Advanced Reactors Will Stand On The Shoulders Of Giants


advanced nuclear reactor

Substation Relay Protection Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today

Advanced Nuclear Reactors redefine nuclear energy with SMRs, diverse fuels, passive safety, digital control rooms, and flexible heat and power, pairing veteran operator expertise with cost-efficient, carbon-free electricity for a resilient grid.

 

Key Points

SMR-based advanced reactors with passive cooling and digital controls deliver flexible power and process heat.

✅ Veteran operators transfer proven safety culture and risk management.

✅ SMRs, passive safety, and digital controls simplify operations.

✅ Flexible output: electricity, process heat, and grid support.

 

Advanced reactors will break the mold of what we think next-gen nuclear power can accomplish: some will be smaller, some will use different kinds of fuel and others will do more than just make electricity. This new technology may seem like uncharted waters, but when operators, technicians and other workers start up the first reactors of the new generation, they will bring with them years of nuclear experience to run machines that have been optimized with lessons from the current fleet.

While advanced reactors are often portrayed as the future of nuclear energy, and atomic energy is heating up across markets, its our current plants that have paved the way for these exciting innovations and which will be workhorses for years to come.

 

Reactor Veterans Bring Their Expertise to New Designs

Many of the workers who will operate the next generation of reactors come from a nuclear background. Even though the design of an advanced reactor may be different, the experience and instincts these operators have gained from working at the current fleet will help new plants get off to a more productive start.

They have a questioning attitude; they are always exploring what could go wrong and always understanding the notion of risk management in nuclear operations, whether its the oldest design or the newest design, said Chip Pardee, the president of Terrestrial Energy USA, who is the former chief operating officer at two nuclear utilities, Exelon Corp. and the Tennessee Valley Authority.

They have respect for the technology and a bias towards conservative decision-making.

Jhansi Kandasamy, vice president of engineering at GE Hitachi Nuclear Energy, agrees. She said that the presence of industry veterans will benefit the new modelslike the 300 megawatt boiling water reactor her company is developing.

From the beginning, a new reactor will have people who have touched it, worked on it, and experienced it, she said.

Theyre going to be able to tell you if something doesnt look right, because theyve lived through it.

 

Experience Informs New Reactor Design

Advanced reactors are designed by engineers who are fully familiar with existing plants and can use that experience to optimize the new ones, like a family building a house and wanting the kitchen just so. New reactors will be simpler to operate because of insights gained from years of operations of the current fleet, and some designs even integrate molten salt energy storage to enhance flexibility.

NuScale Power LLC, for example, has a very different design from the current fleet amid an advanced nuclear push that is reshaping development: up to 12 small reactorsinstead of one or two large reactorsmanaged from a single digital control roominstead of one full of analog switches and dials. When the company designed its control room, it brought in industry veterans who had collectively worked at more than two dozen nuclear plants.

The experts that NuScale brought in critiqued everything, even down to the shape of the symbols on the computer screens to make them easier to read for operators who sometimes need to quickly interpret lots of incoming data. The control panels for NuScales small modular reactor (SMR) present information according to its importance and automatically call up appropriate procedures for operators.

Many advanced reactors are also smaller than those currently operating, which makes their components simpler and less expensive. Kandasamy pointed out that the giant mechanical pumps in todays reactors generate a lot of heat and require a lot of supporting systems, including air conditioning in the rooms that house them.

GE Hitachis SMR design relies more on passive cooling so it needs fewer pumps, and those that remain use magnets, so they generate less heat. Fewer, smaller pumps means a smaller building and less cost.

 

Advanced Nuclear Will Further the Work of Current Reactors

Advanced reactors promise improved flexibility and the ability to do more kinds of work, including nuclear beyond electricity applications, to displace carbon and stabilize the climate. And they will continue nuclear energys legacy of providing reliable, carbon-free electricity, as a recent new U.S. reactor startup illustrates in practice. As new designs come on line over the next decade, we will continue to rely on operating plants which provide nearly 55 percent of the countrys carbon-free electricity.

The world will need all the carbon-free generation it can get for many years to come, as companies, states and countries aim for zero emissions by mid-century and pursue strategies like the green industrial revolution to accelerate deployment. That means it will need wind, solar, advanced reactors and current plants.

 

Related News

Related News

Hydro One and Alectra announce major investments to strengthen electricity infrastructure and improve local reliability in the Hamilton area

Hydro One and Alectra Hamilton Grid Upgrades will modernize electricity infrastructure with new transformers, protection devices, transmission and distribution improvements, tree trimming, pole replacements, and line refurbishments to boost reliability and reduce outages across region.

 

Key Points

A $250M plan to modernize Hamilton transmission and distribution, reducing outages and improving reliability by 2022.

✅ New transformers and protection devices to cut outages

✅ Refurbished 1915 line powering Hamilton West Mountain

✅ Tree trimming and pole replacements across 1,260 km

 

Hydro One Networks Inc. (Hydro One), Ontario's largest electricity transmission and distribution company whose delivery rates recently increased, and Alectra Utilities have announced they expect to complete approximately $250 million of work in the Hamilton area by 2022 to upgrade local electricity infrastructure and improve service reliability.

As part of these plans to strengthen the electricity grid in the Hamilton region, where utilities must adapt to climate change pressures, investments are expected to include:

installing quieter, more efficient transformers in four stations across Hamilton to assist in reducing the number of outages;
replacing protection and switching devices across the city to shorten outage restoration times, reflecting how transmission line work underpins reliability;
refurbishing a power line originally installed in 1915 that is critical to powering the Hamilton West Mountain area; and,
trimming hazardous trees across more than 1,260 km of overhead powerlines and replacing more than 270 poles.
Hydro One will be working with Alectra Utilities to replace aging infrastructure at Elgin transmission station.

"A loss of power grinds life to a halt, impacting businesses, families and productivity. That's why Hydro One is partnering with Alectra Utilities to support a growing local economy in Hamilton, while improving power reliability for its residents," said Jason Fitzsimmons, Chief Corporate Affairs and Customer Care Officer. "Replacing aging infrastructure and modernizing equipment is part of our plan to build a stronger, safer and more reliable electricity system for Ontario now and into the future." 

"Partnering with Hydro One to invest in our local community will create a safer, more resilient and reliable system for the future," said Max Cananzi, President, Alectra Utilities.  "In addition to investments in the transmission system, Alectra Utilities also plans to invest $235 million over the next five years to renew, upgrade and connect customers to the electrical distribution and supporting systems in Hamilton. Investments in the transmission and distribution systems in Hamilton will contribute to the long-term sustainability of our communities."

"I am pleased to see Hydro One and Alectra investing in modernizing local electricity infrastructure and improving reliability," said Member of Provincial Parliament, Donna Skelly.  "Safe and reliable power is essential to supporting local families, businesses and our community."

Across Ontario, First Nations call for action on urgently needed transmission lines highlight the importance of timely grid investments.

Hydro One's investments included in this announcement are captured in its previously disclosed future capital expenditures, amid proposed projects like the Meaford hydro project across Ontario.

Much of Hydro One's electricity system was built in the 1950s, and replacing aging assets is critical as delays affecting a cross-border transmission line elsewhere have shown. Its three-year, $5 billion investment plan supports safe and reliable power to communities across Ontario, and strong regulatory oversight illustrated by the ATCO Electric penalty helps maintain public trust.


 

 

Related News

View more

Company Becomes UK's Second-Largest Electricity Operator

Second-Largest UK Grid Operator advancing electricity networks modernization, smart grid deployment, renewable integration, and resilient distribution, leveraging acquisitions, data analytics, and infrastructure upgrades to boost reliability, efficiency, and service quality across regions and energy sector.

 

Key Points

A growing electricity networks operator advancing smart grids, renewable integration, and reliability.

✅ Expanded via acquisitions and regional growth

✅ Investing in smart grid, data analytics, automation

✅ Enhancing reliability, resilience, renewable integration

 

In a significant shift within the UK’s energy sector, a major company has recently ascended to become the second-largest electricity networks operator in the country. This milestone marks a pivotal moment in the industry, reflecting ongoing changes and competitive dynamics in the energy landscape, such as the shift toward an independent system operator in Great Britain. The company's ascent underscores its growing influence and its role in shaping the future of energy distribution across the UK.

The company, whose identity is a result of strategic acquisitions and operational expansions, now holds a substantial position within the electricity networks sector. This new ranking is the result of a series of investments and strategic moves aimed at strengthening its network capabilities and, amid efforts to fast-track grid connections across the UK, expanding its geographical reach. By achieving this status, the company is set to play a crucial role in managing and maintaining the electricity infrastructure that serves millions of households and businesses across the UK.

The rise to the second-largest position follows a period of significant growth and transformation for the company. Recent acquisitions have enabled it to enhance its network infrastructure, integrate advanced technologies, adopting a more digital grid approach, and improve service delivery. These developments come at a time when the UK is undergoing a significant transition in its energy sector, driven by the need for modernization, sustainability, and resilience in response to evolving energy demands.

One of the key factors contributing to the company's new status is its focus on upgrading and expanding its electricity networks. Investments in modernizing infrastructure, such as the commissioning of a 2GW substation to boost capacity, incorporating smart grid technologies, and enhancing operational efficiencies have been central to its strategy. By leveraging cutting-edge technology and data analytics, the company is able to optimize network performance, reduce outages, and improve overall reliability.

The company’s expansion into new regions has also played a crucial role in its growth. By extending its network coverage, including assets like the London electricity tunnel that enhance supply routes, the company has been able to provide electricity to a larger customer base, increasing its market share and influence in the sector. This expansion not only enhances its position as a major player in the industry but also supports the broader goal of ensuring reliable and efficient electricity distribution across the UK.

The shift to becoming the second-largest operator also reflects broader trends in the UK energy sector. The industry is experiencing a period of consolidation and transformation, driven by regulatory changes, technological advancements, and the push towards decarbonization, with similar momentum seen in British Columbia's clean energy shift that underscores global trends. The company’s ascent is indicative of these broader dynamics, as firms adapt to new challenges and opportunities in a rapidly evolving market.

In addition to operational and strategic advancements, the company’s rise is aligned with the UK’s broader energy goals. The government has set ambitious targets for reducing carbon emissions and increasing the use of renewable energy sources. As a major electricity networks operator, the company is positioned to support these goals by integrating renewable energy into the grid, including projects like the Scotland-to-England subsea link that carry remote generation, enhancing energy efficiency, and contributing to the transition towards a low-carbon energy system.

The company’s new status also brings with it a range of responsibilities and opportunities. As one of the largest operators in the sector, it will have a significant role in shaping the future of electricity distribution in the UK. This includes addressing challenges such as grid reliability, energy security, and the integration of emerging technologies. The company’s ability to manage these responsibilities effectively will be crucial in ensuring that it continues to deliver value to customers and stakeholders.

The transition to becoming the second-largest operator is not without its challenges. The company will need to navigate a complex regulatory environment, manage stakeholder expectations, and address any operational issues that may arise from its expanded network. Additionally, the competitive nature of the energy sector means that the company will need to continuously innovate and adapt to maintain its position and drive further growth.

In summary, the company’s achievement of becoming the second-largest electricity networks operator in the UK represents a significant milestone in the energy sector. Through strategic acquisitions, infrastructure investments, and operational enhancements, the company has strengthened its position and expanded its reach. This development highlights the evolving landscape of the UK energy sector and underscores the importance of modernization and innovation in meeting the country’s energy needs. As the company moves forward, it will play a key role in shaping the future of electricity distribution and supporting the UK’s energy transition goals.

 

Related News

View more

Manitoba Government Extends Pause on New Cryptocurrency Connections

Manitoba Crypto Mining Electricity Pause signals a moratorium to manage grid strain, Manitoba Hydro capacity, infrastructure costs, and electricity rates, while policymakers evaluate sustainable energy demand, and planning for data centers and blockchain operations.

 

Key Points

A temporary halt on mining power hookups in Manitoba to assess grid impacts, protect rates, and plan sustainable use.

✅ Applies only to new service requests; existing sites unaffected

✅ Addresses grid strain, infrastructure costs, electricity rates

✅ Enables review with Manitoba Hydro for sustainable policy

 

The Manitoba government has temporarily suspended approving new electricity service connections for cryptocurrency mining operations, a step similar to BC Hydro's suspension seen in a neighboring province.


The Original Pause

The pause was initially imposed in November 2022 due to concerns that the rapid influx of cryptocurrency mining operations could place significant strain on the province's electrical grid. Manitoba Hydro, the province's primary electric utility, which has also faced legal scrutiny in the Sycamore Energy lawsuit, warned that unregulated expansion of the industry could necessitate billions of dollars in infrastructure investments, potentially driving up electricity rates for Manitobans.


The Extended Pause Offers Time for Review

The extension of the pause is meant to provide the government and Manitoba Hydro with more time to assess the situation thoroughly and develop a long-term solution addressing the challenges and opportunities presented by cryptocurrency mining, including evaluating emerging options such as modular nuclear reactors that other jurisdictions are studying. The government has stated its commitment to ensuring that the long-term impacts of the industry are understood and don't unintentionally harm other electricity customers.


What Does the Pause Mean?

The pause does not affect existing cryptocurrency operations but prevents the establishment of new ones.  It applies specifically to requests for electricity service that haven't yet resulted in agreements to construct infrastructure or supply electricity, and it comes amid regional policy shifts like Alberta ending its renewable moratorium that also affect grid planning.


Concerns About Energy Demands

Cryptocurrency mining involves running high-powered computers around the clock to solve complex mathematical problems. This process is incredibly energy-intensive. Globally, the energy consumption of cryptocurrency networks has drawn scrutiny for its environmental impact, with examples such as Iceland's mining power use illustrating the scale. In Manitoba, concern focuses on potentially straining the electrical grid and making it difficult for Manitoba Hydro to plan for future growth.


Other Jurisdictions Taking Similar Steps

Manitoba is not alone in its cautionary approach to cryptocurrency mining. Several other regions and utilities have implemented restrictions or are exploring limitations on how cryptocurrency miners can access electricity, including moves by Russia to ban mining amid power deficits. This reflects a growing awareness among policymakers about the potentially destabilizing impact this industry could have on power grids and electricity markets.


Finding a Sustainable Path Forward

Manitoba Hydro has stated that it is open to working with cryptocurrency operations but emphasizes the need to do so in a way that protects existing ratepayers and ensures a stable and reliable electricity system for all Manitobans, while recognizing market uncertainties highlighted by Alberta wind project challenges in a neighboring province. The government's extension of the pause signifies its intention to find a responsible path forward, balancing the potential for economic development with the necessity of safeguarding the province's power supply.

 

Related News

View more

Neo-Nazi, woman accused of plotting 'hate-fueled attacks' on power stations, federal complaint says

Baltimore Substation Attack Plot highlights alleged neo-Nazi plans targeting electrical substations and the power grid, as FBI and DHS warn of domestic extremism threats to critical infrastructure, with arrests in Maryland disrupting potential sniper attacks.

 

Key Points

An alleged extremist plot to disable Baltimore's power grid by shooting substations, thwarted by federal arrests.

✅ Two suspects charged in Maryland conspiracy

✅ Targets included five substations around Baltimore

✅ FBI cites domestic extremism threat to infrastructure

 

A neo-Nazi in Florida and a Maryland woman conspired to attack several electrical substations in the Baltimore area, federal officials say.

Sarah Beth Clendaniel and Brandon Clint Russell were arrested and charged in a conspiracy to disable the power grid by shooting out substations via "sniper attacks," according to a criminal complaint from the U.S. Attorney's Office for the District of Maryland.

Clendaniel allegedly said she wanted to "completely destroy this whole city" and was planning to target five substations situated in a "ring" around Baltimore, the complaint said. Russell is part of a violent extremist group that has cells in multiple states, and he previously planned to attack critical infrastructure in Florida, the complaint said.

"This planned attack threatened lives and would have left thousands of Marylanders in the cold and dark," Maryland U.S. Attorney Erek Barron said in a press release. "We are united and committed to using every legal means necessary to disrupt violence, including hate-fueled attacks."

The news comes as concerns grow about an increase in targeted substation attacks on U.S. substations tied to domestic extremism.

 

What to know about substation attacks

Federal data shows vandalism and suspicious activities at electrical facilities soared nationwide last year, and cyber actors have accessed utilities' control rooms as well.

At the end of the year, attacks or potential attacks were reported on more than a dozen substations and one power plant across five states, and Symantec documented Russia-linked Dragonfly activity targeting the energy sector earlier. Several involved firearms.

In December, targeted attacks on substations in North Carolina left tens of thousands without power amid freezing temperatures, spurring renewed focus on protecting the U.S. power grid among officials. The FBI is investigating.

Vandalism at facilities in Washington left more than 21,000 without electricity on Christmas Day, even as hackers breached power-plant systems in other states. Two men were arrested, and one told police he planned to disrupt power to commit a burglary.

The Department of Homeland Security last year said domestic extremists had been developing "credible, specific plans" since at least 2020 and would continue to "encourage physical attacks against electrical infrastructure," and the U.S. government has condemned Russia for power grid hacking as well.

Last February, three neo-Nazis pleaded guilty to federal crimes related to a scheme to attack the grid with rifles, with each targeting a substation in a different region of the U.S., even as reports that Russians hacked into US electric utilities drew widespread attention.

 

Related News

View more

Rio Tinto Completes Largest Off-Grid Solar Plant in Canada's Northwest Territories

Rio Tinto Off-Grid Solar Power Plant showcases renewable energy at the Diavik Diamond Mine in Canada's Northwest Territories, cutting diesel use, lowering carbon emissions, and boosting remote mining resilience with advanced photovoltaic technology.

 

Key Points

A remote solar PV plant at Diavik mine supplying clean power while cutting diesel use, carbon emissions, and costs.

✅ Largest off-grid solar in Northwest Territories

✅ Replaces diesel generators during peak solar hours

✅ Enhances sustainability and lowers operating costs

 

In a significant step towards sustainable mining practices, Rio Tinto has completed the largest off-grid solar power plant in Canada’s Northwest Territories. This groundbreaking achievement not only highlights the company's commitment to renewable energy, as Canada nears 5 GW of solar capacity nationwide, but also sets a new standard for the mining industry in remote and off-grid locations.

Located in the remote Diavik Diamond Mine, approximately 220 kilometers south of the Arctic Circle, Rio Tinto's off-grid solar power plant represents a technological feat in harnessing renewable energy in challenging environments. The plant is designed to reduce reliance on diesel fuel, traditionally used to power the mine's operations, and mitigate carbon emissions associated with mining activities.

The decision to build the solar power plant aligns with Rio Tinto's broader sustainability goals and commitment to reducing its environmental footprint. By integrating renewable energy sources like solar power, a strategy that renewable developers say leads to better, more resilient projects, the company aims to enhance energy efficiency, lower operational costs, and contribute to global efforts to combat climate change.

The Diavik Diamond Mine, jointly owned by Rio Tinto and Dominion Diamond Mines, operates in a remote region where access to traditional energy infrastructure is limited, and where, despite lagging solar demand in Canada, off-grid solutions are increasingly vital for reliability. Historically, diesel generators have been the primary source of power for the mine's operations, posing logistical challenges and environmental impacts due to fuel transportation and combustion.

Rio Tinto's investment in the off-grid solar power plant addresses these challenges by leveraging abundant sunlight in the Northwest Territories to generate clean electricity directly at the mine site. The solar array, equipped with advanced photovoltaic technology, which mirrors deployments such as Arvato's first solar plant in other sectors, is capable of producing a significant portion of the mine's electricity needs during peak solar hours, reducing reliance on diesel generators and lowering overall carbon emissions.

Moreover, the completion of the largest off-grid solar power plant in Canada's Northwest Territories underscores the feasibility and scalability of renewable energy solutions, from rooftop arrays like Edmonton's largest rooftop solar to off-grid systems in remote and resource-intensive industries like mining. The success of this project serves as a model for other mining companies seeking to enhance sustainability practices and operational resilience in challenging geographical locations.

Beyond environmental benefits, Rio Tinto's initiative is expected to have positive economic and social impacts on the local community. By reducing diesel consumption, the company mitigates air pollution and noise levels associated with mining operations, improving environmental quality and contributing to the well-being of nearby residents and wildlife.

Looking ahead, Rio Tinto's investment in renewable energy at the Diavik Diamond Mine sets a precedent for responsible resource development and sustainable mining practices in Canada, where solar growth in Alberta is accelerating, and globally. As the mining industry continues to evolve, integrating renewable energy solutions like off-grid solar power plants will play a crucial role in achieving long-term environmental sustainability and operational efficiency.

In conclusion, Rio Tinto's completion of the largest off-grid solar power plant in Canada's Northwest Territories marks a significant milestone in the mining industry's transition towards renewable energy. By harnessing solar power to reduce reliance on diesel generators, the company not only improves operational efficiency and environmental stewardship but also adds to momentum from corporate power purchase agreements like RBC's Alberta solar deal, setting a positive example for sustainable development in remote regions. As global demand for responsible mining practices grows, initiatives like Rio Tinto's off-grid solar project demonstrate the potential of renewable energy to drive positive change in resource-intensive industries.

 

Related News

View more

Opinion: With deregulated electricity, no need to subsidize nuclear power

Pennsylvania Electricity Market Deregulation has driven competitive pricing, leveraged low-cost natural gas, and spurred private investment, jobs, and efficient power plants, while nuclear subsidies threaten wholesale market signals and long-term consumer savings.

 

Key Points

Policy that opens generation to competition, leverages cheap gas, lowers rates, and resists subsidies for nuclear plants.

✅ Competitive wholesale pricing benefits consumers statewide

✅ Gas-driven plants add efficient, flexible capacity and jobs

✅ Nuclear subsidies distort market signals and raise costs

 

For decades, the government regulation of Pennsylvania's electricity markets dictated all aspects of power generation resources in the state, thus restricting market-driven prices for consumers and hindering new power plant development and investment.

Deregulation has enabled competitive markets to drive energy prices downward, as recent grid auction payouts fell 64% indicate, which has transformed Pennsylvania from a higher-electricity-cost state to one with prices below the national average.

Recently, the economic advantage of abundant low-cost natural gas has spurred an influx of billions of dollars of private capital investment and thousands of jobs to construct environmentally responsible natural gas power generation facilities throughout the commonwealth — including our three power generation facilities in operation and one presently under construction.

Calpine is an independent power provider with a national portfolio of 80 highly efficient power plants in operation or under construction with an electric generating capacity of approximately 26,000 megawatts. Collectively, these resources can provide sufficient power for more than 30 million residential homes. We are not a regulated utility receiving a guaranteed rate of return on investment. Rather, Calpine competes to sell wholesale power into the electric markets, and the economics of supply and demand are fundamental to the success of our business.

Pennsylvania's deregulated electricity market is working. Consumers are benefiting from low-cost natural gas, as broader evidence shows competition benefits consumers and the environment across markets, and companies such as Calpine are investing billions of dollars and creating thousands of jobs to build advanced, energy efficient, environmentally responsible and flexible power generating facilities.

There are presently seven electric generating projects under construction in the commonwealth, representing about a $7 billion capital investment that will produce about 7,000 megawatts of efficient electrical power, with additional facilities being planned.

Looking back 20 years following the enactment of the Pennsylvania Electricity Generation Customer Choice and Competition Act, Pennsylvania's regulators and policymakers must conclude that the results of a free and fair market-driven structure have delivered indisputable benefits to the consumer, even amid potential winter rate spikes for residents, and the Pennsylvania economy.

While consumers are now reaping the benefits of open and competitive electricity markets, we see challenges on the horizon that could threaten the foundation of those markets. Due to pressure from nuclear power generators, state policymakers throughout the nation have been increasing efforts to impact the generation mix in their respective states by offering ratepayer funded subsidies to existing nuclear generation resources or by considering a market structure overhaul in New England.

Subsidizing one power generation type over others is having a significant, negative impact on wholesale electric markets, competitive retails markets and ultimately the cost the consumer will have to pay, and can exacerbate disruptions in coal and nuclear industries that strain the economy and risk brownouts.

In Pennsylvania, these subsidies would follow nearly $9 billion already paid by ratepayers to help the commonwealth's nuclear industry transition from regulated to competitive energy markets.

The deregulation of Pennsylvania's electricity markets in the late 1990s allowed the nuclear industry to receive billions of dollars from ratepayers to recover "stranded costs" related to investments in the commonwealth's nuclear plants. These costs were negotiated amounts based on settlements with Pennsylvania's Public Utility Commission to allow the nuclear industry to prepare and transition to competitive electricity markets.

Enough is enough. Regulatory or governmental interference in well functioning markets does not lead to better outcomes. Pennsylvania's state Legislature should not pick winners and losers by enacting legislation that would create an uneven playing field that subsidizes nuclear generating resources in the commonwealth.

William Ferguson is regional vice president for Calpine Corp.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.