Brazil angered by continued dam protest

By United Press International


Substation Relay Protection Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
Brazil retaliated against the Inter-American Human Rights Court for taking up the cause of protesters opposed to a giant Amazonian dam.

President Dilma Rousseff ordered an immediate cessation of all relations with the court, an autonomous judicial body within the Organization of American States that sits in San Jose, Costa Rica.

Officials said the court could lose up to $800,000 of Brazilian contributions to its operational costs. The country's envoy to the OAS in Washington, Ruy Casaes, is staying put in Brasilia while the row flares, Brazilian media reported.

Rousseff has reacted with anger to the court's recent interventions in support of thousands of poor slum dwellers being displaced by new construction in Rio de Janeiro in preparation for the 2014 World Cup and 2016 Olympics and then in support of about 50,000 indigenous Amazonians threatened by the new dam.

In both cases the court backed immediate suspension of construction, pronouncements seen in Brasilia as impractical and provocative.

Various environmentalist groups, non-government organizations and entertainment figures, including singer Sting and "Avatar" director James Cameron, joined the campaign.

Critics say the Belo Monte dam on the Xingu River will create a major environmental disaster when it floods more than 193 square miles of Amazonian jungle, displacing indigenous communities.

Brazil argues the project is essential to its future economic development. Once completed the dam will generate up to 11,000 megawatts of electricity, create jobs and provide electricity to 23 million homes, say officials.

Critics say a better management of Brazil's existing electricity production capacity would make the dam unnecessary.

The dam will be the world's third largest operational after China's Three Gorges and the Itaipu hydroelectric complex shared by Brazil and Paraguay on the two countries' border.

In April the court ordered an interim measure to suspend the construction of the hydroelectric complex following an appeal by a non-governmental organization acting in the name of tribal communities.

The Folha de Sao Paulo newspaper said Rousseff was disappointed and irritated by the court ruling.

The court's interim order to suspend the construction of Belo Monte was rejected by the Brazilian Foreign Affairs Ministry, which described the decision as "unjustifiable."

Officials insisted the dam's construction complied with Brazilian regulations. Officials said the government was in an ongoing dialogue with the indigenous communities over the next steps.

In February the dam faced a setback when a Brazilian federal judge blocked construction, arguing the environmental agency had approved the project without acting upon and meeting 29 environmental conditions.

Related News

Westinghouse AP1000 Nuclear Plant Breaks A First Refueling Outage Record

AP1000 Refueling Outage Record showcases Westinghouse nuclear power excellence as Sanmen Unit 2 completes its first reactor refueling in 28.14 days, highlighting safety, reliability, outage optimization, and economic efficiency in China.

 

Key Points

It is the 28.14-day initial refueling at Sanmen Unit 2, a global benchmark achieved with Westinghouse AP1000 technology.

✅ 28.14-day first refueling at Sanmen Unit 2 sets global benchmark

✅ AP1000 design simplifies systems, improves safety and reliability

✅ Outage optimization by Westinghouse and CNNC accelerates schedules

 

Westinghouse Electric Company China operations today announced that Sanmen Unit 2, one of the world's first AP1000® nuclear power plants, has set a new refueling outage record in the global nuclear power industry, completing its initial outage in 28.14 days.

"Our innovative AP1000 technology allows for simplified systems and significantly reduces the amount of equipment, while improving the safety, reliability and economic efficiency of this nuclear power plant, reflecting global nuclear milestones reached recently," said Gavin Liu, president of the Westinghouse Asia Operating Plant Services Business. "We are delighted to see the first refueling outage for Sanmen Unit 2 was completed in less than 30 days. This is a great achievement for Sanmen Nuclear Power Company and further demonstrates the outstanding performance of AP1000 design."

All four units of the AP1000 nuclear power plants in China have completed their first refueling outages in the past 18 months, aligning with China's nuclear energy development momentum across the sector.  The duration of each subsequent outage has fallen significantly - from 46.66 days on the first outage to 28.14 days on Sanmen Unit 2.

"During the first AP1000 refueling outage at the Sanmen site in December 2019, a Westinghouse team of experts worked side-by-side with the Sanmen outage team to partner on outage optimization, and immediately set a new standard for a first-of-a-kind outage, while major refurbishments like the Bruce refurbishment moved forward elsewhere," said Miao Yamin, chairman of CNNC Sanmen Nuclear Power Company Limited. "Lessons learned were openly exchanged between our teams on each subsequent outage, which has built to this impressive achievement."

Westinghouse provided urgent technical support on critical issues during the outage, as international programs such as Barakah Unit 1 achieved key milestones, to help ensure that work was carried out on schedule with no impact to critical path.

In addition to the four AP1000 units in China, two units are under construction at the Vogtle expansion near Waynesboro, Georgia, USA.

Separately, in the United States, a new reactor startup underscored renewed momentum in nuclear generation this year.

 

Related News

View more

Quebec and other provinces heading toward electricity shortage: report

Canada Electricity Shortage threatens renewable energy transition as EV adoption and building decarbonization surge; Hydro-Quebec exports, wind power expansion, demand response, and smart grid resilience shape investment and capacity planning.

 

Key Points

A looming supply gap in central and eastern provinces driven by EVs, heating decarbonization, exports, and limited new hydro.

✅ Hydro-Quebec capacity pressured by exports and new loads

✅ Wind power prioritized; new mega-dams deemed unworkable

✅ Smart meters boost flexibility but raise cyber risk

 

Quebec and other provinces in central and eastern Canada are heading toward a significant shortage of electricity to respond to the various needs of a transition to renewable energy, and Ontario's energy storage push underscores how supply is tightening across the region.

This is according to Polytechnique Montréal’s Institut de l’énergie Trottier, which published a report titled A Strategic Perspective on Electricity in Central and Eastern Canada last week.

The white paper says that at the current rate, most provinces will be incapable of meeting the electricity needs created by the increase in the number of electric vehicles, including the federal 2035 EV sales mandate that will amplify demand, and the decarbonization of building heating by 2030. “The situation worsens if we consider carbon neutrality objectives of the federal government and some provinces for 2050,” the institute says.

The researchers called on public utilities to immediately review their investment plans for the coming years in light of examples such as B.C.'s power supply challenges that accompany rapid green ambitions.

In a news conference Wednesday, Premier François Legault said the province could indeed be short on electricity as debates over Quebec's EV push continue. “We’re open to exploiting green hydrogen, if the price is good and also based on the electrical capacity we have. Because currently, we predict that in the coming years we’re going to lack electricity, so we must be prudent.”

Quebec is in a better position than other provinces because it is the largest hydroelectricity producer in the country. But that energy source also attracts new clients that have contributed to increased demand over the coming years, including data centres, cryptocurrency miners and greenhouses.

Report co-author Normand Mousseau said that while Hydro-Québec largely has the capacity to meet demand from electric vehicles, even amid EV shortages and wait times for buyers, heating and manufacturers, export contracts to the United States “risk reducing its leeway.”

Hydro-Québec will therefore have to find new sources of electricity, and Mousseau said the answer isn’t new dams.

“The reservoirs give an immense flexibility to the network, but we don’t have the capacity today to flood territories like we have done in the past,” said Mousseau, the institute’s scientific director. “From an environmental viewpoint and a social accessibility one, it’s unworkable.”

The solution would be more wind turbines, he said, adding construction could happen at “very competitive rates” and if there’s a surplus, “we can sell it without issue because other provinces are in an even worse situation than ours,” a reality echoed by eco groups in Northern Ontario sustainability discussions focused on the grid’s future.

The researchers propose solutions based on six themes: regulations, pricing, demand management, data, support for implementation and resilience.

In the resilience category, the report notes that innovative technology like smart meters makes the network more flexible, with pilots such as EV-to-grid integration in Nova Scotia illustrating emerging options, but also increases the risk of cyberattacks. The more extreme weather caused by climate change also increases the risks of damage to infrastructure while at the same time increasing demand.

 

Related News

View more

BloombergNEF: World offshore wind costs 'drop 32% per cent'

Global Renewable LCOE Trends reveal offshore wind costs down 32%, with 10MW turbines, lower CAPEX and OPEX, and parity for solar PV and onshore wind in Europe, China, and California, per BloombergNEF analysis.

 

Key Points

Benchmarks showing falling LCOE for offshore wind, onshore wind, and solar PV, driven by larger turbines and lower CAPEX

✅ Offshore wind LCOE $78/MWh; $53-64/MWh in DK/NL excl. transmission

✅ Onshore wind $47/MWh; solar PV $51/MWh, best $26-36/MWh

✅ Cost drivers: 10MW turbines, lower CAPEX/OPEX, weak China demand

 

World offshore wind costs have fallen 32% from just a year ago and 12% compared with the first half of 2019, according to a BNEF long-term outlook from BloombergNEF.

In its latest Levelized Cost of Electricity (LCOE) Update, BloombergNEF said its current global benchmark LCOE estimate for offshore wind is $78 a megawatt-hour.

“New offshore wind projects throughout Europe, including the UK's build-out, now deploy turbines with power ratings up to 10MW, unlocking CAPEX and OPEX savings,” BloombergNEF said.

In Denmark and the Netherlands, it expects the most recent projects financed to achieve $53-64/MWh excluding transmission.

New solar and onshore wind projects have reached parity with average wholesale power prices in California and parts of Europe, while in China levelised costs are below the benchmark average regulated coal price, according to BloombergNEF.

The company's global benchmark levelized cost figures for onshore wind and PV projects financed in the last six months are at $47 and $51 a megawatt-hours, underscoring that renewables are now the cheapest new electricity option in many regions, down 6% and 11% respectively compared with the first half of 2019.

BloombergNEF said for wind this is mainly down to a fall in the price of turbines – 7% lower on average globally compared with the end of 2018.

In China, the world’s largest solar market, the CAPEX of utility-scale PV plants has dropped 11% in the last six months, reaching $0.57m per MW.

“Weak demand for new plants in China has left developers and engineering, procurement and construction firms eager for business, and this has put pressure on CAPEX,” BloombergNEF said.

It added that estimates of the cheapest PV projects financed recently – in India, Chile and Australia – will be able to achieve an LCOE of $27-36/MWh, assuming competitive returns for their equity investors.

Best-in-class onshore wind farms in Brazil, India, Mexico and Texas can reach levelized costs as low as $26-31/MWh already, the research said.

Programs such as the World Bank wind program are helping developing countries accelerate wind deployment as costs continue to drop.

BloombergNEF associate in the energy economics team Tifenn Brandily said: “This is a three- stage process. In phase one, new solar and wind get cheaper than new gas and coal plants on a cost-of- energy basis.

“In phase two, renewables reach parity with power prices. In phase three, they become even cheaper than running existing thermal plants.

“Our analysis shows that phase one has now been reached for two-thirds of the global population.

“Phase two started with California, China and parts of Europe. We expect phase three to be reached on a global scale by 2030.

“As this all plays out, thermal power plants will increasingly be relegated to a balancing role, looking for opportunities to generate when the sun doesn’t shine or the wind doesn’t blow.”

 

Related News

View more

Berlin Geothermal Plant in El Salvador Set to Launch This Year

El Salvador Geothermal Expansion boosts renewable energy with a 7 MW Berlin binary ORC plant, upgrades at Ahuachapan, and pipeline projects, strengthening clean power capacity, grid reliability, and sustainable growth in Central America.

 

Key Points

A national push adding binary-cycle capacity at Berlin and Ahuachapan, boosting geothermal supply and advancing sites.

✅ 7 MW Berlin binary ORC plant entering service.

✅ Ahuachapan upgrade adds 2 MW, total geothermal 204 MW.

✅ Next: Chinameca, San Miguel, San Vicente, World Bank backed.

 

El Salvador is set to expand its renewable energy capacity with the inauguration of the 7-MW Berlin binary geothermal power plant, slated to go online later this year. This new addition marks a significant milestone in the country’s geothermal energy development, highlighting its commitment to sustainable energy solutions. The plant, which has already been installed and is currently undergoing testing, is expected to boost the nation’s geothermal capacity, contributing to its growing renewable energy portfolio.

The Role of Geothermal Energy in El Salvador’s Energy Mix

Geothermal energy plays a pivotal role in El Salvador's energy landscape. With the combined output from the Ahuachapan and Berlin geothermal plants, geothermal energy now accounts for about 21% of the country's net electricity supply. This makes geothermal the second-largest source of energy generation in El Salvador, underscoring its importance as a reliable and sustainable energy resource alongside emerging options like advanced nuclear microreactor technologies in the broader low-carbon mix.

In addition to the Berlin plant, El Salvador has made significant improvements to its Ahuachapan geothermal power plant. Recent upgrades have increased its generation capacity by 2 MW, further enhancing the country’s geothermal energy output. Together, the Ahuachapan and Berlin plants bring the total installed geothermal capacity to 204 MW, positioning El Salvador as a regional leader in geothermal energy development.

The Berlin Binary Geothermal Plant: A Technological Milestone

The Berlin binary geothermal power plant is especially noteworthy for several reasons. It is the first geothermal power plant to be constructed in El Salvador since 2007, marking a significant step in the country's ongoing efforts to expand its renewable energy infrastructure while reinforcing attention to risk management in light of Hawaii geothermal safety concerns reported elsewhere. The plant utilizes a binary cycle geothermal system, which is known for its efficiency in extracting energy from lower temperature geothermal resources, making it an ideal solution for regions like Berlin, where geothermal resources are abundant but at lower temperatures.

The plant was built by Turboden, an Italian company specializing in organic Rankine cycle (ORC) technology. The binary cycle system operates by transferring heat from the geothermal fluid to a secondary fluid, which then drives a turbine to generate electricity. This system allows for the efficient use of geothermal resources that might otherwise be too low in temperature for traditional geothermal plants, enabling pairing with thermal storage demonstration solutions to optimize output.

Future Geothermal Developments in El Salvador

El Salvador is not stopping with the Berlin geothermal plant. The country is actively working on other geothermal projects, including those in Chinameca, San Miguel, and San Vicente. These developments are expected to add 50 MW of additional capacity in their first phase, reflecting a broader shift as countries pursue hydrogen-ready power plants to reduce emissions, with a second phase, supported by the World Bank, planned to add another 100 MW.

The Chinameca, San Miguel, and San Vicente projects represent the next wave of geothermal development in El Salvador. When completed, these plants will significantly increase the country’s geothermal capacity, further diversifying its energy mix and reducing reliance on fossil fuels, and will require ongoing grid upgrades, a task complicated elsewhere by Germany grid expansion challenges highlighted in Europe.

International Support and Collaboration

El Salvador’s geothermal development efforts are supported by various international partners, including the World Bank, which has been instrumental in financing the expansion of geothermal projects, as utilities such as SaskPower geothermal plans in Canada explore comparable pathways. This collaboration highlights the global recognition of El Salvador’s potential in geothermal energy and its efforts to position itself as a hub for geothermal energy development in Central America.

Additionally, the country’s expertise in geothermal energy, especially in binary cycle technology, has attracted international attention. El Salvador’s progress in the geothermal sector could serve as a model for other countries in the region that are looking to harness their geothermal resources to reduce energy costs and promote sustainable energy development.

The upcoming launch of the Berlin binary geothermal power plant is a testament to El Salvador’s commitment to sustainable energy. As the country continues to expand its geothermal capacity, it is positioning itself as a leader in renewable energy in the region. The binary cycle technology employed at the Berlin plant not only enhances energy efficiency but also demonstrates El Salvador’s ability to adapt and innovate within the renewable energy sector.

With the continued development of projects in Chinameca, San Miguel, and San Vicente, and ongoing international collaboration, El Salvador’s geothermal energy sector is set to play a crucial role in the country’s energy future. As global demand for clean energy grows, exemplified by U.S. solar capacity additions this year, El Salvador’s investments in geothermal energy are helping to build a more sustainable, resilient, and energy-independent future.

 

Related News

View more

FPL Proposes Significant Rate Hikes Over Four Years

FPL Rate Increase Proposal 2026-2029 outlines $9B base-rate hikes as Florida grows, citing residential demand, grid infrastructure investments, energy mix diversification, and Florida PSC review impacting customer bills, reliability, and fuel price volatility mitigation.

 

Key Points

A $9B base-rate plan FPL filed with the Florida PSC to fund growth, grid upgrades, and energy diversification through 2029.

✅ Adds 275k since 2021; +335k customers projected by 2029.

✅ Monthly bills rise to about $157 by 2029, up ~22% total.

✅ Investments in poles, wires, transformers, substations, renewables.

 

Florida Power & Light (FPL), the state's largest utility provider, has submitted a proposal to the Florida Public Service Commission (PSC) seeking a substantial increase in customer base rates over the next four years, amid ongoing scrutiny, including a recent hurricane surcharge controversy that heightened public attention.

Rationale Behind the Rate Increase

FPL's request is primarily influenced by Florida's robust population growth. Since 2021, the utility has added about 275,000 customers and projects an additional 335,000 by the end of 2029. This surge necessitates significant investments in transmission and distribution infrastructure, including poles, wires, transformers, and substations, to maintain reliable service. Moreover, FPL aims to diversify its energy mix to shield customers from fuel price volatility, even as the state declined federal solar incentives that could influence renewable adoption, ensuring a stable and sustainable power supply.

Impact on Customer Bills

If approved, the proposed rate increases would affect residential customers as follows:

  • 2026: An estimated increase of $11.52 per month, raising the typical bill to $145.66.

  • 2027: An additional $6.05 per month, bringing the bill to $151.71.

  • 2028: A further increase of $3.64 per month, totaling $155.35.

  • 2029: An extra $2.06 per month, resulting in a final bill of $157.41.

These adjustments represent a cumulative increase of approximately 22% over the four-year period, while in other regions some customers face sharper spikes, such as Pennsylvania's winter price increases this season.

Comparison with Previous Rate Hikes

This proposal follows a series of rate increases approved in recent years, as California electricity bills have soared and prompted calls for action in that state. For instance, Tampa Electric Co. (TECO) received approval for rate hikes totaling $287.9 million in 2025, with additional increases planned for 2026 and 2027. Consumer groups have expressed intentions to challenge these rate hikes, indicating a trend of growing scrutiny over utility rate adjustments.

Regulatory Review Process

The PSC is scheduled to review FPL's rate increase proposal in the coming months. A staff recommendation is expected by March 14, 2025, with a final decision anticipated at a commission conference on March 20, 2025. This process allows for public input and thorough evaluation of the proposed rate changes, while elsewhere some utilities anticipate stabilization, such as PG&E's 2025 outlook in California.

Customer and Consumer Advocacy Responses

The proposed rate hikes have elicited concerns from consumer advocacy groups. Organizations like Food & Water Watch have criticized the scale of the increase, labeling it as the largest rate hike request in U.S. history, amid mixed signals such as Gulf Power's one-time 40% bill decrease earlier this year. They argue that such substantial increases could place undue financial strain on households, especially those with fixed incomes.

Additionally, the Florida Public Service Commission has faced challenges in approving rate hikes for other utilities, such as TECO, and a recent Florida court decision on electricity monopolies that may influence the policy landscape, with consumer groups planning to appeal these decisions. This backdrop of heightened scrutiny suggests that FPL's proposal will undergo rigorous examination.

As Florida continues to experience rapid growth, balancing the need for infrastructure development and reliable energy services with the financial impact on consumers remains a critical challenge. The PSC's forthcoming decisions will play a pivotal role in shaping the state's energy landscape, influencing both the economy and the daily lives of Floridians.

 

Related News

View more

Lawmakers push bill to connect Texas grid to rest of the nation

Connect the Grid Act links ERCOT to neighboring grids via high-voltage interconnections, enhancing reliability, resilience, and renewables integration. It enables power imports and exports with SPP, MISO, and the Western Interconnection under FERC oversight.

 

Key Points

A plan to link ERCOT with neighboring grids, improving reliability, enabling energy trade, and integrating renewables.

✅ High-voltage ties with SPP, MISO, and the Western Interconnection

✅ Enables imports during crises and exports of surplus power

✅ Brings ERCOT under FERC oversight; DoE to study Mexico links

 

In the aftermath of the devastating 2021 Texas blackouts, which exposed the vulnerabilities of the state's energy infrastructure, a significant legislative effort is underway to transform Texas from an energy island into a connected component of the broader U.S. power grid. Spearheaded by U.S. Representative Greg Casar, D-Austin, the proposed Connect the Grid Act is part of a push for smarter electricity infrastructure that seeks to remedy the isolation of the Electric Reliability Council of Texas (ERCOT) from neighboring power grids, a condition that significantly contributed to the crisis during Winter Storm Uri.

The blackouts, which left millions without power and resulted in significant loss of life and economic damage, underscored the inherent risks of Texas's unique energy infrastructure. Unlike the rest of the continental U.S., Texas's grid operates independently, limiting its ability to import electricity during emergencies. This isolation was a critical factor in the state's inability to respond effectively to the increased demand for power during the storm.

Recognizing the urgent need for a more resilient and integrated energy system, Rep. Casar's legislation aims to establish high-voltage connections between ERCOT and adjacent grid-operating organizations, including the Southern Power Pool, MISO, and the Western Interconnection. This would not only improve the reliability of Texas's power supply by enabling energy imports during crises but also allow the state to export surplus energy, thereby enhancing the economic efficiency and sustainability of its energy market.

The Connect the Grid Act proposes a range for the new connections' transfer capabilities, aiming to significantly boost the amount of power that can be shared between Texas and its neighbors. Such interconnectivity is anticipated to reduce energy costs for consumers by mitigating scarcity and enabling access to Texas's vast renewable energy resources, even as grid modernization affordability remains a point of debate among stakeholders. However, the bill faces opposition due to concerns over federal oversight, as it would bring ERCOT under the jurisdiction of the Federal Energy Regulatory Commission (FERC).

Some analysts note that policies such as later school start dates can ease late-summer peak demand as well.

At a press conference held at the IBEW Local 520 headquarters, Rep. Casar, along with environmental groups, labor unions, and frontline workers, highlighted the benefits of the proposed legislation. The bill also includes provisions for a Department of Energy study on the potential benefits of interconnecting with Mexico, and parallels proposals for macrogrids in Canada that seek greater reliability across borders.

The Connect the Grid Act reflects a broader national trend towards increasing the interconnectivity of regional power grids, a move deemed essential for the transition to renewable energy and combating climate change risks to the U.S. grid through expanded interconnection. By enabling the flow of clean energy from renewable-rich areas like Texas to energy-hungry urban centers, the legislation supports a more sustainable and resilient national energy infrastructure.

Critics of Texas's grid independence, including energy experts and federal regulators, have long advocated for such interconnections. They argue that increased access to neighboring grids could have mitigated the effects of the 2021 blackouts and emphasize the importance of a grid that can withstand extreme weather events. The Federal Energy Regulatory Commission and the North American Electric Reliability Corp. have both explored mandates and studies to promote electricity transfer between regional grids, while states like California grid upgrades are investing to modernize networks as well, highlighting the national importance of grid interconnectivity.

Despite the potential challenges of increased federal regulation, proponents of the Connect the Grid Act argue that the benefits of interconnection far outweigh the drawbacks. By reducing energy costs, enhancing grid reliability, and promoting renewable energy, the legislation aims to secure a more sustainable and equitable energy future for Texas and the nation.

If passed, the Connect the Grid Act would mark a historic shift in Texas's energy policy, ending the state's long-standing isolation and positioning it as a key player in the national and potentially international energy landscape, and echoes calls for a western Canadian electricity grid to strengthen regional ties. The bill sets a completion deadline of January 1, 2035, for the construction of the new connections, with other projects, like the one by Pattern Energy, potentially connecting ERCOT to parts of the Southeastern grid even earlier, by 2029. This legislative effort represents a critical step towards ensuring that Texas can meet its energy needs reliably and sustainably, while also contributing to the broader goal of transitioning to a cleaner, more resilient power system.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.