Ford installs wind turbines at Genk Plant

By puregreencars.com


NFPA 70e Training - Arc Flash

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$199
Coupon Price:
$149
Reserve Your Seat Today
Ford has installed two gigantic wind turbines, each with a height of 150 meters, to produce green electricity for the Genk plant in Belgium.

Installed by local energy company, Electrabel, each unit has an output of two megawatts of power, enough to power 2,500 private homes. The wind turbines will deliver a significant part of the electrical power needed in the Genk Plant, production home of the Mondeo, S-MAX and Galaxy models.

Genk is not the only Ford of Europe plant to use electricity generated by wind turbines. Five years ago, the Dagenham Diesel Centre in the UK became the world's first automotive plant to meet all its electricity needs from two giant on-site turbines.

A third turbine is expected to come into service in Dagenham in 2010, allowing the plant to remain 100 per cent powered by wind-generated electricity, following the installation of a new 1.4/1.6-liter Duratorq TDCi engine production line. A new three-bladed turbine, provided by Ecotricity, will be commissioned to produce two megawatts of electricity, enough to power more than 1,000 homes.

A few miles away from Dagenham, Ford's Dunton Technical Centre is also powered by electricity from renewable sources. Since March last year, electric power on the 270-acre site, home to a team of around 3,000 engineers, has been purchased from 100 per cent renewable sources. The majority of the electricity, supplied by GDF, is sourced from a combination of hydro, wind and waste generation, and replaces energy from traditional sources that would have produced an estimated 35,000 tons of CO2 emissions annually.

Similarly in Germany, Ford is sourcing renewable electricity to cover the power demands of its sites in Cologne. This includes the electricity needed for the production facilities at the Niehl Plant, the Technical Centre in Merkenich, and Ford of Europe's head office, also in Cologne-Niehl. This electricity comes from three hydropower plants in Norway and Sweden.

Since January 2009 in a related development, Merkenich Technical Centre has been heated by steam provided by local utility provider, RheinEnergie, as a by-product of its co-generation power plant. The steam is fed to the Technical Centre's boiler house via a 2.6 km long pipeline. The initiatives in Niehl and Merkenich reduce annual CO2 emissions by 190,000 tonnes.

Electricity from another source – the sun – has for many years helped to power Ford's Bridgend engine plant in Wales with its roof-mounted solar/photovoltaic panels.

Related News

OpenAI Expands Washington Effort to Shape AI Policy

OpenAI Washington Policy Expansion spotlights AI policy, energy infrastructure, data centers, and national security, advocating AI economic zones and a national transmission grid to advance U.S. competitiveness and align with pro-tech administration priorities.

 

Key Points

OpenAI's D.C. push to scale policy outreach and AI infrastructure across energy, data centers, and national security.

✅ Triples D.C. policy team to expand bipartisan engagement

✅ Advocates AI economic zones and transmission grid build-out

✅ Aligns with pro-tech leadership, prioritizing national security

 

OpenAI, the creator of ChatGPT, is significantly expanding its presence in Washington, D.C., aiming to influence policy decisions that will shape the future of artificial intelligence (AI) and its integration into critical sectors like energy and national security. This strategic move comes as the company seeks to position itself as a key player in the U.S. economic and security landscape, particularly in the context of global competition with China in strategic industries.

Expansion of Policy Team

To enhance its influence, OpenAI is tripling the size of its Washington policy team. While the 12-person team is still smaller compared to tech giants like Amazon and Meta, it reflects OpenAI's commitment to engaging more actively with policymakers, as debates over Biden's climate law shape the regulatory landscape. The company has recruited individuals from across the political spectrum, including former aides to President Bill Clinton and Vice President Al Gore, to ensure a diverse and comprehensive approach to policy advocacy.

Strategic Initiatives

OpenAI is promoting an ambitious plan to develop tech and energy infrastructure tailored for AI development. This initiative aims to deliver more affordable energy to data centers and reduce corporate electricity bills, which are essential for AI operations. The company is advocating for the establishment of AI economic zones and a national transmission highway to support the growing energy demands of AI technologies. By aligning these proposals with the incoming Trump administration's pro-tech stance, OpenAI seeks to secure federal support for its projects.

Engagement with the Trump Administration

The transition from the Biden administration to the incoming Trump administration presents new opportunities for OpenAI, even as state legal challenges shape early energy policy moves. The Trump administration is perceived as more favorable toward the tech industry, with appointments of Silicon Valley figures like Elon Musk and David Sacks to key positions. OpenAI is leveraging this environment to advocate for policies that support AI development and infrastructure expansion, positioning itself as a strategic asset in the U.S.-China economic and security competition.

The AI industry is increasingly viewed as a critical component of national security and economic competitiveness. OpenAI's efforts to engage with policymakers reflect a broader industry push to be recognized as a vital player in the U.S. economic and security landscape. By promoting AI as a strategic asset, OpenAI aims to secure support for its initiatives, including clean-energy projects in coal communities, and ensure that the U.S. remains at the forefront of AI innovation.

OpenAI's strategic expansion in Washington, D.C., underscores its commitment to influencing policy decisions that will shape the future of AI and its integration into critical sectors. By enhancing its policy team, advocating for infrastructure development, where Alberta's data center boom illustrates rising demand, and aligning with the incoming administration's priorities, even as energy dominance goals face real-world constraints, OpenAI aims to position itself as a key player in the evolving landscape of artificial intelligence. This proactive approach reflects the company's recognition of the importance of policy engagement in driving innovation and securing a competitive edge in the global AI arena.

 

Related News

View more

Germany's Call for Hydrogen-Ready Power Plants

Germany Hydrogen-Ready Power Plants Tender accelerates the energy transition by enabling clean energy generation, decarbonization, and green hydrogen integration through retrofit and new-build capacity, resilient infrastructure, flexible storage, and grid reliability provisions.

 

Key Points

Germany tender to build or convert plants for hydrogen, advancing decarbonization, energy security, and clean power.

✅ Hydrogen-ready retrofits and new-build generation capacity

✅ Supports decarbonization, grid reliability, and flexible storage

✅ Future-proof design for green hydrogen supply integration

 

Germany, a global leader in energy transition and environmental sustainability, has recently launched an ambitious call for tenders aimed at developing hydrogen-ready power plants. This initiative is a significant step in the country's strategy to transform its energy infrastructure and support the broader goal of a greener economy. The move underscores Germany’s commitment to reducing greenhouse gas emissions and advancing clean energy technologies.

The Need for Hydrogen-Ready Power Plants

Hydrogen, often hailed as a key player in the future of clean energy, offers a promising solution for decarbonizing various sectors, including power generation. Unlike fossil fuels, hydrogen produces zero carbon emissions when used in fuel cells or burned. This makes it an ideal candidate for replacing conventional energy sources that contribute to climate change.

Germany’s push for hydrogen-ready power plants reflects the country’s recognition of hydrogen’s potential in achieving its climate goals. Traditional power plants, which typically rely on coal, natural gas, or oil, emit substantial amounts of CO2. Transitioning these plants to utilize hydrogen can significantly reduce their carbon footprint and align with Germany's climate targets.

The Details of the Tender

The recent tender call is part of Germany's broader strategy to incorporate hydrogen into its energy mix, amid a nuclear option debate in climate policy. The tender seeks proposals for power plants that can either be converted to use hydrogen or be built with hydrogen capability from the outset. This approach allows for flexibility and innovation in how hydrogen technology is integrated into existing and new energy infrastructures.

One of the critical aspects of this initiative is the focus on “hydrogen readiness.” This means that power plants must be designed or retrofitted to operate with hydrogen either exclusively or in combination with other fuels. The goal is to ensure that these facilities can adapt to the growing availability of hydrogen and seamlessly transition from conventional fuels without significant additional modifications.

By setting such requirements, Germany aims to stimulate the development of technologies that can handle hydrogen’s unique properties and ensure that the infrastructure is future-proofed. This includes addressing challenges related to hydrogen storage, transportation, and combustion, and exploring concepts like storing electricity in natural gas pipes for system flexibility.

Strategic Implications for Germany

Germany’s call for hydrogen-ready power plants has several strategic implications. First and foremost, it aligns with the country’s broader energy strategy, which emphasizes the need for a transition from fossil fuels to cleaner alternatives, building on its decision to phase out coal and nuclear domestically. As part of its commitment to the Paris Agreement and its own climate action plans, Germany has set ambitious targets for reducing greenhouse gas emissions and increasing the share of renewable energy in its energy mix.

Hydrogen plays a crucial role in this strategy, particularly for sectors where direct electrification is challenging. For instance, heavy industry and certain industrial processes, such as green steel production, require high-temperature heat that is difficult to achieve with electricity alone. Hydrogen can fill this gap, providing a cleaner alternative to natural gas and coal.

Moreover, this initiative helps Germany bolster its leadership in green technology and innovation. By investing in hydrogen infrastructure, Germany positions itself as a pioneer in the global energy transition, potentially influencing international standards and practices. The development of hydrogen-ready power plants also opens up new economic opportunities, including job creation in engineering, construction, and technology sectors.

Challenges and Opportunities

While the push for hydrogen-ready power plants presents significant opportunities, it also comes with challenges. Hydrogen production, especially green hydrogen produced from renewable sources, remains relatively expensive compared to conventional fuels. Scaling up production and reducing costs are critical for making hydrogen a viable alternative for widespread use.

Furthermore, integrating hydrogen into existing power infrastructure, alongside electricity grid expansion, requires careful planning and investment. Issues such as retrofitting existing plants, ensuring safe handling of hydrogen, and developing efficient storage and transportation systems must be addressed.

Despite these challenges, the long-term benefits of hydrogen integration are substantial, and a net-zero roadmap indicates electricity costs could fall by a third. Hydrogen can enhance energy security, reduce reliance on imported fossil fuels, and support global climate goals. For Germany, this initiative is a step towards realizing its vision of a sustainable, low-carbon energy system.

Conclusion

Germany’s call for hydrogen-ready power plants is a forward-thinking move that reflects its commitment to sustainability and innovation. By encouraging the development of infrastructure capable of using hydrogen, Germany is taking a significant step towards a cleaner energy future. While challenges remain, the strategic focus on hydrogen underscores Germany’s leadership in the global transition to a low-carbon economy. As the world grapples with the urgent need to address climate change, Germany’s approach serves as a model for integrating emerging technologies into national energy strategies.

 

Related News

View more

Russia Builds Power Lines to Reactivate Zaporizhzhia Plant

Zaporizhzhia Nuclear Plant Restart signals new high-voltage transmission lines to Mariupol, Rosatom grid integration, and IAEA-monitored safety amid occupied territory risks, cooling system shortfalls after the Kakhovka dam collapse, and disputed international law.

 

Key Points

A Russian plan to reconnect and possibly restart ZNPP via power lines, despite IAEA safety, cooling, and legal risks.

✅ 80 km high-voltage link toward Mariupol confirmed by imagery

✅ IAEA warns of safety risks and militarization at the site

✅ Cooling capacity limited after Kakhovka dam destruction

 

Russia is actively constructing new power lines to facilitate the restart of the Zaporizhzhia Nuclear Power Plant (ZNPP), Europe's largest nuclear facility, which it seized from Ukraine in 2022. Satellite imagery analyzed by Greenpeace indicates the construction of approximately 80 kilometers (50 miles) of high-voltage transmission lines and pylons connecting the plant to the Russian-controlled port city of Mariupol. This development marks the first tangible evidence of Russia's plan to reintegrate the plant into its energy infrastructure.

Strategic Importance of Zaporizhzhia Nuclear Power Plant

The ZNPP, located on the eastern bank of the Dnipro River in Enerhodar, was a significant asset in Ukraine's energy sector before its occupation. Prior to the war, the plant was connected to Ukraine's national grid, which later saw resumed electricity exports, via four 750-kilovolt lines, two of which passed through Ukrainian-controlled territory and two through areas under Russian control. The ongoing conflict has damaged these lines, complicating efforts to restore the plant's operations.

In March 2022, Russian forces captured the plant, and by 2023, all six of its reactors had been shut down. Despite this, Russian authorities have expressed intentions to restart the facility. Rosatom, Russia's state nuclear corporation, has identified replacing the power grid as one of the critical steps necessary for resuming operations, even as Ukraine pursues more resilient wind power to bolster its energy mix.

Environmental and Safety Concerns

The construction of new power lines and the potential restart of the ZNPP have raised significant environmental and safety concerns, as the IAEA has warned of nuclear risks from grid attacks in recent assessments. Greenpeace has reported that the plant's cooling system has been compromised due to the destruction of the Kakhovka Reservoir dam in 2023, which previously supplied cooling water to the plant. Currently, the plant relies on wells for cooling, which are insufficient for full-scale operations.

Additionally, the International Atomic Energy Agency (IAEA) has expressed concerns about the militarization of the plant. Reports indicate that Russian forces have established defensive positions and trenches around the facility, with mines found at ZNPP by UN inspectors, raising the risk of accidents and complicating efforts to ensure the plant's safety.

International Reactions and Legal Implications

Ukraine and the international community have condemned Russia's actions as violations of international law and Ukrainian sovereignty. Ukrainian officials have argued that the construction of power lines and the potential restart of the ZNPP constitute illegal activities in occupied territory. The IAEA has called for a ceasefire to allow for necessary safety improvements and to facilitate inspections of the plant, as a possible agreement on power plant attacks could underpin de-escalation efforts.

The United States has also expressed concerns, with President Donald Trump reportedly proposing the inclusion of the ZNPP in peace negotiations, which sparked controversy among Ukrainian and international observers, even suggesting the possibility of transferring control to American companies. However, Russia has rejected such proposals, reaffirming its intention to maintain control over the facility.

The construction of new power lines to the Zaporizhzhia Nuclear Power Plant signifies Russia's commitment to reintegrating the facility into its energy infrastructure. However, this move raises significant environmental, safety, and legal concerns, and a proposal to control Ukraine's nuclear plants remains controversial among stakeholders. The international community continues to monitor the situation closely, urging for adherence to international laws and standards to prevent potential nuclear risks.

 

 

Related News

View more

Cyprus can’t delay joining the electricity highway

Cyprus Electricity Interconnectors link the island to the EU grid via EuroAsia and EuroAfrica projects, enabling renewable energy trade, subsea transmission, market liberalization, and stronger energy security and diplomacy across the region.

 

Key Points

Subsea links connecting Cyprus to Greece, Israel and Egypt for EU grid integration, renewable trade and energy security.

✅ Connects EU, Israel, Egypt via EuroAsia and EuroAfrica

✅ Enables renewables integration and market liberalization

✅ Strengthens energy security, investment, and diplomacy

 

Electricity interconnectors bridging Cyprus with the broader geographical region, mirroring projects like the Ireland-France grid link already underway in Europe, are crucial for its diplomacy while improving its game to become a clean energy hub.

In an interview with Phileleftheros daily, Andreas Poullikkas, chairman of the Cyprus Energy Regulatory Authority (CERA), said electricity cables such as the EuroAsia Interconnector and the EuroAfrica Interconnector, could turn the island into an energy hub, creating investment opportunities.

“Cyprus, with proper planning, can make the most of its energy potential, turning Cyprus into an electricity producer-state and hub by establishing electrical interconnections, such as the EuroAsia Interconnector and the EuroAfrica Interconnector,” said Poullikkas.

He said these electricity interconnectors, “will enable the island to become a hub for electricity transmission between the European Union, Israel and Egypt, with developments such as the Israel Electric Corporation settlement highlighting regional dynamics, while increasing our energy security”.

Poullikkas argued it will have beneficial consequences in shaping healthy conditions for liberalising the country’s electricity market and economy, facilitating the production of electricity with Renewable Energy Sources and supporting broader efforts like the UK grid transformation toward net zero.

“Electricity interconnections are an excellent opportunity for greater business flexibility in Cyprus, ushering new investment opportunities, as seen with the Lake Erie Connector investment across North America, either in electricity generation or other sectors. Especially at a time when any investment or financial opportunity is welcomed.”

He said Cyprus’ energy resources are a combination of hydrocarbon deposits and renewable energy sources, such as solar.

This combination offers the country a comparative advantage in the energy sector.

Cyprus can take advantage of the development of alternative supply routes of the EU, as more links such as new UK interconnectors come online.

Poullikkas argued that as energy networks are developing rapidly throughout the bloc, serving the ever-increasing needs for electricity, and aligning with the global energy interconnection vision highlighted in recent assessments, the need to connect Cyprus with its wider geographical area is a matter of urgency.

He argues the development of important energy infrastructure, especially electricity interconnections, is an important catalyst in the implementation of Cyprus goals, while recognising how rule changes like Australia's big battery market shift can affect storage strategies.

“It should also be a national political priority, as this will help strengthen diplomatic relations,” added Poullikkas.

Implementing the electricity interconnectors between Israel, Cyprus and Greece through Crete and Attica (EuroAsia Interconnector) has been delayed by two years.

He said the delay was brought about after Greece decided to separate the Crete-Attica section of the interconnection and treat as a national project.

Poullikkas stressed the Greek authorities are committed to ensuring the connection of Cyprus with the electricity market of the EU.

“All the required permits have been obtained from the competent authorities in Cyprus and upon the completion of the procedures with the preferred manufacturers, construction of the Cyprus-Crete electrical interconnection will begin before the end of this year. Based on current data, the entire interconnection is expected to be implemented in 2023”.

“The EuroAfrica Interconnector is in the pre-works stage, all project implementation studies have already been completed and submitted to the competent authorities, including cost and benefit studies”.

EuroAsia Interconnector is a leading EU project of common interest (PCI), also labelled as an “electricity highway” by the European Commission.

It connects the national grids of Israel, Cyprus and Greece, creating a reliable energy bridge between the continents of Asia and Europe allowing bi-directional transmission of electricity.

The cost of the entire subsea cable system, at 1,208km, the longest in the world and the deepest at 3,000m below sea level, is estimated at €2.5 bln.

Construction costs for the first phase of the Egypt-Cyprus interconnection (EuroAfrica) with a Stage 1 transmission capacity of 1,000MW is estimated at €1bln.

The Cyprus-Greece (Crete) interconnection, as well as the Egypt-Cyprus electricity interconnector, will both be commissioned by December 2023.

 

 

Related News

View more

Britain Prepares for High Winter Heating and Electricity Costs

UK Energy Price Cap drives household electricity bills and gas prices, as Ofgem adjusts unit rates amid natural gas shortages, Russia-Ukraine disruptions, inflation, recession risks, and limited storage; government support offers only short-term relief.

 

Key Points

The UK Energy Price Cap limits per-unit gas and electricity charges set by suppliers and adjusted by Ofgem.

✅ Reflects wholesale natural gas costs; varies quarterly

✅ Protects consumers from sudden electricity and heating bill spikes

✅ Does not cap total annual spend; usage still determines bills

 

The government organization that controls the cost of energy in Great Britain recently increased what is known as a price cap on household energy bills. The price cap is the highest amount that gas suppliers can charge for a unit of energy.

The new, higher cost has people concerned that they may not be able to pay for their gas and electricity this winter. Some might pay as much as $4,188 for energy next year. Earlier this year, the price cap was at $2,320, and a 16% decrease in bills is anticipated in April.

Why such a change?

Oil and gas prices around the world have been increasing since 2021 as economies started up again after the coronavirus pandemic. More business activities required more fuel.

Then, Russia invaded Ukraine in late February, creating a new energy crisis. Russia limited the amount of natural gas it sent to European countries that needed it to power factories, produce electricity and keep homes warm.

Some energy companies are charging more because they are worried that Russia might completely stop sending gas to European countries. And in Britain, prices are up because the country does not produce much gas or have a good way to store it. As a result, Britain must purchase gas often in a market where prices are high, and ministers have discussed ending the gas-electricity price link to ease bills.

Citibank, a U.S. financial company, believes the higher energy prices will cause inflation in Britain to reach 18 percent in 2023, while EU energy inflation has also been driven higher by energy costs this year. And the Bank of England says an economic slowdown known as a recession will start later this year.

Public health and private aid organizations worry that high energy prices will cause a “catastrophe” as Britons choose between keeping their homes warm and eating enough food.

What can government do?

As prices rise, the British government plans to give people between $450 and $1,400 to help pay for energy costs, while some British MPs push to further restrict the price charged for gas and electricity. But the help is seen by many as not enough.

If the government approves more money for fuel, it will probably not come until September, as the energy security bill moves toward becoming law. That is the time the Conservative Party will select a new leader to replace Prime Minister Boris Johnson.

The Labour Party says the government should increase the amount it provides for people to pay for fuel by raising taxes on energy companies. However, the two politicians who are trying to become the next Prime Minister do not seem to support that idea.

Giovanna Speciale leads an organization called the Southeast London Community Energy group. It helps people pay their bills. She said the money will help but it is only a short-term solution to a bigger problem with Britain’s energy system. Because the system is privately run, she said, “there’s very little that the government can do to intervene in this.”

Other European countries are seeing higher energy costs, but not as high, and at the EU level, gas price cap strategies have been outlined to tackle volatility. In France, gas prices are capped at 2021 levels. In Germany, prices are up by 38 percent since last year. However, the government is reducing some taxes, which will make it easier for the average person to buy gas. In Italy, prices are going up, but the government recently approved over $8 billion to help people pay their energy bills.
 

 

Related News

View more

Nova Scotia Power delays start of controversial new charge for solar customers

Nova Scotia Power solar charge proposes an $8/kW monthly system access fee on net metering customers, citing grid costs. UARB review, carbon credits, rate hikes, and solar industry impacts fuel political and consumer backlash.

 

Key Points

A proposed $8/kW monthly grid access fee on net metered solar customers, delayed to Feb 1, 2023, pending UARB review.

✅ $8/kW monthly system access fee on net metering

✅ Delay to Feb 1, 2023 after industry and political pushback

✅ UARB review; debate over grid costs and carbon credits

 

Nova Scotia Power has pushed back by a year the start date of a proposed new charge for customers who generate electricity and sell it back to the grid, following days of concern from the solar industry and politicians worried that it will damage the sector.

The company applied to the Nova Scotia Utility and Review Board (UARB) last week for various changes, including a "system access charge" of $8 per kilowatt monthly on net metered installations, and the province cannot order the utility to lower rates under current law. The vast majority of the province's 4,100 net metering customers are residential customers with solar power, according to the application. 

The proposed charge would have come into effect Tuesday if approved, but Nova Scotia Power said in a news release Tuesday it will change the date in its filing from Feb. 1, 2022, to Feb. 1, 2023.

"We understand that the solar industry was taken off guard," utility CEO Peter Gregg said in an interview.

"There could have been an opportunity to have more conversations in advance."

Gregg said the utility will meet with members of the solar industry over the next year to work on finding solutions that support the sector's growth, while addressing what NSP sees as an inequity in the net metering system.

NSP recognized that customers who choose solar invest a significant amount and pay for the electricity they use, but they don't pay for costs associated with accessing the electrical grid when they need energy, such as on cold winter evenings when the sun is not shining.

"I know that's hit a nerve, but it doesn't take away the fact that it is an issue," Gregg said.

He said this is an issue utilities are navigating around North America, where seasonal rate designs have sparked consumer backlash in New Brunswick, and NSP is open to hearing ideas for other models of charges or fees.

The utility's suggested system access charge closely resembles one proposed in California, which has also raised major concerns from the solar industry and been criticized by the likes of Elon Musk, and has parallels to Massachusetts solar demand charges as well.

Although the "solar profile" of Nova Scotia and California is very different, with far more solar customers in that state, and in other provinces such as Saskatchewan, NDP criticism of 8% hikes has intensified affordability debates, Gregg said the fundamental issues are the same.

For those with a typical 10-kilowatt solar system, which generates around $1,800 of electricity a year, the new charge would mean those customers would be required to pay $960 back to NSP. That would roughly double the length of time it takes for those customers to pay off their investment for the panels.

David Brushett, chair of Solar Nova Scotia, said he relayed concerns from solar installers and others in the industry to Gregg on Monday. 

Brushett said the year delay is a positive first step, but he is still calling on the province to take a strong stance against the application, which has led to customers cancelling their panel installations and companies considering layoffs.

"There's still an urgency to this situation that hasn't been addressed, and we need to kind of protect the industry," he said Tuesday.

NSP's original application proposed exempting net metering customers who enrolled before Feb. 1, 2022, from the charge for 25 years after they sign up. But any benefit would be lost if those customers sold their home, and the exemption wouldn't extend to the new buyers, said Brushett.


Carbon offsets missing from equation: industry
Brushett said NSP "completely ignored" the fact that it's getting free carbon offset credits from homeowners who use solar energy under the provincial cap and trade program.

If the net metering system continues as is, NSP has said non-solar customers would pay about $55 million between now and 2030. That number assumes about 2,000 people sign up for net metering each year over the next nine years.

When asked whether those carbon emission credits were factored into the calculations for the proposed charge, Gregg said, "I don't believe in the current structure it is, but it's something that certainly we'd be open to hearing about."

Brushett said his group is finalizing a legal response to NSP's proposal and has already filed an official complaint against the company with the UARB.


Base charge on actual electrical output: customer
At least one shareholder in NSP parent company Emera is considering selling his shares in response to the application.

Joe Hood, a shareholder from Middle Sackville, said the proposed charge won't apply to his existing 11.16-kilowatt solar system, but if it did, it would cost him $1,071 a year.

"I am offended that a company I would invest in would do this to the solar industry in Nova Scotia," he said.

According to his meter, Hood said he pushed 9,600 kilowatt hours of solar electricity to the grid last year— some only for a brief period, and all of which was used by his home by the end of the year.

Under the proposed charge, someone with one solar panel who goes away on vacation in the summer would push all their electricity to the grid, and be charged far less than someone with 10 panels who has used all their own power and hasn't pushed anything.

"Nova Scotia Power's argument is that it's an issue with the grid. Well, then it should be based on what touches the grid," Hood said.

Far from actually making the system fair for everyone, Hood said this charge places solar only in the hands of the super-rich or NSP, with projects like its community solar gardens in Amherst, N.S.


Green Party suggests legislation update
Nova Scotia's Green Party also said Tuesday that Gregg's arguments of fairness are misleading, echoing earlier premier opposition to a 14% hike on rates.

The party is calling for an update to the Electricity Act that would "prevent penalizing any activity that helps Nova Scotia reach its emissions target," aligning with calls to make the electricity system more accountable to residents.

In its application, NSP has also asked to increase electricity rates for residential customers by at least 10 per cent over the next three years, amid debate that culminated in a 14% rate hike approval by regulators. 

The company wants to maintain its nine per cent rate of return.

NSP expects to earn $153 million this year, $192 million in 2023, and $213 million in 2024 from its rate of return. 

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified