Collider repairs at CERN to cost $25-million

By Associated Press


High Voltage Maintenance Training Online

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today
Fixing the world's largest atom smasher will cost at least 25 million Swiss francs ($25.8-million Cdn) and may take until early summer, its operator said.

An electrical failure shut down the Large Hadron Collider on September 19, nine days after the $10-billion machine started up with great fanfare.

The European Organization for Nuclear Research recently said that the repairs would be completed by May or early June. Spokesman James Gillies said the organization know as CERN is now estimating the restart will be at the end of June or later.

“If we can do it sooner, all well and good. But I think we can do it realistically (in) early summer,” he said.

The organization has attributed the shutdown to the failure of a single, badly soldered electrical connection.

The atom smasher operates at temperatures colder than outer space to get maximum efficiency, and experts needed to gradually warm the damaged section to better assess it, he said.

“Now the sector is warm, so they are able to go in and physically look at each of the interconnections,” Mr. Gillies told The Associated Press.

The cost of the work will fall within the organization's existing budget, he said.

The massive machine straddling the Swiss-French border was built to smash protons from hydrogen atoms together at high energy and record what particles are produced by the collisions, giving scientists a better idea of the makeup of the smallest components of matter.

That will show on a tiny scale what happened one-trillionth of a second after the so-called Big Bang, which many scientists theorize was the massive explosion that formed the universe. The theory holds that the universe was rapidly cooling at that stage and matter was changing rapidly.

Scientists have taken the setback in stride, saying that particle colliders always have such problems in the startup phase.

Related News

Construction starts on disputed $1B electricity corridor

New England Clean Energy Connect advances despite court delays, installing steel poles on a Maine corridor for Canadian hydropower, while legal challenges seek environmental review; permits, jobs, and grid upgrades drive the renewable transmission project.

 

Key Points

An HV line in Maine delivering 1,200 MW of Canadian hydropower to New England to cut emissions and stabilize costs.

✅ Appeals court pauses 53-mile new section; upgrades continue

✅ 1,200 MW hydropower aims to cut emissions, stabilize rates

✅ Permits issued; environmental review litigation ongoing

 

Construction on part of a $1 billion electricity transmission corridor through sparsely populated woods in western Maine is on hold because of legal action, echoing Clean Line's Iowa withdrawal amid court uncertainty, but that doesn't mean all building has been halted.

Workers installed the first of 829 steel poles Tuesday on a widened portion of the existing corridor that is part of the project near The Forks, as the groundwork is laid for the 145-mile ( 230-kilometre ) New England Clean Energy Connect, a project central to Maine's debate over the 145-mile line moving forward.

The work is getting started even though the 1st U.S. Circuit Court of Appeals delayed construction of a new 53-mile ( 85-kilometre ) section.

Three conservation groups are seeking an injunction to delay the project while they sue to force the U.S. Army Corps of Engineers to conduct a more rigorous environmental review.

In western Maine, workers already have staged heavy equipment and timber “mats” that will be used to prevent the equipment from damaging the ground. About 275 Maine workers already have been hired, and more would be hired if not for the litigation, officials said.

“This project has always promised to provide an economic boost to Maine’s economy, and we are already seeing those benefits take shape," Thorn Dickinson, CEO of the New England Clean Energy Connect, said Tuesday.

The electricity transmission line would provide a conduit for up to 1,200 megawatts of Canadian hydropower, reducing greenhouse emissions and stabilizing energy costs in New England as states pursue Connecticut's market overhaul to improve market design, supporters say.

The project, which would be fully funded by Massachusetts ratepayers to meet the state's clean energy goals after New Hampshire rejected a Quebec-Massachusetts proposal elsewhere, calls for construction of a high-voltage power line from Mount Beattie Township on the Canadian border to the regional power grid in Lewiston, Maine.

Critics have been trying to stop the project, reflecting clashes over New Hampshire hydropower in the region, saying it would destroy wilderness in western Maine. They also say that the environmental benefits of the project have been overstated.

In addition to the lawsuit, opponents have submitted petitions seeking to have a statewide vote, even as a Maine court ruling on Hydro-Quebec exports has reshaped the legal landscape.

Sandi Howard, a leading opponent of the project, said the decision by the company to proceed showed “disdain for everyday Mainers” by ignoring permit appeals and ongoing litigation.

“For years, CMP has pushed the false narrative that their unpopular and destructive project is a ‘done deal’ to bully Mainers into submission on this for-profit project. But to be clear, we won’t stop until Maine voters (their customers), have the chance to vote,” said Howard, who led the referendum petition drive for the No CMP Corridor PAC.

The project has received permits from the Army Corps, Maine Department of Environmental Protection, Maine Land Use Planning Commission and Maine Public Utilities Commission.

The final approval came in the form of a presidential permit issued last month from the U.S. Department of Energy, providing green light for the interconnect at the Canadian border, even as customer backlash to utility acquisitions elsewhere underscores public scrutiny.

 

Related News

View more

Tesla Expands Charging Network in NYC

Tesla NYC Supercharger Expansion adds rapid EV charging across Manhattan, Brooklyn, and Queens, strengthening infrastructure, easing range anxiety, and advancing New York City sustainability goals with fast chargers at strategic commercial and residential-adjacent locations.

 

Key Points

Tesla's plan to add rapid EV charging across NYC, boosting access, easing range anxiety, and advancing climate targets.

✅ New Superchargers in Manhattan, Brooklyn, and Queens

✅ Faster charging to cut downtime and range anxiety

✅ Partnerships with businesses to expand public access

 

In a significant move to enhance the EV charging infrastructure across the city, Tesla has announced plans to expand its network of charging stations throughout New York City. This investment is set to bolster the availability of charging options, making it more convenient for EV owners while encouraging more residents to consider electric vehicles as a viable alternative to traditional gasoline-powered cars.

The Growing Need for Charging Infrastructure

As the demand for electric vehicles continues to rise amid the American EV boom across the country, the need for a robust charging infrastructure has become increasingly critical. With New York City setting ambitious goals to reduce greenhouse gas emissions, the expansion of EVs is seen as a crucial component of its sustainability strategy. Currently, the city aims to have 50% of all vehicles electrified by 2030, a target that necessitates a significant increase in charging stations.

Tesla’s initiative to install more charging points in NYC aligns perfectly with these goals and reflects how charging networks are competing nationwide to expand access, drawing more drivers to consider electric vehicles. By enhancing the charging network, Tesla is not only catering to its existing customers but also appealing to potential EV buyers who may have previously hesitated due to range anxiety or limited charging options.

A Look at the Expansion Plans

The details of Tesla's expansion include adding several new Supercharger stations across key locations in Manhattan, Brooklyn, and Queens, as US automakers move to build 30,000 public chargers nationwide to boost coverage. These stations will be strategically placed to ensure maximum accessibility, especially in densely populated areas where residents may not have easy access to home charging.

Tesla’s Superchargers are known for their rapid charging capabilities, allowing EV drivers to recharge their vehicles in a fraction of the time it would take at a standard charging station. This efficiency will be particularly beneficial in a bustling urban environment like NYC, where convenience and time are of the essence.

Moreover, Tesla is also exploring partnerships with local businesses and property owners to install charging stations at commercial locations. This initiative would not only create more charging opportunities but also encourage businesses to attract EV-driving customers, further promoting electric vehicle adoption.

Impact on EV Adoption in NYC

The expansion of Tesla's charging network is expected to have a positive ripple effect on the adoption of electric vehicles in New York City. With more charging stations available, potential buyers will feel more confident in making the switch to electric. The convenience of accessible charging can significantly reduce range anxiety, a common concern among potential EV buyers.

Additionally, this expansion will likely encourage other automakers to invest in charging infrastructure, as utilities pursue a bullish course on charging to support deployment, leading to a more interconnected network of charging options across the city. As more drivers embrace electric vehicles, the demand for charging will continue to grow, a trend that will test state power grids in the coming years, further solidifying the need for a comprehensive and reliable infrastructure.

Supporting Sustainable Initiatives

Tesla's investment in NYC's charging infrastructure is also part of a broader commitment to sustainability. As cities grapple with the challenges of climate change and air pollution, transitioning to electric vehicles is seen as a vital strategy for reducing emissions. Electric vehicles produce zero tailpipe emissions, which contributes to cleaner air and a healthier urban environment.

Moreover, with the increasing push towards renewable energy sources, the integration of electric vehicles into the city’s transportation system can help reduce reliance on fossil fuels, with energy storage and mobile charging adding flexibility to support the grid. As more charging stations utilize renewable energy, the overall carbon footprint of electric vehicles will continue to decrease, aligning with New York City's climate goals.

Looking Ahead

As Tesla moves forward with its expansion plans in New York City, the implications for both the automotive industry and urban sustainability are profound. By enhancing the charging infrastructure, Tesla is not only facilitating the growth of electric vehicles but also playing a crucial role in the city’s efforts to combat climate change.

 

Related News

View more

India’s Kakrapur 3 achieves criticality

Kakrapar Unit 3 700MWe PHWR achieved first criticality, showcasing indigenously designed nuclear power, NPCIL operations, Make in India manufacturing, advanced safety systems, grid integration, and closed-fuel-cycle strategy for India's expansion of pressurised heavy water reactors.

 

Key Points

India's first indigenous 700MWe PHWR at Kakrapar reached criticality, advancing NPCIL's Make in India nuclear power.

✅ First indigenous 700MWe PHWR achieves criticality

✅ NPCIL-built, Make in India components and contractors

✅ Advanced safety: passive decay heat removal, containment spray

 

Unit 3 of India’s Kakrapar nuclear plant in Gujarat achieved criticality on 22 July, as milestones at nuclear projects worldwide continue to be reached. It is India’s first indigenously designed 700MWe pressurised heavy water reactor (PHWR) to achieve this milestone.

Prime Minister Narendra Modi congratulated nuclear scientists, saying the reactor is a shining example of the 'Make in India' campaign and of the government's steps to get nuclear back on track in recent years, and a trailblazer for many such future achievements. 

India developed its own nuclear power generation technology as it faced sanctions from the international community following its first nuclear weapons test in in 1974. It has not signed the Nuclear Non-Proliferation Treaty, while China's nuclear energy development is on a steady track according to experts. India has developed a three-stage nuclear programme based on a closed-fuel cycle, where the used fuel of one stage is reprocessed to produce fuel for the next stage.

Kakrapar 3 was developed and is operated by state-owned Nuclear Power Corporation of India Ltd (NPCIL), while in Europe KHNP considered for a Bulgarian project as countries weigh options. The first two units are 220MWe PHWRs commissioned in 1993 and 1995. NPCIL said in a statement that the components and equipment for Kakrapur 3 were “manufactured by lndian industries and the construction and erection was undertaken by various lndian contractors”.

The 700MWe PHWRs have advanced safety features such as steel lined inner containment, a passive decay heat removal system, a containment spray system, hydrogen management systems etc, the statement added.

Fuel loading was completed by mid-March, a crucial step in Abu Dhabi during its commissioning as well. “Thereafter, many tests and procedures were carried out during the lockdown period following all COVlD-19 guidelines.”

“As a next step, various experiments / tests will be conducted and power will be increased progressively, a path also followed by Barakah Unit 1 reaching 100% power before commercial operations.” Kakrapur 3 will be connected to the western grid and will be India’s 23rd nuclear power reactor.

Kakrapur 3 “is the front runner in a series of 16 indigenous 700MWe PHWRs which have been accorded administrative approval and financial sanction by the government and are at various stages of implementation”. Five similar units are under construction at Kakarapur 4, Rajasthan 7&8 and Gorakhpur1&2.

DAE said in January 2019 that India planned to put 21 new nuclear units with a combined generating capacity of 15,700MWe into operation by 2031, including ten indigenously designed PHWRs, while Bangladesh develops nuclear power with IAEA assistance. 

 

Related News

View more

Iran Says Deals to Rehabilitate, Develop Iraq Power Grid Finalized

Iran-Iraq Power Grid Deals reinforce electricity and natural gas ties, upgrading transmission in Karbala and Najaf, repairing transformers, easing sanctions bottlenecks, and weighing GCC interconnection to diversify supply and reduce distribution losses across Iraq.

 

Key Points

Agreements to rehabilitate Iraq's grid, cut losses, and secure power via Iranian gas, electricity, and upgrades.

✅ Reduce distribution losses in Karbala and Najaf

✅ Repair and replace damaged distribution transformers

✅ Coordinate payments to TAVANIR amid US sanctions

 

Iran and Iraq have finalized two deals to rehabilitate and develop the power grid of Iraq, while Iran is upgrading thermal plants to combined cycle at home to save energy, IRNA cited the Iranian Energy Minister Reza Ardakanian.

Ardakanian met his Iraqi counterpart Majid Mahdi Hantoush in Tehran on Tuesday evening for talks on further energy cooperation on the sidelines of Prime Minister Mustafa al-Kadhimi’s trip to the Islamic Republic on his first foreign visit.

“It was decided that the contracts related to reducing losses on the electricity distribution network in the provinces of Karbala and Najaf, as well as the contract for repairing Iraq’s distribution transformers would be finalized and signed,” the Iranian minister said.

Iraq relies on Iran for natural gas that generates as much as 45 percent of its electricity, with Iran supplying 40% of Iraq’s power according to sector reports. Iran transmits another 1,200 MW directly, and has regional power hub plans as well, making itself an indispensable energy source for its Arab neighbor, but the United States is trying to pry Baghdad away from Tehran’s orbit.

The US has been enlisting its companies and allies such as Saudi Arabia to replace Iran as Iraq’s source of energy.

Iran’s money from exports of gas and electricity has accumulated in bank accounts in Iraq, because US sanctions are preventing Tehran from repatriating it.

In January, an official said the sanctions were giving Iran a run for five billion dollars, “sedimenting” at the Central Bank of Iraq, because Tehran could not access it.

Ardakanian said the issue was brought up in the discussions on Tuesday and it was agreed that “the payment of part of TAVANIR (Iran Power Generation and Transmission Company)’s claims will start from the end of July”.

The US administration is pushing for a deal between Washington, Baghdad and six Persian Gulf states to connect Iraq’s nationwide power grid to that of the Persian Gulf Cooperation Council, while Uzbekistan looks to export power to Afghanistan as regional linkages expand.

The US State Department said in a statement last Thursday that the six countries that make up the (Persian) Gulf Cooperation Council Interconnection Authority (GCCIA) — Saudi Arabia, Kuwait, Bahrain, Qatar, Oman and the UAE — had affirmed their shared support for the project to supply electricity to Iraq.

Iraq needs more than 23,000 MW of electricity to meet its domestic demand, and is exploring nuclear power plans to tackle shortages, but years of war following the 2003 US invasion have left its power infrastructure in tatters and a deficit of some 7,000 MW.

In the past, officials in Baghdad have said there is no easy substitute to imports from Iran because it will take years to adequately build up Iraq’s energy infrastructure, and meeting summer electricity needs remains a persistent challenge.

They have said American demand acknowledges neither Iraq’s energy needs nor the complex relations between Baghdad and Tehran.

In addition to natural gas and electricity, Iraq imports a wide range of goods from Iran including food, agricultural products, home appliances, and air conditioners.

On Tuesday, the Iraqi prime minister said during a joint news conference with Iranian President Hassan Rouhani that the purpose of his trip to Tehran was to strengthen historical ties between the two countries, especially in light of the challenges they faced as a result of the coronavirus outbreak and the fall of oil prices.

“In the face of such challenges, we need coordination between the two countries in a way that serves the interests of Iran and Iraq.”

Both Iran and Iraq, Kadhimi said, suffer from economic problems, adding the two countries need comprehensive and inclusive cooperation to overcome them.

Kadhimi said Iran-Iraq relations are not merely due to the geographical location of the two countries and their 1,450-km border, adding the ties are based on religion and culture and rooted in history.

“I am reiterating to my brothers in the Islamic Republic of Iran that the Iraqi nation is eager to have excellent relations with the Islamic Republic of Iran based on the principle of non-interference in the internal affairs of the two countries.”

Kadhimi said Iran and Iraq fought against terrorism and Takfiri groups together, and the Islamic Republic of Iran was one of the first countries to stand by Iraq.

“We will not forget this. That is why Iraq has stood with Iran to help it overcome economic challenges and turned to a big market for trade with Iran,” he said.

“We seek stability in Iraq and our philosophy and view of Iran is that we consider Iran a stable, strong, prosperous and progressive country, and this fact is in the interest of Iraq and the territorial integrity of the region,” he added.

According to Kadhimi, the two sides discussed implementing agreements between them, including connecting their railway through Khorramshahr in Iran and Basra in Iraq, adding he was very confident the agreements would be implemented soon.

Iraq’s delegation included the ministers of foreign affairs, finance, health, and planning, as well as Kadhimi’s national security adviser, some of whom also met their Iranian counterparts.

Last year, Iran’s exports to Iraq amounted to nearly $9 billion, IRNA reported. It said the two nations will discuss increasing that amount to $20 billion.

“The two governments’ will is to expand bilateral trade to $20 billion,” Rouhani said after an hour-long meeting with the Iraqi prime minister.

 

Related News

View more

Why Canada's Energy Security Hinges on Renewables

Renewable Energy Security strengthens affordability and grid reliability through electrification, wind, and solar, reducing fossil fuel volatility exposed by the Ukraine crisis, aligning with IEA guidance and the Paris Agreement to deliver resilient, low-cost power.

 

Key Points

Renewable energy security is reliable, affordable power from electrification, wind and solar, cutting fossil fuel risk.

✅ Wind and solar now outcompete gas for new power capacity.

✅ Diversifies supply and reduces fossil price volatility.

✅ Requires grid flexibility, storage, and demand response.

 

Oil, gas, and coal have been the central pillar of the global energy system throughout the 20th century. And for decades, these fossil fuels have been closely associated with energy security.  

The perception of energy security, however, is rapidly changing. Renewables form an increasing share of energy sectors worldwide as countries look to deliver on the Paris Agreement and mitigate the effects of climate change, with IEA clean energy investment now significantly outpacing fossil fuels. Moreover, Russia’s invasion of Ukraine has demonstrated how relying on fossil fuels for power, heating, and transport has left many countries vulnerable or energy insecure.  

The International Energy Agency (IEA) defines energy security as “the uninterrupted availability of energy sources at an affordable price” (IEA, 2019a). This definition hardly describes today’s global energy situation, with the cancellation of natural gas deliveries and skyrocketing prices for oil and gas products, and with supply chain challenges in clean energy that also require attention. These circumstances have cascading effects on electricity prices in countries like the United Kingdom that rely heavily on natural gas to produce electricity. In Europe, energy insecurity has been even further amplified since the Russian corporation Gazprom recently cut off gas supplies to several countries.  

As a result, energy security has gained new urgency in Canada and worldwide, creating opportunities in the global electricity market for Canada. Recent events provide a stark reminder of the volatility and potential vulnerability of global fossil fuel markets and supply chains. Even in Canada, as one of the largest producers of oil and gas in the world, the price of fuels depends on global and regional market forces rather than government policy or market design. Thus, the average monthly price for gasoline in Canada hit a record high of CAD 2.07 per litre in May 2022 (Figure 1), and natural gas prices surged to a record CAD 7.54 per MMBtu in May 2022 (Figure 2).  

Energy price increases of this magnitude are more than enough to strain Canadian household budgets. But on top of that, oil and gas prices have accelerated inflation more broadly as it has become more expensive to produce, transport, and store goods, including food and other basic commodities (Global News, 2022).  

 

Renewable Energy Is More Affordable 

In contrast to oil and gas, renewable energy can reliably deliver affordable energy, as shown by falling wholesale electricity prices in markets with growing clean power. This is a unique and positive aspect of today’s energy crisis compared to historical crises: options for electrification and renewable-based electricity systems are both available and cost-effective.  

For new power capacity, wind and solar are now cheaper than any other source, and wind power is making gains as a competitive source in Canada. According to Equinor (2022), wind and solar were already cheaper than gas-based power in 2020. This means that renewable energy was already the cheaper option for new power before the recent natural gas price spikes. As illustrated in Figure 3, the cost of new renewable energy has dropped so dramatically that, for many countries, it is cheaper to install new solar or wind infrastructure than to keep operating existing fossil fuel-based power plants (International Renewable Energy Agency, 2021). This means that replacing fossil-based electricity generation with renewables would save money and reduce emissions. Wind and solar prices are expected to continue their downward trends as more countries increase deployment and learn how to best integrate these sources into the grid. 

 

Renewable Energy Is Reliable 

To deliver on the uninterrupted availability side of the energy security equation, renewable power must remain reliable even as more variable energy sources, like wind and solar, are added to the system, and regional leaders such as the Prairie provinces will help anchor this transition. For Canada and other countries to achieve high energy security through electrification, grid system operations must be able to support this, and pathways to zero-emissions electricity by 2035 are feasible.  

 

Related News

View more

DOE Announces $34 Million to Improve America?s Power Grid

DOE GOPHURRS Grid Undergrounding accelerates ARPA-E innovations to modernize the power grid, boosting reliability, resilience, and security via underground power lines, AI-driven surveying, robotic tunneling, and safer cable splicing for clean energy transmission and distribution.

 

Key Points

A DOE-ARPA-E program funding undergrounding tech to modernize the grid and improve reliability and security.

✅ $34M for 12 ARPA-E projects across 11 states

✅ Underground power lines to boost reliability and resilience

✅ Robotics, AI, and safer splicing to cut costs and risks

 

The U.S. Department of Energy (DOE) has earmarked $34 million for 12 innovative projects across 11 states to bolster and modernize the nation’s power grid, complementing efforts like a Washington state infrastructure grant announced to strengthen resilience.

Under the Grid Overhaul with Proactive, High-speed Undergrounding for Reliability, Resilience, and Security (GOPHURRS) program, this funding is focused on developing efficient and secure undergrounding technologies. The initiative is aligned with President Biden’s vision to strengthen America's energy infrastructure and advance smarter electricity infrastructure priorities, thereby creating jobs, enhancing energy and national security, and advancing towards a 100% clean electricity grid by 2035.

U.S. Secretary of Energy Jennifer M. Granholm emphasized the criticality of modernizing the power grid to facilitate a future powered by clean energy, including efforts to integrate more solar into the grid nationwide, thus reducing energy costs and bolstering national security. This development, she noted, is pivotal in bringing the grid into the 21st Century.

The U.S. electric power distribution system, comprising over 5.5 million line miles and over 180 million power poles, is increasingly vulnerable to weather-related damage, contributing to a majority of annual power outages. Extreme weather events, intensified by climate change impacts across the nation, exacerbate the frequency and severity of these outages. Undergrounding power lines is an effective measure to enhance system reliability for transmission and distribution grids.

Managed by DOE’s Advanced Research Projects Agency-Energy (ARPA-E), the newly announced projects include contributions from small and large businesses, national labs, and universities. These initiatives are geared towards developing technologies that will lower costs, expedite undergrounding operations, and enhance safety. Notable projects involve innovations like Arizona State University’s water-jet construction tool for deploying electrical cables underground, GE Vernova Advanced Research’s robotic worm tunnelling construction tool, and Melni Technologies’ redesigned medium-voltage power cable splice kits.

Other significant projects include Oceanit’s subsurface sensor system for avoiding utility damage during undergrounding and Pacific Northwest National Laboratory’s AI system for processing geophysical survey data. Prysmian Cables and Systems USA’s project focuses on a hands-free power cable splicing machine to improve network reliability and workforce safety, complementing state efforts like California's $500 million grid investment to upgrade infrastructure.

Complete descriptions of these projects can be found on the ARPA-E website, while a recent grid report card highlights challenges these efforts aim to address.

ARPA-E’s mission is to advance clean energy technologies with high potential and impact, playing a strategic role in America’s energy security, including military preparedness for grid cyberattacks as a priority. This commitment ensures the U.S. remains a global leader in developing and deploying advanced clean energy technologies.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified