huge subsidies that nuclear receives from electricity ratepayers.

It's a debate that's only liken to sharpen as a provincial election nears, the Liberal government defends its renewable power push and Ontario Power Generation moves forward on its proposal for new nuclear reactors.

Performing the analysis of replacing nuclear reactors with wind turbines is Bruce Sharp of Aegent Energy Advisors.

Sharp concedes that it is a theoretical exercise: "No one could seriously propose replacing all of Ontario's nuclear power exclusively with wind."

Green power advocates who hate nuclear would replace it with a combination of renewable sources — including solar and hydro power as well as wind — plus aggressive conservation programs and some high efficiency gas-fired generation.

But Sharp states the case to demonstrate that bringing in massive amounts of renewable power isn't as simple as it seems.

Here's an outline of the thinking:

In 2010, Ontario nuclear plants churned out 82.8 billion kilowatt hours of power. That meant the province's 10,500 megawatts of nuclear generation capacity ran on average about 90 per cent of the time.

Replacing that with wind power is complicated, because in Ontario the wind is variable. On average it runs at 27.8 per cent capacity, Sharp figures. That means that if a turbine could theoretically produce 100 megawatt hours of electricity if it ran flat-out, without stopping all year round, under actual wind conditions it would only produce 27.8 megawatt hours.

Hence, replacing the nuclear output with wind turbines that have a capacity of 27.8 per cent would require 34,000 megawatts of generating capacity.

The turbines would cover 14,200 square kilometres of territory — that's a square with sides of almost 120 kilometres.

Wind also requires back-up generation: Sometimes there is no wind at all, but residents and businesses still need power. Building enough natural gas-fired plants to back up the turbines, and buying gas to fuel them, would cost $1.92 billion a year in capital and extra operating costs, Sharp figures.

Occasionally, wind will also over-produce, blowing hard when there is little demand and producing surplus power as has happened on several occasions this year.

There's a cost to selling surplus power at a loss, and a cost in building new transmission lines to service widely dispersed wind farms.

Putting all of these theoretical costs together, Sharp figures that replacing nuclear with wind, and building the gas-fuelled back-up, would cost the power system an extra $7.7 billion a year. That, he calculates, would translate into an increase of 5.6 cents a kilowatt hour on the power bills of most Ontario consumers.

For a household using 800 kilowatt hours of power a year, the increase including GST would be $632 a year, Sharp figures.

Sounds grim. Let's stick with nuclear.

Except that the economics of nuclear are not necessarily all that they appear to be, either, its detractors argue.

Nuclear, too, gets a special deal from ratepayers in the form of special contracts that currently are considerably higher than the spot market price.

Consider that the average spot price of power on Ontario's electricity market in 2010 was 3.79 cents a kilowatt hour and only 3.16 cents in 2009.

Ontario Power Generation sells its nuclear output for a contracted price of 5.6 cents a kilowatt hour.

Bruce Power has a more complicated arrangement. The output from its Bruce A station — in which two of four units are still undergoing a refurbishment that is years behind schedule and far over budget — fetches 7.2 cents a megawatt hour according to the Ontario Energy Board.

Output from the Bruce B plant is supported by a floor price of 5.1 cents a kilowatt hour. Since the average market price has been below the floor price, it has triggered substantial payments.

Keith Stewart of Greenpeace estimates that payments under the floor price may have totaled as much as $250 million in 2010.

The Ontario Power Authority and Bruce Power said the payments are confidential and wouldn't comment.

The OPA releases only a global total of what it pays to all generators who have contractual deals‚ which includes nuclear operators, gas-fired generators and renewable power generators such as gas, wind and solar.

Most of those contracts pay prices higher than the average market price.

The total payout for all the contracts was $1.62 billion in 2010, up from $1.4 billion in 2009.

Consumers make up the difference through an extra charge called the "global adjustment" or "provincial benefit," which is adjusted monthly, and now often equals or exceeds the actual energy price of electricity.

On May 5 at 9 a.m., for example, the hourly electricity price was 3.25 cents a kilowatt hour the global adjustment was 4.3 cents.

Premium prices being paid for renewable energy are often blamed for Ontario's rising power prices, Stewart says.

But he argues that they're not the chief culprit.

"It's these types of nuclear top-ups, and to a lesser extent gas contracts, that's actually driving the provincial benefit," Stewart contends.

And new-build nuclear plants will require even higher prices if they are going to cover their costs, he says.

Related News

Ontario's electric debacle: Liberal leadership candidates on how they'd fix power

Ontario Electricity Policy debates rates, subsidies, renewables, nuclear baseload, and Quebec hydro imports, highlighting grid transmission limits, community consultation, conservation, and the province's energy mix after cancelled wind projects and rising costs to taxpayers.

 

Key Points

Ontario Electricity Policy guides rates, generation, grid planning, subsidies and imports for reliable, low-cost power.

✅ Focuses on rates, subsidies, and consumer affordability

✅ Balances nuclear baseload, renewables, and Quebec hydro imports

✅ Emphasizes grid transmission, consultation, and conservation

 

When Kathleen Wynne’s Liberals went down to defeat at the hands of Doug Ford and the Progressive Conservatives, Ontario electricity had a lot to do with it. That was in 2018. Now, two years later, Ford’s government has electricity issues of its own, including a new stance on wind power that continues to draw scrutiny.

Electricity is politically fraught in Ontario. It’s among the most expensive in Canada. And it has been mismanaged at least as far back as nuclear energy cost overruns starting in the 1980s.

From the start Wynne’s government was tainted by the gas plant scandal of her predecessor Dalton McGuinty and then she created her own with the botched roll-out of her green energy plan. And that helped Ford get elected promising to lower electricity prices. But, rates haven’t gone down under Ford while the cost to the government coffers for subsidizing them have soared - now costing $5.6 billion a year.

Meanwhile, Ford’s government has spent at least $230 million to tear up green energy contracts signed by the former Liberal government, including two wind-farm projects that were already mid-construction.

Lessons learned?
In the final part of a three-part series, the six candidates vying to become the next leader of the Ontario Liberals discuss the province's electricity system, including the lessons learned from the prior Liberal government's botched attempts to fix it that led to widespread local opposition to a string of wind power projects, and whether they'd agree to import more hydroelectricity from Quebec.

“We had the right idea but didn’t stick the landing,” said Steven Del Duca, a member of the former Wynne government who lost his Vaughan-area seat in 2018, referring to its green-energy plan. “We need to make sure that we work more collaboratively with local communities to gain the buy-in needed to be successful in this regard.”

“Consultation and listening is key,” agreed Mitzie Hunter, who was education minister under Kathleen Wynne and in 2018 retained her seat in the legislature representing Scarborough-Guildwood. “We must seek input from community members about investments locally,” she said. “Inviting experts in to advise on major policy is also important to make evidence-based decisions."

Michael Coteau, MPP for Don Valley East and the third leadership candidate who was a member of the former government, called for “a new relationship of respect and collaboration with municipalities.”

He said there is an “important balance to be achieved between pursuing province wide objectives for green-energy initiatives and recognizing and reflecting unique local conditions and circumstances.”

Kate Graham, who has worked in municipal public service and has not held a provincial public office, said that experts and local communities are best placed to shape decisions in the sector.

In the final part of a three-part series, Ontario's Liberal leadership contenders discuss electricity, lessons learned from the bungled rollout of previous Liberal green policy, and whether to lean more on Quebec's hydroelectricity.
“What's gotten Ontario in trouble in the past is when Queen's Park politicians are the ones micromanaging the electricity file,” she said.

“Community consultation is vitally important to the long-term success of infrastructure projects,” said Alvin Tedjo, a former policy adviser to Liberal ministers Brad Duguid and Glen Murray.

“Community voices must be heard and listened to when large-scale energy programs are going to be implemented,” agreed Brenda Hollingsworth, a personal injury lawyer making her first foray into politics.

Of the six candidates, only Coteau went beyond reflection to suggest a path forward, saying he would review the distribution of responsibilities between the province and municipalities, with the aim of empowering cities and towns.

Turn back to Quebec?
Ford’s government has also turned away from a deal signed in 2016 to import hydroelectricity from Quebec.

Graham and Hunter both said they would consider increasing such imports. Hunter noted that the deal, which would displace domestic natural gas production, will lower the cost of electricity paid by Ontario ratepayers by a net total of $38 million from 2017 to 2023, according to the province’s fiscal watchdog.

“I am open to working with our neighbouring province,” Hunter said. “This is especially important as we seek to bring electricity to remote northern, on-reserve Indigenous communities.”

Tedjo said he has no issues with importing clean energy as long as it’s at a fair price.

Hollingsworth and Coteau both said they would withhold judgment until they could see the province’s capacity status in 2022.

“In evaluating the case for increasing importation of water power from Quebec, we must realistically assess the limitations of the existing transmission system and the cost and time required to scale up transmission infrastructure, among other factors,” Coteau said.

Del Duca also took a wait-and-see approach. “This will depend on our energy needs and energy mix,” he said. “I want to see our energy needs go down; we need more efficiency and better conservation to make that happen.”

What's the right energy mix?
Nuclear energy currently accounts for about a third of Ontario’s energy-producing capacity, even as Canada explores zero-emissions electricity by 2035 pathways. But it actually supplies about 60 percent of Ontario’s electricity. That is because nuclear reactors are always on, producing so-called baseload power.

Hydroelectricity provides another 25 percent of supply, while oil and natural gas contribute 6 per cent and wind adds 7 percent. Both solar and biofuels account for less than one percent of Ontario’s energy supply. However, a much larger amount of solar is not counted in this tally, as it is used at or near the sites where it is generated, and never enters the transmission system.

Asked for their views on how large a role various sources of power should play in Ontario’s electricity mix in the future, the candidates largely backed the idea of renewable energy, but offered little specifics.

Graham repeated her statement that experts and communities should drive that conversation. Tedjo said all non-polluting technologies should play a role in Ontario’s energy mix, as provinces like Alberta demonstrate parallel growth in green energy and fossil fuels. Coteau said we need a mix of renewable-energy sources, without offering specifics.

“We also need to pursue carbon capture and sequestration, working in particular with our farming communities,” he added.

 

Related News

View more

Canadian nuclear projects bring economic benefits

Ontario Nuclear Refurbishment Economic Impact powers growth as Bruce Power's MCR and OPG's Darlington unit 2 refurbishment drive jobs, supply-chain spending, medical isotopes, clean baseload power, and lower GHG emissions across Ontario and Canada.

 

Key Points

It is the measured gains from Bruce Power's MCR and OPG's Darlington refurbishment in jobs, taxes, and clean energy.

✅ CAD7.6B-10.6B impact in Ontario; CAD8.1B-11.6B nationwide.

✅ Supports 60% nuclear supply, jobs, and medical isotopes.

✅ MCR and Darlington cut GHGs, drive innovation and supply chains.

 

The 13-year Major Component Replacement (MCR) project being undertaken as part of Bruce Power's life-extension programme, which officially began with a reactor taken offline earlier this year, will inject billions of dollars into Ontario's economy, a new report has found. Meanwhile, the major project to refurbish Darlington unit 2 remains on track for completion in 2020, Ontario Power Generation (OPG) has announced.

The Ontario Chamber of Commerce (OCC) said its report, Major Component Replacement Project Economic Impact Analysis, outlines an impartial assessment of the MCR programme and related manufacturing contracts across the supply chain. The report was commissioned by Bruce Power.

"Our analysis shows that Bruce Power's MCR project is a fundamental contributor to the Ontario economy. More broadly, the life-extension of the Bruce Power facility will provide quality jobs for Ontarians, produce a stable supply of medical isotopes for the world's healthcare system, and deliver economic benefit through direct and indirect spending," OCC President and CEO Rocco Rossi said."As Ontario's energy demand grows, nuclear truly is the best option to meet those demands with reduced GHG [greenhouse gas] emissions. The Bruce Power MCR Project will not only drive economic growth in the region, it will position Ontario as a global leader in nuclear innovation and expertise."

According to the OCC's economic analysis, the MCR's economic impact on Ontario is estimated to be between CAD7.6 billion (USD5.6 billion) and CAD10.6 billion. Nationally, its economic impact is estimated to be between CAD8.1 billion and CAD11.6 billion. It estimates that the federal government will receive CAD144 million in excise tax and CAD1.2 billion in income tax, while the provincial government will receive CAD300 million and CAD437 million. Ontario’s municipal governments are estimated to receive a collective CAD192 million in tax.

The nuclear industry currently provides 60% of Ontario’s daily energy supply needs, with Pickering life extension plans bolstering system reliability, and is made up of over 200 companies and more than 60,000 jobs across a diversity of sectors such as operations, manufacturing, skilled trades, healthcare, and research and innovation, the report notes.

Greg Rickford, Ontario's minister of Energy, Northern Development and Mines, and minister of Indigenous Affairs, said continued use of the Bruce generating station which recently set an operating record would create jobs and advance Ontario’s nuclear industrial sector. "It is great to see projects like the MCR that help make Ontario the best place to invest, do business and find a job," he said.

The MCR is part of Bruce Power's overall life-extension programme, which started in January 2016. Bruce 6 will be the first of the six Candu units to undergo an MCR which will take 46 months to complete and give the unit a further 30-35 years of operational life. The total cost of refurbishing Bruce units 3-8 is estimated at about CAD8 billion, in addition to CAD5 billion on other activities under the life-extension programme, which is scheduled for completion by 2053.

 

Darlington milestones

OPG's long-term refurbishment programme at Darlington, alongside SMR plans for the site announced by the province, began with unit 2 in 2016 after years of detailed planning and preparation. Reassembly of the reactor, which was disassembled last year, is scheduled for completion this spring, and the unit 2 refurbishment project remains on track for completion in early 2020. At the same time, final preparations are under way for the start of the refurbishment of unit 3.

"We've entered a critical phase on the project," Senior Vice President of Nuclear Refurbishment Mike Allen said. "OPG and our project partners continue to work as an integrated team to meet our commitments on Unit 2 and our other three reactors at Darlington Nuclear Generating Station."

A 350-tonne generator stator manufactured by GE in Poland is currently in transit to Canada, where it will be installed in Darlington 3's turbine hall as the province also breaks ground on its first SMR this year.

The 10-year Darlington refurbishment is due to be completed in 2026, while the province plans to refurbish Pickering B to extend output beyond that date.

 

Related News

View more

Manitoba looking to raise electricity rates 2.5 per cent each year for 3 years

Manitoba Hydro Rate Increase sets electricity rates up 2.5% annually for three years via Bill 35, bypassing PUB hearings, citing Crown utility debt and pandemic impacts, with legislature debate and a multi-year regulatory review ahead.

 

Key Points

A government plan to lift electricity rates 2.5% annually over three years via Bill 35, bypassing PUB hearings.

✅ 2.5% annual hikes for three years set in legislation

✅ Bypasses PUB rate hearings during pandemic recovery

✅ Targets Crown utility debt; multi-year review planned

 

The Manitoba government is planning to raise electricity rates, with Manitoba Hydro scaling back next year, by 2.5 per cent a year over the next three years.

Finance Minister Scott Fielding says the increases, to be presented in a bill before the legislature, are the lowest in a decade and will help keep rates among the lowest in Canada, even as SaskPower's 8% hike draws scrutiny in a neighbouring province.

Crown-owned Manitoba Hydro had asked for a 3.5 per cent increase this year, similar to BC Hydro's 3% rise, to help pay off billions of dollars in debt.

“The way we figured this out, we looked at the rate increases that were approved by PUB (Public Utilities Board) over the last ten years, (and) we went to 75 per cent of that,” Fielding said during a Thursday morning press conference.

“It’s a pandemic, we know that there’s a lot of people that are unemployed, that are struggling, we know that businesses need to recharge after the business (sic), so this will provide them an appropriate break.”

Electricity rates are normally set by the Public Utilities Board, a regulatory body that holds rate hearings and examines the Crown corporation’s finances.

The Progressive Conservative government has temporarily suspended the regulatory process and has set rates itself, while Ontario rate legislation to lower rates moved forward in its jurisdiction.

Manitoba Liberal leader Dougald Lamont was quick to condemn the move, noting parallels to Ontario price concerns before saying in a news release the PCs “are abusing their power and putting Hydro’s financial future at risk by fixing prices in the hope of buying some political popularity.”

“Hydro’s rates should be set by the PUB after public hearings, not figured out on the back of a napkin in the Premier’s office,” Lamont wrote.

Fielding noted the increase would appear as an amendment to Bill 35, which will appear in the legislature this fall, as BC Hydro plans multi-year increases proceed elsewhere.

“All members of the legislative assembly will vote and debate this rate increase on Bill 35,” Fielding said.

“This will give the PUB time to implement reforms, and allow the utilities to prepare a more rigorous, multi-year review application process.”

 

Related News

View more

When paying $1 for a coal power plant is still paying too much

San Juan Generating Station eyed for $1 coal-plant sale, as Farmington and Acme propose CCS retrofit, meeting emissions caps and renewable mandates by selling captured CO2 for enhanced oil recovery via a nearby pipeline.

 

Key Points

A New Mexico coal plant eyed for $1 and a CCS retrofit to cut emissions and sell CO2 for enhanced oil recovery.

✅ $400M-$800M CCS retrofit; 90% CO2 capture target

✅ CO2 sales for enhanced oil recovery; 20-mile pipeline gap

✅ PNM projects shutdown savings; renewable and emissions mandates

 

One dollar. That’s how much an aging New Mexico coal plant is worth. And by some estimates, even that may be too much.

Acme Equities LLC, a New York-based holding company, is in talks to buy the 847-megawatt San Juan Generating Station for $1, after four of its five owners decided to shut it down. The fifth owner, the nearby city of Farmington, says it’s pursuing the bargain-basement deal with Acme to avoid losing about 1,600 direct and indirect jobs in the area amid a broader just transition debate for energy workers.

 

We respectfully disagree with the notion that the plant is not economical

Acme’s interest comes as others are looking to exit a coal industry that’s been plagued by costly anti-pollution regulations. Acme’s plan: Buy the plant "at a very low cost," invest in carbon capture technology that will lower emissions, and then sell the captured CO2 to oil companies, said Larry Heller, a principal at the holding group.

By doing this, Acme “believes we can generate an acceptable rate of return,” Heller said in an email.

Meanwhile, San Juan’s majority owner, PNM Resources Inc., offers a distinctly different view, echoing declining coal returns reported by other utilities. A 2022 shutdown will push ratepayers to other energy alternatives now being planned, saving them about $3 to $4 a month on average, PNM has said.

“We could not identify a solution that would make running San Juan Generating Station economical,” said Tom Fallgren, a PNM vice president, in an email.

The potential sale comes as a new clean-energy bill, supported by Governor Lujan Grisham, is working its way through the state legislature. It would require the state to get half of its power from renewable sources by 2030, and 100 percent by 2045, even as other jurisdictions explore small modular reactor strategies to meet future demand. At the same time, the legislation imposes an emissions cap that’s about 60 percent lower than San Juan’s current levels.

In response, Acme is planning to spend $400 million to $800 million to retrofit the facility with carbon capture and sequestration technology that would collect carbon dioxide before it’s released into the atmosphere, Heller said. That would put the facility into compliance with the pending legislation and, at the same time, help generate revenue for the plant.

The company estimates the system would cut emissions by as much as 90 percent, and the captured gas could be sold to oil companies, which uses it to enhance well recovery. The bottom line, according to Heller: “A winning financial formula.”

It’s a tricky formula at best. Carbon-capture technology has been controversial, even as new coal plant openings remain rare, expensive to install and unproven at scale. Additionally, to make it work at the San Juan plant, the company would need to figure out how to deliver the CO2 to customers since the nearest pipeline is about 20 miles (32 kilometers) away.

 

Reducing costs

Acme is also evaluating ways to reduce costs at San Juan, Heller said, including approaches seen at operators extending the life of coal plants under regulatory scrutiny, such as negotiating a cheaper coal-supply contract and qualifying for subsidies.

Farmington’s stake in the plant is less than 10 percent. But under terms of the partnership, the city — population 45,000 — can assume full control of San Juan should the other partners decide to pull out, mirroring policy debates over saving struggling nuclear plants in other regions. That’s given Farmington the legal authority to pursue the plant’s sale to Acme.

 

At the end of the day, nobody wants the energy

“We respectfully disagree with the notion that the plant is not economical,” Farmington Mayor Nate Duckett said by email. Ducket said he’s in better position than the other owners to assess San Juan’s importance “because we sit at Ground Zero.”

The city’s economy would benefit from keeping open both the plant and a nearby coal mine that feeds it, according to Duckett, with operations that contribute about $170 million annually to the local area.

While the loss of those jobs would be painful to some, Camilla Feibelman, a Sierra Club chapter director, is hard pressed to see a business case for keeping San Juan open, pointing to sector closures such as the Three Mile Island shutdown as evidence of shifting economics. The plant isn’t economical now, and would almost certainly be less so after investing the capital to add carbon-capture systems.

 

Related News

View more

Canadian gold mine cleans up its act with electricity

Electric mining equipment enables zero-emission, diesel-free operations at Goldcorp's Borden mine, using Sandvik battery-electric drills and LHD trucks to cut ventilation costs, noise, and maintenance while improving underground air quality.

 

Key Points

Battery-powered mining equipment replaces diesel, cutting emissions and ventilation costs in underground operations.

✅ Cuts diesel use, heat load, and noise in underground headings.

✅ Reduces ventilation infrastructure and operating expense.

✅ Improves air quality, worker health, and equipment uptime.

 

Mining operations get a lot of flack for creating environmental problems around the world. Yet they provide much of the basic material that keeps the global economy humming. Some mining companies are drilling down in their efforts to clean up their acts, exploring solutions such as recovering mine heat for power to reduce environmental impact.

As the world’s fourth-largest gold mining company Goldcorp has received its share of criticism about the impact it has on the environment.

In 2016, the Canadian company decided to do something about it. It partnered with mining-equipment company Sandvik and began to convert one of its mines into an all-electric operation, a process that is expected to take until 2021.

The efforts to build an all-electric mine began with the Sandvik DD422iE in Goldcorp’s Borden mine in Ontario, Canada.

Goldcorp's Borden mine in Borden, Ontario, CanadaGoldcorp's Borden mine in Borden, Ontario, Canada

The machine weighs 60,000 pounds and runs non-stop on a giant cord. It has a 75-kwh sodium nickel chloride battery to buffer power demands, a crucial consideration as power-hungry Bitcoin facilities can trigger curtailments during heat waves, and to move the drill from one part of the mine to another.

This electric rock-chewing machine removes the need for the immense ventilation systems needed to clean the emissions that diesel engines normally spew beneath the surface in a conventional mining operation, though the overall footprint depends on electricity sources, as regions with Clean B.C. power imports illustrate in practice.

These electric devices improve air quality, dramatically reduce noise pollution, and remove costly maintenance of internal combustion engines, Goldcorp says.

More importantly, when these electric boring machines are used across the board, it will eliminate the negative health effects those diesel drills have on miners.

“It would be a challenge to go back,” says big drill operator Adam Ladouceur.

Mining with electric equipment also removes second- or third-highest expenditure in mining, the diesel fuel used to power the drills, said Goldcorp spokesman Pierre Noel, even as industries pursue dedicated energy deals like Bitcoin mining in Medicine Hat to manage power costs. (The biggest expense is the cost of labor.)

Electric load, haul, dump machine at Goldcorp Borden mine in OntarioElectric load, haul, dump machine at Goldcorp Borden mine in Ontario

Aside from initial cost, the electric Borden mine will save approximately $7 million ($9 million Canadian) annually just on diesel, propane and electricity.

Along with various sizes of electric drills and excavating tools, Goldcorp has started using electric powered LHD (load, haul, dump) trucks to crush and remove the ore it extracts, and Sandvik is working to increase the charging speed for battery packs in the 40-ton electric trucks which transport the ore out of the mines, while utilities add capacity with new BC generating stations coming online.

 

Related News

View more

No public details for Newfoundland electricity rate mitigation talks

Muskrat Falls rate mitigation progresses as Newfoundland and Labrador and Ottawa align under the updated Atlantic Accord, targeting affordable electricity rates through federal involvement, PUB input, and potential financing solutions with Nalcor, Emera, and lenders.

 

Key Points

An initiative by NL and Ottawa to keep electricity rates affordable via federal support, PUB input, and financing options.

✅ Federal-provincial talks under the updated Atlantic Accord

✅ PUB process integrated for independent oversight

✅ Possible roles for Nalcor, Emera, and project lenders

 

At the announcement of an updated Atlantic Accord between the provincial and federal governments, Newfoundland and Larbrador Premier Dwight Ball gave notice federal Finance Minister Bill Morneau will be in St. John’s to talk about the cost of Muskrat Falls and how Labrador power flows through Quebec to market.

“We look forward to welcoming Minister Morneau and his team to advance discussions on federal financing and rate mitigation,” read a statement from the premier’s office Tuesday, in response to questions about that coming meeting and federal-provincial work on rate mitigation.

At the announcement, Ball specifically said the plan is to “finalize federal involvement for making sure electricity rates remain affordable,” such as shielding ratepayers from overruns through federal-provincial measures, with Ball and MP Seamus O’Regan trumpeting the provincial-federal relationship.

The provincial and federal governments are not the only two parties involved in provincial power rates and handling of Muskrat Falls, even as electricity users have started paying for the project across Newfoundland and Labrador, but The Telegram is told details of meetings on rate mitigation are not being released, down to the list of attendees.

The premier’s office was asked specifically about the involvement of Nalcor Energy, including a recent financial update during the pandemic, Emera, Goldman, TD or any others involved in project financing. The response was that the plan is not to indicate what is being explored and who might be involved, until there is something more concrete to speak about.

The government’s plan is to have something to feed into the ongoing work of the Public Utilities Board, to develop a more complete response for rate mitigation, including lump-sum credits on electricity bills and other tools, for the PUB’s final report, due in 2020, even as regulators in Nova Scotia weigh a 14% rate hike in a separate proceeding.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.