Power plant concerns analysts

By Knight Ridder Tribune


Protective Relay Training - Basic

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
Wisconsin Energy Corp.'s construction of a $2.3 billion coal-fired power plant in Oak Creek is on schedule, but the fight over one environmental permit for the project stirred interest from investment analysts.

At issue is the water intake structure in Lake Michigan that would provide water to cool the plant. Environmental groups Clean Wisconsin and Sierra Club - as well as Illinois Attorney General Lisa Madigan - oppose the structure. They say it relies on old technology that would cause more damage to Lake Michigan fish than a modern system requiring cooling towers.

The dispute over the plant was kept alive earlier this year when a federal appeals court threw out an Environmental Protection Agency rule that Wisconsin regulators relied on in approving the water intake structure. Discussion of the project came after Wisconsin Energy announced third-quarter earnings rose 17 percent, boosted by higher collection of fuel costs from its customers, as well as customer growth.

The contested water intake structure led to a series of questions from analysts about whether construction of the coal plants would be delayed if the utility is required to build cooling towers.

"It seems this process has been going on. It seems to be a slight overhang on the stock," said Andrew Levi of Brencourt Advisors in New York City during a company conference call with stock analysts. Wisconsin Energy executives said plant construction would be delayed a year or more if the utility is required to spend $300 million to build cooling towers for the Oak Creek plant. But Chairman Gale Klappa and Executive Vice President Rick Kuester said that isn't likely to happen.

"We feel pretty confident with our argument, and we think the (judge) will see it our way," Kuester said. "If not, we'll take it to appeal." After a hearing last week before administrative law Judge William Coleman, a decision is expected by the end of November, Klappa said. Meanwhile, construction of the $2.3 billion project is 42 percent complete, with construction of the water intake pipe virtually finished, Klappa said.

A new coal-handling facility that would serve both the existing Oak Creek power plant and the new project is almost finished, as well. Company executives say they believe their method of drawing water from Lake Michigan is environmentally more sound than cooling towers because it would draw in less lake water and result in fewer emissions of carbon dioxide, the leading greenhouse gas.

But national environmental groups and the Illinois attorney general have weighed in against the use of so-called once-through cooling systems and in favor of cooling towers, resulting in a legal victory for the environmental group Riverkeeper in a close y watched federal court case earlier this year. Katie Nekola, energy program director at Clean Wisconsin, said her group and others have been raising questions about the legality of the water intake structure since the project was first proposed several years ago.

"Ratepayers shouldn't be on the hook for the cost of the cooling towers if that should prove necessary," she said.

The Milwaukee-based utility holding company reported net income rose to $83 million, or 70 cents a share, from $71 million, or 60 cents a share, a year ago.

Related News

Ontario Reducing Burden on Industrial Electricity Ratepayers

Ontario Industrial Electricity Pricing Reforms aim to cut regulatory burden for industrial ratepayers through an energy concierge service, IESO billing reviews, GA estimation enhancements, clearer peak demand data, and contract cost savings.

 

Key Points

Measures to reduce industrial power costs via an energy concierge, IESO and GA reviews, and better peak demand data.

✅ Energy concierge eases pricing and connection inquiries

✅ IESO to simplify bills and refine GA estimation

✅ Real-time peak data and contract savings under review

 

Ontario's government is pursuing burden reduction measures for industrial electricity ratepayers, including legislation to lower rates to help businesses compete, and stimulate growth and investment.

Over the next year, Ontario will help industrial electricity ratepayers focus on their businesses instead of their electricity management practices by establishing an energy concierge service to provide businesses with better customer service and easier access to information about electricity pricing and changes for electricity consumers as well as connection processes.

Ontario is also tasking the Independent Electricity System Operator (IESO) to review and report back on its billing, settlement and customer service processes, building on initiatives such as electricity auctions that aim to reduce costs.

 

Improve and simplify industrial electricity bills, including clarifying the recovery rate that affects charges;

Review how the monthly Global Adjustment (GA) charge is estimated and identify potential enhancements related to cost allocation across classes; and,

Improve peak demand data publication processes and assess the feasibility of using real-time data to determine the factors that allocate GA costs to consumers.

Further, as part of the government's continued effort to finding efficiencies in the electricity system, Ontario is also directing IESO to review generation contracts to find opportunities for cost savings.

These measures are based on industry feedback received during extensive industrial electricity price consultations held between April and July 2019, which underscored how high electricity rates have impacted factories across the province.

"Our government is focused on finding workable electricity pricing solutions that will provide the greatest benefit to Ontario," said Greg Rickford, Minister of Energy, Northern Development and Mines. "Reducing regulatory burden on businesses can free up resources that can then be invested in areas such as training, new equipment and job creation."

The government is also in the process of developing further changes to industrial electricity pricing policy, amid planned rate increases announced by the OEB, informed by what was heard during the industrial electricity price consultations.

"It's important that we get this right the first time," said Minister Rickford. "That's why we're taking a thoughtful approach and listening carefully to what businesses in Ontario have to say."

Helping industrial ratepayers is part of the government's balanced and prudent plan to build Ontario together through ensuring our province is open for business and building a more transparent and accountable electricity system.

 

Related News

View more

Bomb Cyclone Leaves Half a Million Without Power in Western Washington

Western Washington Bomb Cyclone unleashed gale-force winds, torrential rain, and coastal flooding, causing massive power outages from Seattle to Tacoma; storm surge, downed trees, and blocked roads hindered emergency response and infrastructure repairs.

 

Key Points

A rapidly deepening storm with severe winds, rain, flooding, and major power outages across Western Washington.

✅ Rapid barometric pressure drop intensified the system

✅ Gale-force winds downed trees and power lines

✅ Coastal flooding and storm surge disrupted transport

 

A powerful "bomb cyclone" recently hit Western Washington, causing widespread destruction across the region. The intense storm left more than half a million residents without power, similar to B.C. bomb cyclone outages seen to the north, with outages affecting communities from Seattle to Olympia. This weather phenomenon, marked by a rapid drop in atmospheric pressure, unleashed severe wind gusts, heavy rain, and flooding, causing significant disruption to daily life.

The bomb cyclone, which is a rapidly intensifying storm, typically features a sharp drop in barometric pressure over a short period of time. This creates extreme weather conditions, including gale-force winds, torrential rain, and coastal flooding, as seen during California storm impacts earlier in the season. In Western Washington, the storm struck just as the region was beginning to prepare for the winter season, catching many off guard with its strength and unpredictability.

The storm's impact was immediately felt as high winds downed trees, power lines, and other infrastructure. By the time the worst of the storm had passed, utility companies had reported widespread power outages, with more than 500,000 customers losing electricity. The outages were particularly severe in areas like Seattle, Tacoma, and the surrounding communities. Crews worked tirelessly in difficult conditions to restore power, but many residents faced extended outages, underscoring US grid climate vulnerabilities that complicate recovery efforts, with some lasting for days due to the scope of the damage.

The power outages were accompanied by heavy rainfall, leading to localized flooding. Roads were inundated, making it difficult for first responders and repair crews to reach affected areas. Emergency services were stretched thin as they dealt with downed trees, blocked roads, and flooded neighborhoods. In some areas, floodwaters reached homes, forcing people to evacuate. In addition, several schools were closed, and public transportation services were temporarily halted, leaving commuters stranded and businesses unable to operate.

As the storm moved inland, its effects continued to be felt. Western Washington’s coastal regions were hammered by high waves and storm surges, further exacerbating the damage. The combination of wind and rain also led to hazardous driving conditions, prompting authorities to advise people to stay off the roads unless absolutely necessary.

While power companies worked around the clock to restore electricity, informed by grid resilience strategies that could help utilities prepare for future events, challenges persisted. Fallen trees and debris blocked access to repair sites, and the sheer number of outages made it difficult for crews to restore power quickly. Some customers were left in the dark for days, forced to rely on generators, candles, and other makeshift solutions. The storm's intensity left a trail of destruction, requiring significant resources to address the damages and rebuild critical infrastructure.

In addition to the immediate impacts on power and transportation, the bomb cyclone raised important concerns about climate change and the increasing frequency of extreme weather events. Experts note that storms like these are becoming more common, with rapid intensification leading to more severe consequences and compounding pressures such as extreme-heat electricity costs for households. As the planet warms, scientists predict that such weather systems will continue to grow in strength, posing greater challenges to cities and regions that are not always prepared for such extreme events.

In the aftermath of the storm, local governments and utility companies faced the daunting task of not only restoring services but also assessing the broader impact of the storm on communities. Many areas, especially those hit hardest by flooding and power outages, will require substantial recovery efforts. The devastation of the bomb cyclone highlighted the vulnerability of infrastructure in the face of rapidly changing weather patterns and water availability, as seen in BC Hydro drought adaptations nearby, and reinforced the need for greater resilience in the face of future storms.

The storm's impact on the Pacific Northwest is a reminder of the power of nature and the importance of preparedness. As Western Washington recovers, there is a renewed focus on strengthening infrastructure, including expanded renewable electricity to diversify supply, improving emergency response systems, and ensuring that communities are better equipped to handle the challenges posed by increasingly severe weather events. For now, residents remain hopeful that the worst is behind them and are working together to rebuild and prepare for whatever future storms may bring.

The bomb cyclone has left an indelible mark on Western Washington, but it also serves as a call to action for better preparedness, more robust infrastructure, and a greater focus on combating climate change to mitigate the impact of such extreme weather in the future.

 

Related News

View more

BC Hydro electricity demand down 10% amid COVID-19 pandemic

BC Hydro electricity demand decline reflects COVID-19 impacts across British Columbia, with reduced industrial load, full reservoirs, strategic spilling, and potential rate increases, as hydropower plants adjust operations at Seven Mile, Revelstoke, and Site C.

 

Key Points

A 10% COVID-19-driven drop in BC power use, prompting reservoir spilling, plant curtailment, and potential rate hikes.

✅ 10% load drop; industrial demand down 7% since mid-March

✅ Reservoirs near capacity; controlled spilling to mitigate risk

✅ Possible rate hikes; Site C construction continues

 

Elecricity demand is down 10 per cent across British Columbia, an unprecedented decline in commercial electricity consumption sparked by the COVID-19 pandemic, according to a BC Hydro report.

Power demand across hotels, offices, recreational facilities and restaurants have dwindled as British Columbians self isolate, and bill relief for residents and businesses was introduced during this period.

The shortfall means there's a surplus of water in reservoirs across the province.

"This drop in load in addition to the spring snow melt is causing our reservoirs to reach near capacity, which could lead to environmental concerns, as well as public safety risks if we don't address the challenges now," said spokesperson Tanya Fish.

Crews will have to strategically spill reservoirs to keep them from overflowing, a process that can have negative impacts on downstream ecosystems. Excessive spilling can increase fish mortality rates.

Spilling is currently underway at the Seven Mile and Revelstoke reservoirs. In addition, several small plants have been shut down.

Site C and hydro rates
According to the report, titled Demand Dilemma, the decline could continue into April 2021 and drop by another two per cent, even as a regulator report alleged BC Hydro misled oversight bodies.

Major industry — forestry, mining and oil and gas — accounts for about 30 per cent of BC Hydro's overall electricity load. Energy demand from these customers has dropped by seven per cent since mid-March, while in Manitoba a Consumers Coalition has urged rejection of proposed rate increases.

BC Hydro says a prolonged drop in demand could have an impact on future rates, which could potentially go up as the power provider looks to recoup deferred operating costs and financial losses.

In Manitoba, Manitoba Hydro's debt has grown significantly, underscoring the financial risks utilities face during demand shocks.

Fish said the crown corporation still expects there to be increased demand in the long-term. She said construction of the Site C Dam is continuing as planned to support clean-energy generation in the province. There are currently nearly 1,000 workers on-site.

 

Related News

View more

Renewable growth drives common goals for electricity networks across the globe

Energy Transition Grid Reforms address transmission capacity, interconnection, congestion management, and flexibility markets, enabling renewable integration and grid stability while optimizing network charges and access in Australia, Ireland, and Great Britain.

 

Key Points

Measures to expand transmission, boost flexibility, and manage congestion for reliable, low-carbon electricity systems.

✅ Transmission upgrades and interconnectors ease congestion

✅ Flexible markets, DER, and storage bolster grid stability

✅ Evolving network charges and access incentivize siting

 

Electricity networks globally are experiencing significant increases in the volume of renewable capacity as countries seek to decarbonise their power sectors, even as clean energy's 'dirty secret' highlights integration trade-offs, without impacting the security of supply. The scale of this change is creating new challenges for power networks and those responsible for keeping the lights on.

The latest insight paper from Cornwall Insight – Market design amidst global energy transition – looks into this issue. It examines the outlook for transmission networks, and how legacy design and policies are supporting decarbonisation, aligning with IRENA findings on renewables and shaping the system. The paper focuses on three key markets; Australia, Ireland and Great Britain (GB).

Australia's main priority is to enhance transmission capacity and network efficiency; as concerns over excess solar risking blackouts grow in distribution networks, without this, the transmission system will be a barrier to growth for decentralised flexibility and renewables. In contrast, GB and Ireland benefit from interconnection with other national markets. This provides them with additional levers that can be pulled to manage system security and supply. However, they are still trying to hone and optimise network flexibility in light of steepening decarbonisation objectives.

Unsurprisingly, renewable energy resources have been growing in all three markets, with Ireland regarded as a leader in grid integration, with this expected to continue for the foreseeable future. Many of these projects are often located in places where network infrastructure is not as well developed, creating pressure on system operation as a result.

In all three markets, unit charges are rising, driven by a reduced charging base as decentralised energy grows quickly. This combination of changes is leading to network congestion, a challenge mirrored by the US grid overhaul for renewables underway, as transmission network development struggles to keep up, and flexibility markets are being optimised and changed.

In summary, reforms are on-going in each jurisdiction to accommodate the rapid physical transformation of the generation mix. Each has its objectives and tensions which are reflective of wider global reform programmes being undertaken in most developed, liberalised and decarbonising energy markets.

Gareth Miller, CEO of Cornwall Insight, said: “Despite differences in market design and characteristics, all three markets are grappling with similar issues, that comes from committing to deep decarbonisation. This includes the most appropriate methods for charging for networks, managing access to them and dealing with issues such as network congestion and constraint.

“In all three countries, renewable projects are often placed in isolated locations, as seen in Scotland where more pylons are needed to keep the lights on, away from the traditional infrastructure that is closer to demand. However, as renewable growth is set to continue, the networks will need to transition from being demand-centric to more supply orientated.

“Both system operators and stakeholders will need to continually evaluate their market structures and designs to alleviate issues surrounding locational congestion and grid stability. Each market is at very different stages in the process in trying to improve any problems implementing solutions to allow for higher efficiencies in renewable energy integration.

“It is uncertain whether any of the proposed changes will fundamentally resolve the issues that come with increased renewables on the system. However, despite marked differences, they certainly could all learn from each other and elements of their network arrangements, as well as from US decarbonisation strategies research.”

 

Related News

View more

Ontario Poised to Miss 2030 Emissions Target

Ontario Poised to Miss 2030 Emissions Target highlights how rising greenhouse gas emissions from electricity generation and natural gas power plants threaten Ontario’s climate goals, environmental sustainability, and clean energy transition efforts amid growing economic and policy challenges.

 

Why is Ontario Poised to Miss 2030 Emissions Target?

Ontario Poised to Miss 2030 Emissions Target examines the province’s setback in meeting climate goals due to higher power-sector emissions and shifting energy policies.

✅ Rising greenhouse gas emissions from gas-fired electricity generation

✅ Climate policy uncertainty and missed environmental targets

✅ Balancing clean energy transition with economic pressures

Ontario’s path toward meeting its 2030 greenhouse gas emissions target has taken a sharp turn for the worse, according to internal government documents obtained by Global News. The province, once on track to surpass its reduction goals, is now projected to miss them—largely due to rising emissions from electricity generation, even as the IEA net-zero electricity report highlights rising demand nationwide.

In October 2024, the Ford government’s internal analysis indicated that Ontario was on track to reduce emissions by 28 percent below 2005 levels by 2030, effectively exceeding its target. But a subsequent update in January 2025 revealed a grim reversal. The new forecast showed an increase of about eight megatonnes (Mt) of emissions compared to the previous model, with most of the rise attributed to the province’s energy policies.

“This forecast is about 8 Mt higher than the October 2024 forecast, mainly due to higher electricity sector emissions that reflect the latest ENERGY/IESO energy planning and assumptions,” the internal document stated.

While the analysis did not specify which policy shifts triggered the change, experts point to Ontario’s growing reliance on natural gas. The use of gas-fired power plants has surged to fill temporary gaps created by nuclear refurbishment projects and other grid constraints, even as renewable energy’s role grows. In fact, natural gas generation in early 2025 reached its highest level since 2012.

The internal report cited “changing electricity generation,” nuclear power refurbishment, and “policy uncertainty” as major risks to achieving the province’s climate goals. But the situation may be even worse than the government’s updated forecast suggests.

On Wednesday, Ontario’s auditor general warned that the January projections were overly optimistic. The watchdog’s new report concluded the province could fall even further behind its 2030 emissions target, noting that reductions had likely been overestimated in several sectors, including transportation—such as electric vehicle sales—and waste management. “An even wider margin” of missed goals was now expected, the auditor said.

Environment Minister Todd McCarthy defended the government’s position, arguing that climate goals must be balanced against economic realities. “We cannot put families’ financial, household budgets at risk by going off in a direction that’s not achievable,” McCarthy said.

The minister declined to commit to new emissions targets beyond 2030—or even to confirm that the existing goals would be met—but insisted efforts were ongoing. “We are continuing to meet our commitment to at least try to meet our commitment for the 2030 target,” he told reporters. “But targets are not outcomes. We believe in achievable outcomes, not unrealistic objectives.”

Environmental advocates warn that Ontario’s reliance on fossil-fuel generation could lock the province into higher emissions for years, undermining national efforts to decarbonize Canada’s electricity grid. With cleaning up Canada’s electricity expected to play a central role in both industrial growth and climate action, the province’s backslide represents a significant setback for Canada’s overall emissions strategy.

Other provinces face similar challenges; for example, B.C. is projected to miss its 2050 targets by a wide margin.

As Ontario weighs its next steps, the tension between energy security, affordability, and environmental responsibility continues to define the province’s path toward a lower-carbon future and Canada’s 2050 net-zero target over the long term.

 

Related Articles

 

View more

As California enters a brave new energy world, can it keep the lights on?

California Grid Transition drives decarbonization with renewable energy, EV charging, microgrids, and energy storage, while tackling wildfire risk, aging infrastructure, and cybersecurity threats to build grid resilience and reliability across a rapidly electrifying economy.

 

Key Points

California Grid Transition is the statewide shift to renewables, storage, EVs, and resilient, secure infrastructure.

✅ Integrates solar, wind, storage, and demand response at scale

✅ Expands microgrids and DERs to enhance reliability and resilience

✅ Addresses wildfire, aging assets, and cybersecurity risks

 

Gretchen Bakke thinks a lot about power—the kind that sizzles through a complex grid of electrical stations, poles, lines and transformers, keeping the lights on for tens of millions of Californians who mostly take it for granted.

They shouldn’t, says Bakke, who grew up in a rural California town regularly darkened by outages. A cultural anthropologist who studies the consequences of institutional failures, she says it’s unclear whether the state’s aging electricity network and its managers can handle what’s about to hit it, as U.S. blackout risks continue to mount.

California is casting off fossil fuels to become something that doesn’t yet exist: a fully electrified state of 40 million people. Policies are in place requiring a rush of energy from renewable sources such as the sun and wind and calling for millions of electric cars that will need charging—changes that will tax a system already fragile, unstable and increasingly vulnerable to outside forces.

“There is so much happening, so fast—the grid and nearly everything about energy is in real transition, and there’s so much at stake,” said Bakke, who explores these issues in a book titled simply, “The Grid.”

The state’s task grew more complicated with this week’s announcement that Pacific Gas and Electric, which provides electricity for more than 5 million customer accounts, intends to file for bankruptcy in the face of potentially crippling liabilities from wildfires. But the reshaping of California’s energy future goes far beyond the woes of a single company.

The 19th-century model of one-way power delivery from utility companies to customers is being reimagined. Major utilities—and the grid itself—are being disrupted by rooftops paved with solar panels and the rise of self-sufficient neighborhood mini-grids. Whole cities and counties are abandoning big utilities and buying power from wholesalers and others of their choosing.

With California at the forefront of a new energy landscape, officials are racing to design a future that will not just reshape power production and delivery but also dictate how we get around and how our goods are made. They’re debating how to manage grid defectors, weighing the feasibility of an energy network that would expand to connect and serve much of the West and pondering how to appropriately regulate small power producers.

“We are in the depths of the conversation,” said Michael Picker, president of the state Public Utilities Commission, who cautions that even as the system is being rebooted, like repairing a car while driving in practice, there’s no real plan for making it all work.

Such transformation is exceedingly risky and potentially costly. California still bears the scars of having dropped its regulatory reins some 20 years ago, leaving power companies to bilk the state of billions of dollars it has yet to completely recover. And utility companies will undoubtedly pass on to their customers the costs of grid upgrades to defend against natural and man-made threats.

Some weaknesses are well known—rodents and tree limbs, for example, are common culprits in power outages, even as longer, more frequent outages afflict other parts of the U.S. A gnawing squirrel squeezed into a transformer on Thanksgiving Day three years ago, shutting off power to parts of Los Angeles International Airport. The airport plans to spend $120 million to upgrade its power plant.

But the harsh effects of climate change expose new vulnerabilities. Rising seas imperil coastal power plants. Electricity infrastructure is both threatened by and implicated in wildfires. Picker estimates that utility operations are related to one in 10 wildland fires in California, which can be sparked by aging equipment and winds that send tree branches crashing into power lines, showering flammable landscapes with sparks.

California utilities have been ordered to make their lines and equipment more fire-resistant as they’re increasingly held accountable for blazes they cause. Pacific Gas and Electric reported problems with some of its equipment at a starting point of California’s deadliest wildfire, which killed at least 86 people in November in the town of Paradise. The cause of the fire is under investigation.

New and complex cyber threats are more difficult to anticipate and even more dangerous. Computer hackers, operating a world away, can—and have—shut down electricity systems, toggling power on and off at will, and even hijacked the computers of special teams dispatched to restore control.

Thomas Fanning, CEO of Southern Co., one of the country’s largest utilities, recently disclosed that his teams have fended off multiple attempts to hack a nuclear power plant the firm operates. He called grid hacking “the most important under-reported war in American history.”

However, if you’ve got what seems like an insoluble problem requiring a to-the-studs teardown and innovative rebuild, California is a good place to start. After all, the first electricity grid was built in San Francisco in 1879, three years before Thomas Edison’s power station in New York City. (Edison’s plant burned to the ground a decade later.)

California’s energy-efficiency regulations have helped reduce statewide energy use, which peaked a decade ago and is on the decline, somewhat easing pressure on the grid. The major utilities are ahead of schedule in meeting their obligation to obtain power from renewable sources.

California’s universities are teaming with national research labs to develop cutting-edge solutions for storing energy produced by clean sources. California is fortunate in the diversity of its energy choices: hydroelectric dams in the north, large-scale solar operations in the Mojave Desert to the east, sprawling windmill farms in mountain passes and heat bubbling in the Geysers, the world’s largest geothermal field north of San Francisco. A single nuclear-power plant clings to the coast near San Luis Obispo, but it will be shuttered in 2025.

But more renewable energy, accessible at the whims of weather, can throw the grid off balance. Renewables lack the characteristic that power planners most prize: dispatchability, ready when called on and turned off when not immediately needed. Wind and sun don’t behave that way; their power is often available in great hunks—or not at all, as when clouds cover solar panels or winds drop.

In the case of solar power, it is plentiful in the middle of the day, at a time of low demand. There’s so much in California that most days the state pays its neighbors to siphon some off,  lest the excess impede the grid’s constant need for balance—for a supply that consistently equals demand.

So getting to California’s new goals of operating on 100 percent clean energy by 2045 and having 5 million electric vehicles within 12 years will require a shift in how power is acquired and managed. Consumers will rely more heavily on battery storage, whose efficiency must improve to meet that demand.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.