EU seeks new gas and wind to boost energy security

By Reuters


CSA Z463 Electrical Maintenance

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today
Europe must harness more energy from the wind, sun and sea and tap new gas sources in Africa and the Caspian, the European Commission said, as the EU seeks to limit its growing dependence on Russian gas.

"We must break the vicious circle of increasing energy consumption and increasing imports," said European Commission President Jose Manuel Barroso. "We must shield EU citizens from the risk external suppliers can not honor their commitments."

The 27-nation bloc is seeking to prevent its reliance on Russian gas growing after pricing disputes between Russia and transit states disrupted supplies in recent years and Russia's invasion of Georgia in August stoked tensions with the west.

Barroso said he hoped the summit between the EU and Russia in Nice would shed light on Moscow's vision of future energy relations with the EU.

The Commission's Strategic Energy Review outlined future plans for a giant North Sea windfarm linked by undersea cables to help power northern Europe.

It included new proposals to overhaul 40-year-old laws on emergency oil stocks, to strengthen the response to gas crises and to encourage efficient vehicle tires aimed at cutting petrol consumption.

It also included adaptations to existing laws and pledges to seek more gas from Azerbaijan and Turkmenistan and to create a new consortium for buying Caspian gas.

The Commission laid out a long-term vision in which national gas and power networks would be replaced by a pan-European grid, linking thousands of small, renewable energy sources, needing around 1.2 trillion euros ($1.5 billion) of investment by 2030.

The European power grid would also be powered from the north by linked windfarms in the North Sea and from the south by a Mediterranean Ring tapping into North Africa's huge solar power resources.

"Thousands upon thousands of wind turbines, spread across hundreds of miles, could feed into the supergrid," said Greenpeace campaigner Robin Oakley.

"This would mean that a dip in power in one area could be balanced by higher production in another — making wind power even more reliable," he added. The cost of the project is estimated at $30 billion.

But the backbone of EU energy security would come from boosting energy efficiency and existing plans to cut EU carbon dioxide emissions by a fifth by 2020 in the fight against climate change, said Energy Commissioner Andris Piebalgs.

"We have to do more, be more ambitious, and be even bolder to avoid the risk of energy disruption in the future," he added.

But environmental pressure group WWF described the review as an unambitious "Christmas tree of actions," and criticized it for not bringing in mandatory energy efficiency targets.

"Europe's buildings account for 40 percent of EU final energy use," said WWF campaigner Mariangiola Fabbri. "We need to shift buildings from being energy wasters to climate savers."

The review did include plans to tweak construction rules for buildings. Additional moves to cut wasted energy from household boilers, electronic appliances and car tires could save EU families around 1,000 euros a year, the Commission said.

EU plans to curb energy consumption are already worrying producers, who see future oil and gas revenues drying up, said Susanne Nies at France's IFRI think tank.

"Talks between Iran and Russia about creating a gas OPEC are a clear reaction to that," she said. "Producers are very worried about security of consumption."

Related News

Coal, Business Interests Support EPA in Legal Challenge to Affordable Clean Energy Rule

Affordable Clean Energy Rule Lawsuit pits EPA and coal industry allies against health groups over Clean Power Plan repeal, greenhouse gas emissions standards, climate change, public health, and state authority before the D.C. Circuit.

 

Key Points

A legal fight over EPA's ACE rule and CPP repeal, weighing emissions policy, state authority, climate, and public health.

✅ Challenges repeal of Clean Power Plan and adoption of ACE.

✅ EPA backed by coal, utilities; health groups seek stricter limits.

✅ D.C. Circuit to review emissions authority and state roles.

 

The largest trade association representing coal interests in the country has joined other business and electric utility groups in siding with the EPA in a lawsuit challenging the Trump administration's repeal of the Clean Power Plan.

The suit -- filed by the American Lung Association and the American Public Health Association -- seeks to force the U.S. Environmental Protection Agency to drop a new rule-making process that critics claim would allow higher levels of greenhouse gas emissions, further contributing to the climate crisis and negatively impacting public health.

The new rule, which the Trump administration calls the "Affordable Clean Energy rule" (ACE), "would replace the 2015 Clean Power Plan, which EPA has proposed to repeal because it exceeded EPA's authority. The Clean Power Plan was stayed by the U.S. Supreme Court and has never gone into effect," according to an EPA statement.

EPA has also moved to rewrite wastewater limits for coal power plants, signaling a broader rollback of related environmental requirements.

America's Power -- formerly the American Coalition for Clean Coal Electricity -- the U.S. Chamber of Commerce, the National Mining Association, and the National Rural Electric Cooperative Association have filed motions seeking to join the lawsuit. The U.S. Court of Appeals for the District of Columbia Circuit has not yet responded to the motion.

Separately, energy groups warned that President Trump and Energy Secretary Rick Perry were rushing major changes to electricity pricing that could disrupt markets.

"In this rule, the EPA has accomplished what eluded the prior administration: providing a clear, legal pathway to reduce emissions while preserving states' authority over their own grids," Hal Quinn, president and chief executive officer of the mining association, said when the new rule was released last month. "ACE replaces a proposal that was so extreme that the Supreme Court issued an unprecedented stay of the proposal, having recognized the economic havoc the mere suggestion of such overreach was causing in the nation's power grid."

Around the same time, a coal industry CEO blasted a federal agency's decision on the power grid as harmful to reliability.

The trade and business groups have argued that the Clean Power Plan, set by the Obama administration, was an overreach of federal power. Finalized in 2015, the plan was President Obama's signature policy on climate change, rooted in compliance with the Paris Climate Treaty. It would have set state limits on emissions from existing power plants but gave wide latitude for meeting goals, such as allowing plant operators to switch from coal to other electric generating sources to meet targets.

Former EPA Administrator Scott Pruitt argued that the rule exceeded federal statutory limits by imposing "outside the fence" regulations on coal-fired plants instead of regulating "inside the fence" operations that can improve efficiency.

The Clean Power Plan set a goal of reducing carbon emissions from power generators by 32 percent by the year 2030. An analysis from the Rhodium Group found that had states taken full advantage of the CPP's flexibility, emissions would have been reduced by as much as 72 million metric tons per year on average. Still, even absent federal mandates, the group noted that states are taking it upon themselves to enact emission-reducing plans based on market forces.

In its motion, America's Power argues the EPA "acknowledged that the [Best System of Emission Reduction] for a source category must be 'limited to measures that can be implemented ... by the sources themselves.'" If plants couldn't take action, compliance with the new rule would require the owners or operators to buy emission rate credits that would increase investment in electricity from gas-fired or renewable sources. The increase in operating costs plus federal efforts to shift power generation to other sources of energy, thereby increasing costs, would eventually force the coal-fired plants out of business.

In related proceedings, renewable energy advocates told FERC that a DOE proposal to subsidize coal and nuclear plants was unsupported by the record, highlighting concerns about market distortions.

"While we are confident that EPA will prevail in the courts, we also want to help EPA defend the new rule against others who prefer extreme regulation," said Michelle Bloodworth, president and CEO of America's Power.

"Extreme regulation" to one group is environmental and health protections to another, though.

Howard A. Learner, executive director of the Environmental Law & Policy Center of the Midwest, defended the Clean Power Plan in an opinion piece published in June.

"The Midwest still produces more electricity from coal plants than any other region of the country, and Midwesterners bear the full range of pollution harms to public health, the Great Lakes, and overall environmental quality," Learner wrote. "The new [Affordable Clean Energy] Rule is a misguided policy, moves our nation backward in solving climate change problems, and misses opportunities for economic growth and innovation in the global shift to renewable energy. If not reversed by the courts, as it should be, the next administration will have the challenge of doing the right thing for public health, the climate and our clean energy future."

When it initially filed its lawsuit against the Trump administration's Affordable Clean Energy Rule, the American Lung Association accused the EPA of "abdicat[ing] its legal duties and obligations to protect public health." It also referred to the new rule as "dangerous."

 

Related News

View more

Denmark's climate-friendly electricity record is incinerated

Denmark Renewable Energy Outlook assesses Eurostat ranking, district heating and trash incineration, EV adoption, wind turbine testing expansions, and electrification to cut CO2, aligning policies with EU 2050 climate goals and green electricity usage.

 

Key Points

A brief analysis of Denmark's green power use, electrification, EVs, and policies needed to meet EU 2050 CO2 goals.

✅ Eurostat rank low due to trash incineration in district heating.

✅ EV adoption stalled after tax reinstatement, slowing electrification.

✅ Wind test centers expanded; electrification could cut 95% CO2.

 

Denmark’s low ranking in the latest figures from Eurostat regarding climate-friendly electricity, which places the country in 32nd place out of 40 countries, is partly a result of the country’s reliance on the incineration of trash to warm our homes via long-established district heating systems.

Additionally, there are not enough electric vehicles – a recent increase in sales was halted in 2016 when the government started to phase back registration taxes scrapped in 2008, and Europe’s EV slump underscores how fragile momentum can be.

 

Not enough green electricity being used

Denmark is good at producing green electricity, reports Politiken, but it does not use enough, and amid electricity price volatility in Europe this is bad news if it wants to fulfil the EU’s 2050 goal to eliminate CO2 emissions.

 

A recent report by Eurelectric and McKinsey demonstrates that if heating, transport and industry were electrified, reflecting a broader European push for electrification across the energy system, 95 percent of the country’s CO2 emissions could be eliminated by that date.

 

Wind turbine testing centre expansion approved

Parliament has approved the expansion of two wind turbine centres in northwest Jutland, supporting integration as e-mobility drives electricity demand in the coming years. The centres in Østerild and Høvsøre will have the capacity to test nine and seven turbines, measuring 330 and 200 metres in size (up from 250 and 165) respectively. The Østerild expansion should be completed in 2019, while Høvsøre ​​will have to wait a little longer.

 

Third on the Environmental Performance Index

Denmark finished third on the latest Environmental Performance Index, finishing only behind Switzerland and France. Its best category ranking was third for Environmental Health, and comparative energy efficiency benchmarking can help contextualize progress. Elsewhere, it ranked 11th for Ecosystem Vitality, 18th for Biodiversity and Habitat, 94th for Forests, 87th for Fisheries, 25th for Climate and Energy and 37th for Air Pollution, 14th for Water Resources and 7th for Agriculture.

 

Related News

View more

Investigation reveals power company 'gamed' $100M from Ontario's electricity system

Goreway Power Station Overbilling exposed by Ontario Energy Board shows IESO oversight failures, GCG gaming, and $100M in inappropriate payments at the Brampton natural gas plant, penalized with fines and repayments impacting Ontario ratepayers.

 

Key Points

Goreway exploited IESO GCG flaws, causing about $100M in improper payouts and fines.

✅ OEB probe flagged $89M in ineligible start-up O&M charges

✅ IESO fined Goreway $10M; majority of excess costs recovered

✅ Audit found $200M in overbilling across nine generators

 

Hydro customers shelled out about $100 million in "inappropriate" payments to a natural gas plant that exploited flaws in how Ontario manages its private electricity generators, according to the Ontario Energy Board.

The company operating the Goreway Power Station in Brampton "gamed" the system for at least three years, according to an investigation by the provincial energy regulator. 

The investigation also delivers stinging criticism of the provincial government's Independent Electricity System Operator (IESO), slamming it for a lack of oversight. The probe by the Ontario Energy Board's market surveillance panel was completed nearly a year ago, but was only made public in November because it was buried on its website without a news release. CBC News is the first media outlet to report on the investigation.  

The excess payments to Goreway Power Station included:

  • $89 million in ineligible expenses billed as the costs of firing up power production. 
  • $5.6 million paid in three months from a flaw in how IESO calculated top-ups for the company committing to generate power a day in advance.   
  • Of $11.2 million paid to compensate the company for IESO ordering it to start or stop generating power, the investigation concluded "a substantial portion ... was the result of gaming."  

Most privately-owned natural gas-fired plants in the province do not generate electricity constantly, but start and stop production in response to fluctuating market demand, even as the energy minister has requested an halt to natural gas generation across the grid.  IESO pays them a premium for the costs of firing up production, through what it calls "generation cost guarantee" programs. 

But the investigation found IESO did little checking into the details of Goreway Power Station's billings. 

Goreway Power Station, located near Highway 407 in Brampton, Ont., is an 875 megawatt natural gas power plant. (Goreway)

"Conservatively, at least $89 million of Goreway's submissions were clearly ineligible by any reasonable measure," concludes the report.

"Goreway routinely submitted what were obviously inappropriate expenses to be reimbursed by the IESO, and ultimately borne by Ontario ratepayers,"

The investigation panel found an "extraordinary pattern" to these billings by Goreway Power Station, suggesting the IESO should have caught on sooner. The company submitted more than $100 million in start-up operating and maintenance costs during the three-year period investigated — more than all other gas-fired generators in the province combined. The company's costs per start-up were more than double the next most expensive power generator. 

"Goreway repeatedly exploited defects in the GCG (generation cost guarantee) program, and in doing so received at least $89 million in gamed GCG payments." 

Company fined $10M

The investigation covered a three-year period from when Goreway Power Station began generating power in June 2009. Investigators said that delays in releasing documents slowed down their probe, and they only obtained all the records they needed in April 2016.

The investigating panel does not have the power to impose penalties on companies it found broke the rules. 

The IESO fined Goreway Power Station $10 million. The company has also repaid IESO "a substantial portion" of the excess payments it received during its first six years of operating, but the exact figure is blacked out in the investigation report that was made public. 

The control room from which the provincial government's Independent Electricity System Operator manages Ontario's power supply. The agency is also responsible for managing contracts with private power producers.(IESO)

"Goreway does not agree with many of the draft report's findings and conclusions, including any suggestion that Goreway engaged in gaming or that it deliberately misled the IESO," writes lawyer George Vegh on behalf of the company in a response to the investigation report, dated Aug. 1.

"Goreway has implemented initiatives designed to ensure that compliance is a chief operating principle."     

The power station, located near Highway 407 in Brampton, is a joint venture between Toyota Tsusho Corp. and JERA Co. Inc. During the period under scrutiny, the project was run by Toyota Tsusho and Chubu Electric Power Inc., both headquartered in Japan. 

Investigators fear 'same situation' exists today

The report blames the provincially-controlled IESO for creating a system with defects that allowed the over-billing. 

"Goreway was able to — and repeatedly did — exploit these defects," says the investigation report. It goes on to explain the flaws "have created opportunities for exploitation, to the serious financial disadvantage of Ontario's ratepayers," even as greening Ontario's grid could entail massive costs.

The investigation suggests IESO hasn't made adequate changes to ensure it won't happen again, at a time when an analysis of a dirtier grid is raising concerns.   

"Goreway stands as a clear example of how generators are able to exploit the generation costs guarantee regime," says the report.

"The Panel is concerned that the same situation remains in place today." 

PC energy critic Todd Smith raised CBC News' report on the Goreway Power Station in Tuesday's question period. (Ontario Legislature)

After CBC News broke the story Tuesday, the provincial government was forced to respond in question period, amid a broader push for new gas plants to boost electricity production. 

"Here we have yet another gas plant scandal in Peel region that's costing electricity customers over $100 million," said PC energy critic Todd Smith. He slammed "the incompetence of a government that once again failed to look out for electricity customers." 

Economic Development Minister Brad Duguid said: "There is no excuse for any company in this province to ever game the system."

Nine companies overbilled $200M: audit 

The IESO found out about the overbilling "some time ago," said Duguid.

"They fully investigated, they've recovered most of the cost, they delivered a $10 million fine — the biggest fine on record."

The program that Goreway exploited became the subject of an audit that the IESO launched in 2011. The agency uncovered $200 million in ineligible billings by nine power producers, wrote the IESO vice president for policy Terry Young in an email to CBC News.

The IESO has recovered up to 85 per cent of those ineligible costs, Young noted.

Reforms to the design of the the program have removed the potential for overpayments and made it more efficient, he said, even as Ontario weighs embracing clean power more broadly. Last year, its total annual costs dropped to $23 million, down from $61 million in 2014.

 

Related News

View more

Climate change: Electrical industry's 'dirty secret' boosts warming

Sulphur Hexafluoride (SF6) Emissions drive rising greenhouse gas impacts in electrical switchgear, power grids, and renewables, with extreme global warming potential, long atmospheric lifetime, and leakage risks challenging climate targets and grid decarbonization.

 

Key Points

SF6 emissions are leaks from electrical switchgear and grids, a high-GWP gas with ~1,000-year lifetime.

✅ 23,500x CO2 global warming potential (GWP)

✅ Leaks from switchgear, breakers, gas-insulated substations

✅ Clean air and vacuum alternatives emerging for MV/HV

 

Sulphur hexafluoride, or SF6, is widely used in the electrical industry to prevent short circuits and accidents.

But leaks of the little-known gas in the UK and the rest of the EU in 2017 were the equivalent of putting an extra 1.3 million cars on the road.

Levels are rising as an unintended consequence of the green energy boom and the broader global energy transition worldwide.

Cheap and non-flammable, SF6 is a colourless, odourless, synthetic gas. It makes a hugely effective insulating material for medium and high-voltage electrical installations.

It is widely used across the industry, from large power stations to wind turbines to electrical sub-stations in towns and cities.

It prevents electrical accidents and fires.

However, the significant downside to using the gas is that it has the highest global warming potential of any known substance. It is 23,500 times more warming than carbon dioxide (CO2).

Just one kilogram of SF6 warms the Earth to the same extent as 24 people flying London to New York return.

It also persists in the atmosphere for a long time, warming the Earth for at least 1,000 years.

 

So why are we using more of this powerful warming gas?

The way we make electricity around the world is changing rapidly, with New Zealand's push to electrify in its energy system.

Where once large coal-fired power stations brought energy to millions, the drive to combat climate change and to move away from coal means they are now being replaced by mixed sources of power including wind, solar and gas.

This has resulted in many more connections to the electricity grid, and with EU electricity use could double by 2050, a rise in the number of electrical switches and circuit breakers that are needed to prevent serious accidents.

Collectively, these safety devices are called switchgear. The vast majority use SF6 gas to quench arcs and stop short circuits.

"As renewable projects are getting bigger and bigger, we have had to use it within wind turbines specifically," said Costa Pirgousis, an engineer with Scottish Power Renewables on its new East Anglia wind farm, which doesn't use SF6 in turbines.

"As we are putting in more and more turbines, we need more and more switchgear and, as a result, more SF6 is being introduced into big turbines off shore.

"It's been proven for years and we know how it works, and as a result it is very reliable and very low maintenance for us offshore."

 

How do we know that SF6 is increasing?

Across the entire UK network of power lines and substations, there are around one million kilograms of SF6 installed.

A study from the University of Cardiff found that across all transmission and distribution networks, the amount used was increasing by 30-40 tonnes per year.

This rise was also reflected across Europe with total emissions from the 28 member states in 2017 equivalent to 6.73 million tonnes of CO2. That's the same as the emissions from 1.3 million extra cars on the road for a year.

Researchers at the University of Bristol who monitor concentrations of warming gases in the atmosphere say they have seen significant rises in the last 20 years.

"We make measurements of SF6 in the background atmosphere," said Dr Matt Rigby, reader in atmospheric chemistry at Bristol.

"What we've seen is that the levels have increased substantially, and we've seen almost a doubling of the atmospheric concentration in the last two decades."

 

How does SF6 get into the atmosphere?

The most important means by which SF6 gets into the atmosphere is from leaks in the electricity industry.

Electrical company Eaton, which manufactures switchgear without SF6, says its research indicates that for the full life-cycle of the product, leaks could be as high as 15% - much higher than many other estimates.

Louis Schaeffer, electrical business manager at Eaton, said: "The newer gear has very low leak rates but the key question is do you have newer gear?

"We looked at all equipment and looked at the average of all those leak rates, and we didn't see people taking into account the filling of the gas. Plus, we looked at how you recycle it and return it and also included the catastrophic leaks."

 

How damaging to the climate is this gas?

Concentrations in the atmosphere are very small right now, just a fraction of the amount of CO2 in the air.

However, the global installed base of SF6 is expected to grow by 75% by 2030, as data-driven electricity demand surges worldwide.

Another concern is that SF6 is a synthetic gas and isn't absorbed or destroyed naturally. It will all have to be replaced and destroyed to limit the impact on the climate.

Developed countries are expected to report every year to the UN on how much SF6 they use, but developing countries do not face any restrictions on use.

Right now, scientists are detecting concentrations in the atmosphere that are 10 times the amount declared by countries in their reports. Scientists say this is not all coming from countries like India, China and South Korea.

One study found that the methods used to calculate emissions in richer countries "severely under-reported" emissions over the past two decades.

 

Why hasn't this been banned?

SF6 comes under a group of human-produced substances known as F-gases. The European Commission tried to prohibit a number of these environmentally harmful substances, including gases in refrigeration and air conditioning, back in 2014.

 

But they faced strong opposition from industries across Europe.

"In the end, the electrical industry lobby was too strong and we had to give in to them," said Dutch Green MEP Bas Eickhout, who was responsible for the attempt to regulate F-gases.

"The electric sector was very strong in arguing that if you want an energy transition, and you have to shift more to electricity, you will need more electric devices. And then you also will need more SF6.

"They used the argument that otherwise the energy transition would be slowed down."

 

What do regulator and electrical companies say about the gas?

Everyone is trying to reduce their dependence on the gas, and US control efforts suggest targeted policies can drive declines, as it is universally recognised as harmful to the climate.

In the UK, energy regulator Ofgem says it is working with utilities to try to limit leaks of the gas.

"We are using a range of tools to make sure that companies limit their use of SF6, a potent greenhouse gas, where this is in the interest of energy consumers," an Ofgem spokesperson told BBC News.

"This includes funding innovation trials and rewarding companies to research and find alternatives, setting emissions targets, rewarding companies that beat those targets, and penalising those that miss them."

 

Are there alternatives - and are they very expensive?

The question of alternatives to SF6 has been contentious over recent years.

For high-voltage applications, experts say there are very few solutions that have been rigorously tested.

"There is no real alternative that is proven," said Prof Manu Haddad from the school of engineering at Cardiff University.

"There are some that are being proposed now but to prove their operation over a long period of time is a risk that many companies don't want to take."

Medium voltage operations there are several tried-and-tested materials. Some in the industry say that the conservative nature of the electrical industry is the key reason that few want to change to a less harmful alternative.

 

"I will tell you, everyone in this industry knows you can do this; there is not a technical reason not to do it," said Louis Schaffer from Eaton.

"It's not really economic; it's more a question that change takes effort and if you don't have to, you won't do it."

 

Some companies are feeling the winds of change

Sitting in the North Sea some 43km from the Suffolk coast, Scottish Power Renewables has installed one of world's biggest wind farms, in line with a sustainable electric planet vision, where the turbines will be free of SF6 gas.

East Anglia One will see 102 of these towering generators erected, with the capacity to produce up to 714MW (megawatts) of power by 2020, enough to supply half a million homes.

Previously, an installation like this would have used switchgear supplied with SF6, to prevent the electrical accidents that can lead to fires.

Each turbine would normally have contained around 5kg of SF6, which, if it leaked into the atmosphere, would add the equivalent of around 117 tonnes of carbon dioxide. This is roughly the same as the annual emissions from 25 cars.

"In this case we are using a combination of clean air and vacuum technology within the turbine. It allows us to still have a very efficient, reliable, high-voltage network but to also be environmentally friendly," said Costa Pirgousis from Scottish Power Renewables.

"Once there are viable alternatives on the market, there is no reason not to use them. In this case, we've got a viable alternative and that's why we are using it."

But even for companies that are trying to limit the use of SF6, there are still limitations. At the heart of East Anglia One sits a giant offshore substation to which all 102 turbines will connect. It still uses significant quantities of the highly warming gas.

 

What happens next ?

The EU will review the use of SF6 next year and will examine whether alternatives are available. However, even the most optimistic experts don't think that any ban is likely to be put in place before 2025.

 

Related News

View more

SaskPower to buy more electricity from Manitoba Hydro

SaskPower-Manitoba Hydro Power Sale outlines up to 215 MW of clean hydroelectric baseload for Saskatchewan, supporting renewable energy targets, lower greenhouse gas emissions, and interprovincial transmission line capacity starting 2022 under a 30-year agreement.

 

Key Points

A long-term deal supplying up to 215 MW of hydroelectric baseload from Manitoba to Saskatchewan to cut emissions.

✅ Up to 215 MW delivered starting 2022 via new intertie

✅ Supports 40% GHG reduction target by 2030

✅ 30-year term; complements wind and solar integration

 

Saskatchewan's Crown-owned electric utility has made an agreement to buy more hydroelectricty from Manitoba.

A term sheet providing for a new long--term power sale has been signed between Manitoba Hydro and SaskPower which will see up to 215 megawatts flow from Manitoba to Saskatchewan, as new turbine investments advance in Manitoba, beginning in 2022.

SaskPower has two existing power purchase agreements with Manitoba Hydro that were made in 2015 and 2016, but the newest one announced Monday is the largest, as financial pressures at Manitoba Hydro continue.

SaskPower President and CEO Mike Marsh says in a news release that the clean, hydroelectric power represents a significant step forward when it comes to reaching the utility's goal of reducing greenhouse gas emissions by 40 per cent by 2030, aligning with progress on renewable electricity by 2030 initiatives.

Marsh says it's also reliable baseload electricity, which SaskPower will need as it adds more intermittent generation options like wind and solar.

SaskPower says a final legal contract for the sale is expected to be concluded by mid-2019 and be in effect by 2022, and the purchase agreement would last up to 30 years.

"Manitoba Hydro has been a valued neighbour and business partner over the years and this is a demonstration of that relationship," Marsh said in the news release.

The financial terms of the agreement are not being released, though SaskPower's latest annual report offers context on its finances.

Both parties say the sale will partially rely on the capacity provided by a new transmission line planned for construction between Tantallon, Sask. and Birtle, Man. that was previously announced in 2015 and is expected to be in service by 2021.

"Revenues from this sale will assist in keeping electricity rates affordable for our Manitoba customers, while helping SaskPower expand and diversify its renewable energy supply," Manitoba Hydro president and CEO Kelvin Shepherd said in the utility's own news release.

In 2015, SaskPower signed a 25 megawatt agreement with Manitoba Hydro that lasts until 2022. A 20-year agreement for 100 megawatts was signed in 2016 and comes into effect in 2020, and SaskPower is also exploring a purchase from Flying Dust First Nation to further diversify supply.

The deals are part of a memorandum of understanding signed in 2013 involving up to 500 megawatts.
 

 

Related News

View more

Clean energy jobs energize Pennsylvania: Clean Energy Employment Report

Pennsylvania Clean Energy Employment surges, highlighting workforce growth in energy efficiency, solar, wind, grid and storage, and alternative transportation, supporting COVID-19 recovery, high-wage jobs, manufacturing, construction, and statewide economic resilience.

 

Key Points

Jobs across clean power, efficiency, grid, storage, and advanced transport fueling Pennsylvania's workforce growth.

✅ 8.7% job growth from 2017-2019, outpacing statewide average

✅ 97,000+ employed across efficiency, solar, wind, grid, and fuels

✅ 75% earn above median; strong full-time opportunities

 

The 2020 Pennsylvania Clean Energy Employment Report has been released, and Gov. Tom Wolf is energized by it.

This "comes at an opportune time, as government and industry leaders look to strengthen Pennsylvania's workforce and economy in response to the challenges of the COVID-19 pandemic," Wolf said Monday in a prepared statement. "This detailed analysis of data and trends in clean energy employment ... demonstrates the sector was a top job generator statewide, and shows which industries were hiring and looking for trained workers."

Foremost among the findings, released Monday, is that the clean energy sector was responsible for adding 7,794 jobs from 2017 through 2019. That is an 8.7% average job growth rate, well above the 1.9% overall average in the state, according to a news release from Wolf's office.

This report lists employment data in five industries: energy efficiency; clean energy generation; alternative transportation; clean grid and storage; and clean fuels, while some cleaner states still import dirty electricity in regional markets.

The energy efficiency industry was the biggest clean energy employer in the state last year, with more than 71,400 state residents working in construction, technology and manufacturing jobs related to energy-efficient systems.

Solar energy workers comprised the largest share of the clean energy generation workforce – 35.4%, or 5,173 individuals. Solar employment increased 8.3% from 2017 to 2019, while there was a slight decline nationwide amid clean energy job losses reported in May.

Wind energy firms employed 2,937, and policy moves such as Ontario's clean electricity regulations signal broader market shifts, with more than 21% of those roles in manufacturing.

Job losses, though, were recorded in nuclear generation (minus 4.5%) and coal generation (minus 8.6%) over the two-year period, as electricity deregulation remains a point of debate in the sector. This mirrors national declines in both categories.

Federal efforts to support coal community revitalization are channeling clean energy projects to hard-hit regions.

Natural gas electric generation capacity doubled across Pennsylvania over the past decade; even as residents could face winter electricity price increases according to recent reports, employment still grew 13.4% from 2017 through 2019. But increasing output from unconventional wells has outpaced demand, sparking reductions in siting and drilling for new wells.

The Clean Energy Employment Report was released along with – and as part of – the 2020 Pennsylvania Energy Employment Report, which asserts that energy remains a large employer in the state, and new clean energy funding announcements underscore the sector's momentum. As of the last quarter of 2019, according to the larger report, energy accounted for 269,031 jobs, or 4.5% of the overall statewide workforce.

Wolf, in summary, said: "This report shows that workforce training investment decisions can benefit Pennsylvanians right now and position the state going forward to grow and improve livelihoods, the economy and our environment."

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified