When are 'smart meters' going to start paying off?

By Houston Chronicle


CSA Z462 Arc Flash Training - Electrical Safety Essentials

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today
The folks at Knowledge Problem take a look at a recent Forbes piece on smart meters which concludes, essentially, consumers haven't started to see the benefits of these systems, just the costs.

"Utilities get a good deal on smart meter investment. The meters send power usage information directly to power companies via the Internet or wireless networks, replacing human meter readers. Utilities can also use the meters to remotely turn off power when a customer moves out or fails to pay bills, or automatically reroute electric power when a storm knocks out power lines.

Such operational savings cover about 70% of smart meter investment, according to the California Public Utilities Commission."

In theory consumers are supposed to see the benefits of faster outage responses and, eventually, power plans that charge us based on the time of day we use power. Right now rates represent an average of costs during peak hours — usually 1 to 6 p.m. when demand is highest — and the rest of the day, when demand is lower.

Time-of-use plans charge you less if you use power during off-peak, more if you use it during peak. So that's great if you're at the office until 6 p.m., but not so great if you're retired at home all day or have a home office.

Regardless, so far time-of-use billing is just a theory for most of us in Texas. Texas is a leader in rolling out smart meters but there are still fewer than 1 million installed around the state. And it will be kind of hard to get companies to find a way to make money by selling their customers less electricity.

CenterPoint Energy, the power distribution operator for much of the Houston area, is in the first year of rolling out smart meters to all 2-plus million homes and businesses.

We recently ran a breakdown of what's on a typical electric bill (minus the electricity) for a customer using 1,000 kilowatt hours:

• Customer charge: $2.09 (basic connection)

• Metering charge: $1.79 (operation and reading of meters)

• Advanced metering system: $3.24 (installation of new digital meters)

• Transmission system charge: $5.34 (operation-maintenance of high voltage system)

• Distribution system charge: $17.65 (operation-maintenance of neighborhood distribution system)

• System Benefit Fund: 66 cents (assistance for low-income customers)

• Transmission cost recovery factor: $1.26 (for statewide transmission improvements)

• Nuclear decommissioning charge: 5 cents (to fund eventual shutdown of South Texas Project nuclear plant)

• Transition charge: $5.10 (combination of fees related to deregulation of Texas power markets)

• Rider UCOS retail credit: 6 cents (credit from transition to retail competition)

Another $1.80 or so will be added to bills soon to cover Hurricane Ike damage.

Related News

European responses to Covid-19 accelerate electricity system transition by a decade - Wartsila

EU-UK Coal Power Decline 2020 underscores Covid-19's impact on power generation, with renewables rising, carbon emissions falling, and electricity demand down, revealing resilient grids and accelerating the energy transition across European markets.

 

Key Points

Covid-19's impact on EU-UK power: coal down, renewables up, lower emissions intensity and reduced electricity demand.

✅ Coal generation down 25.5% EU-UK; 29% in March 10-April 10 period

✅ Renewables share up to 46%; grids remained stable and flexible

✅ Electricity demand fell 10%; emissions intensity dropped 19.5%

 

Coal based power generation has fallen by over a quarter (25.5%) across the European Union (EU) and United Kingdom (UK) in the first three months of 2020, compared to 2019, as a result of the response to Covid-19, with renewable energy reaching a 43% share, as wind and solar outpaced gas across the EU, according to new analysis by the technology group Wärtsilä.

The impact is even more stark in the last month, with coal generation collapsing by almost one third (29%) between March 10 and April 10 compared to the same period in 2019, making up only 12% of total EU and UK generation. By contrast, renewables delivered almost half (46%) of generation – an increase of 8% compared to 2019.

In total, demand for electricity across the continent is down by one tenth (10%), mirroring global demand declines of around 15%, due to measures taken to combat Covid-19, the biggest drop in demand since the Second World War. The result is an unprecedented fall in carbon emissions from the power sector, with emission intensity falling by 19.5% compared to the same March 10-April 10 period last year. The analysis comes from the Wärtsilä Energy Transition Lab, a new free-to-use data platform developed by Wärtsilä to help the industry, policy makers and the public understand the impact of Covid-19 on European electricity markets and analyse what this means for the future design and operation of its energy systems. The goal is to help accelerate the transition to 100% renewables.

Björn Ullbro, Vice President for Europe & Africa at Wärtsilä Energy Business, said: “The impact of the Covid-19 crisis on European energy systems is extraordinary. We are seeing levels of renewable electricity that some people believed would cause systems to collapse, yet they haven’t – in fact they are coping well. The question is, what does this mean for the future?”

“What we can see today is how our energy systems cope with much more renewable power – knowledge that will be invaluable, aligning with IAEA low-carbon insights, to accelerate the energy transition. We are making this new platform freely available to support the energy industry to adapt and use the momentum this tragic crisis has created to deliver a better, cleaner energy system, faster.”

The figures mark a dramatic shift in Europe’s energy mix – one that was not anticipated to occur until the end of the decade. The impact of the Covid-19 crisis has effectively accelerated the energy transition in the short-term, even as later lockdowns saw power demand hold firm in parts of Europe, providing a unique opportunity to see how energy systems function with far higher levels of renewables.

Ullbro added: “Electricity demand across Europe has fallen due to the lockdown measures applied by governments to stop the spread of the coronavirus. However, total renewable generation has remained at pre-crisis levels with low electricity prices, combined with renewables-friendly policy measures, crowding out gas and fossil fuel power generation, especially coal. This sets the scene for the next decade of the energy transition.”

These Europe-wide impacts are mirrored at a national level, for example:

  • In the UK, renewables now have a 43% share of generation, following a stall in low-carbon progress in 2019 (up 10% on the same March 10-April 10 period in 2019) with coal power down 35% and gas down 24%.
  • Germany has seen the share of renewables reach 60% (up 12%) and coal generation fall 44%, resulting in a fall in the carbon intensity of its electricity of over 30%.
  • Spain currently has 49% renewables with coal power down by 41%.
  • Italy has seen the steepest fall in demand, down 21% so far.

An industry first, the Wärtsilä Energy Transition Lab has been specifically developed as an open-data platform for the energy industry to understand the impact of Covid-19 and help accelerate the energy transition. The tool provides detailed data on electricity generation, demand and pricing for all 27 EU countries and the UK, combining Entso-E data in a single, easy to use platform. It will also allow users to model how systems could operate in future with higher renewables, as global power demand surpasses pre-pandemic levels, helping pinpoint problem areas and highlight where to focus policy and investment.

 

Related News

View more

Ontario's EV Jobs Boom

Honda Canada EV Supply Chain accelerates electric vehicles with Ontario assembly, battery manufacturing, CAM/pCAM and separator plants in Alliston, creating green jobs, strengthening domestic manufacturing, and reducing greenhouse gas emissions across North America.

 

Key Points

A $15B Ontario initiative for end-to-end EVs, batteries, and components, creating jobs and cutting emissions.

✅ Alliston EV assembly and battery plants anchor production.

✅ CAM/pCAM and separator facilities via POSCO, Asahi JV.

✅ $15B build-out drives jobs, R&D, and lower emissions.

 

The electric vehicle (EV) revolution is gaining momentum in Canada, with Honda Canada announcing a historic $15 billion investment to establish the country's first comprehensive EV supply chain in Ontario. This ambitious project promises to create thousands of new jobs, solidify Canada's position in the EV market, and significantly reduce greenhouse gas emissions.

Honda's Electrifying Vision

The centerpiece of this initiative is a brand-new, world-class electric vehicle assembly plant in Alliston, Ontario. This will be Honda's first dedicated EV assembly plant globally, marking a significant shift towards a more sustainable future. Additionally, a standalone battery manufacturing plant will be constructed at the same location, ensuring a reliable and efficient domestic supply of EV batteries.

Beyond Assembly: A Complete Ecosystem

Honda's vision extends beyond just vehicle assembly. The investment also includes the construction of two additional plants dedicated to critical battery components, mirroring activity such as a Niagara Region battery plant in Ontario: a cathode active material and precursor (CAM/pCAM) processing plant and a separator plant. These facilities, established through joint ventures with POSCO Future M Co., Ltd. and Asahi Kasei Corporation, will ensure a comprehensive in-house EV production capability.

Jobs, Growth, and a Greener Future

This large-scale project is expected to create significant economic benefits for Ontario. The construction and operation of the new facilities are projected to generate over one thousand well-paying manufacturing jobs, similar to GM's Ontario EV plant announcements that underscore employment gains across the province. Additionally, the investment will stimulate growth within Ontario's leading auto parts supplier and research and development ecosystems, bolstered by government-backed EV plant upgrades that reinforce local supply chains, creating even more indirect job opportunities.

But the benefits extend beyond the economy. The transition to electric vehicles plays a crucial role in combating climate change. By bringing EV production onshore, Honda Canada is contributing to a significant reduction in greenhouse gas emissions, aligning with Canada's ambitious climate goals for transportation.

A Catalyst for Change

Honda's investment is a significant vote of confidence in Canada's potential as a leader in the EV industry, as recent EV manufacturing deals put the country in the race. The establishment of this comprehensive EV supply chain will not only benefit Honda, but also attract other EV manufacturers and solidify Ontario's position as a North American EV hub.

The road ahead for Canada's EV industry is bright. With Honda's commitment and this groundbreaking project, and with Ford's Oakville EV plans underway, Canada is well on its way to a cleaner, more sustainable future powered by electric vehicles.

 

Related News

View more

Europe to Weigh Emergency Measures to Limit Electricity Prices

EU Electricity Price Limits are proposed by the European Commission to curb contagion from gas prices, bolster energy security, stabilize the power market, and manage inflation via LNG imports, gas storage, and reduced demand.

 

Key Points

Temporary power-price caps to curb gas contagion, shield consumers, and bolster EU energy security.

✅ Limits decouple electricity from volatile gas benchmarks

✅ Short-term LNG imports and storage to enhance supply security

✅ Market design reforms and demand reduction to tame prices

 

The European Union should consider emergency measures in the coming weeks that could include price cap strategies on electricity prices, European Commission President Ursula von der Leyen told leaders at an EU summit in Versailles.

The reference to the possible measures was contained in a slide deck Ms. von der Leyen used to discuss efforts to curb the EU’s reliance on Russian energy imports, which last year accounted for about 40% of its natural-gas consumption. The slides were posted to Ms. von der Leyen’s Twitter account.

Russia’s invasion of Ukraine has highlighted the vulnerability of Europe’s energy supplies to severe supply disruptions and raised fears that imports could be cut off by Moscow or because of damage to pipelines that run across Ukraine. It has also driven energy prices up sharply, contributing to worries about inflation and economic growth.

Earlier this week, the European Commission, the EU’s executive arm, published the outline of a plan that it said could cut imports of Russian natural gas by two-thirds this year and end the need for those imports entirely before 2030, aligning with calls to ditch fossil fuels in Europe. In the short-term, the plan relies largely on storing natural gas ahead of next winter’s heating season, reducing consumption and boosting imports of liquefied natural gas from other producers.

The Commission acknowledged in its report that high energy prices are rippling through the economy, even as European gas prices have fallen back toward pre-war levels, raising manufacturing costs for energy-intensive businesses and putting pressure on low-income households. It said it would consult “as a matter of urgency” and propose options for dealing with high prices.

The slide deck used by Ms. von der Leyen on Thursday said the Commission plans by the end of March to present emergency options “to limit the contagion effect of gas prices in electricity prices, including temporary price limits, even though rolling back electricity prices can be complex under current market rules.” It also intends this month to set up a task force to prepare for next winter and a proposal for a gas storage policy.

By mid-May, the Commission will set out options to revamp the electricity market and issue a proposal for phasing out EU dependency on Russian fossil fuels by 2027, according to the slides.

French President Emmanuel Macron said Thursday that Europe needs to protect its citizens and companies from the increase in energy prices, adding that some countries, including France, have already taken some national measures.

“If this lasts, we will need to have a more long-lasting European mechanism,” he said. “We will give a mandate to the Commission so that by the end of the month we can get all the necessary legislation ready.”

The problem with price limits is that they reduce the incentive for people and businesses to consume less, said Daniel Gros, distinguished fellow at the Centre for European Policy Studies, a Brussels think tank. He said low-income families and perhaps some businesses will need help dealing with high prices, but that should come as a lump-sum payment that isn’t tied to how much energy they are consuming.

“The key will be to let the price signal work,” Mr. Gros said in a paper published this week, which argued that high energy prices could result in lower demand in Europe and Asia, reducing the need for Russian natural gas. “Energy must be expensive so that people save energy,” he said.

Ms. von der Leyen’s slides suggest the EU hopes to replace 60 billion cubic meters of Russian gas with alternative suppliers, including suppliers of liquefied natural gas, by the end of this year. Another 27 billion cubic meters could be replaced through a combination of hydrogen and EU production of biomethane, according to the slide deck.

 

Related News

View more

When will the US get 1 GW of offshore wind on the grid?

U.S. Offshore Wind Capacity is set to exceed 1 GW by 2024, driven by BOEM approvals, federal leases, and resilient supply chains, with eastern states scaling renewable energy, turbines, and content despite COVID-19 disruptions.

 

Key Points

Projected gigawatt-scale offshore wind growth enabled by BOEM approvals, federal leases, and East Coast state demand.

✅ 17+ GW leased; only 1,870 MW in announced first phases.

✅ BOEM approvals are critical to reach >1 GW by 2024.

✅ Local supply chains mitigate COVID-19 impacts and lower costs.

 

Offshore wind in the U.S. will exceed 1 GW of capacity by 2024 and add more than 1 GW annually by 2027, a trajectory consistent with U.S. offshore wind power trends, according to a report released last week by Navigant Research.

The report calculated over 17 GW of offshore state and federal leases for wind production, reflecting forecasts that $1 trillion offshore wind market growth is possible. However, the owners of those leases have only announced first phase plans for 1,870 MW of capacity, leaving much of the projects in early stages with significant room to grow, according to senior research analyst Jesse Broehl.

The Business Network for Offshore Wind (BNOW) believes it is possible to hit 1 GW by 2023-24, according to CEO Liz Burdock. While the economy has taken a hit from the coronavirus pandemic, she said the offshore wind industry can continue growing as "the supply chain from Asia and Europe regains speed this summer, and the administration starts clearing" plans of construction.

BNOW is concerned with the economic hardship imposed on secondary and tertiary U.S. suppliers due to the global spread of COVID-19.

Offshore wind has been touted by many eastern states and governors as an opportunity to create jobs, with U.S. wind employment expected to expand, according to industry forecasts. Analysts see the growing momentum of projects as a way to further lower costs by creating a local supply chain, which could be jeopardized by a long-term shutdown and recession.

"The federal government must act now — today, not in December — and approve project construction and operation plans," a recent BNOW report said. Approving any of the seven projects before BOEM, which has recently received new lease requests, currently would allow small businesses to get to work "following the containment of the coronavirus," but approval of the projects next year "may be too late to keep them solvent."

The prospects for maintaining momentum in the industry falls largely to the Department of the Interior's Bureau of Ocean Energy Management (BOEM). The industry cannot hit the 1 GW milestone without project approvals by BOEM, which is revising processes to analyze federal permit applications in the context of "greater build out of offshore wind capacity," according to its website.

"It is heavily dependent on the project approval success," Burdock told Utility Dive.

Currently, seven projects are awaiting determinations from BOEM on their construction operation plans in Massachusetts, New York, where a major offshore wind farm was recently approved, New Jersey and Maryland, with more to be added soon, a BNOW spokesperson told Utility Dive.

To date, only one project has received BOEM approval for development in federal waters, a 12 MW pilot by Dominion Energy and Ørsted in Virginia. The two-turbine project is a stepping stone to a commercial-scale 2.6 GW project the companies say could begin installation as soon as 2024, and gave the developers experience with the permitting process.

In the U.S., developers have the capacity to develop 16.9 GW of offshore wind in federal U.S. lease areas, even as wind power's share of the electricity mix surges nationwide, Broehl told Utility Dive, but much of that is in early stages. The Navigant report did not address any impacts of coronavirus on offshore wind, he said.

Although Massachusetts has legislation in place to require utilities to purchase 1.6 GW of wind power by 2026, and several other projects are in early development stages, Navigant expects the first large offshore wind projects in the U.S. (exceeding 200 MW) will come online in 2022 or later, and the first projects with 400 MW or more capacity are likely to be built by 2024-2025, and lessons from the U.K.'s experience could help accelerate timelines. The U.S. would add about 1.2 GW in 2027, Broehl said.

The federal leasing activities along with the involvement from Eastern states and utilities "virtually guarantees that a large offshore wind market is going to take off in the U.S.," Broehl said.

 

Related News

View more

NT Power Penalized $75,000 for Delayed Disconnection Notices

NT Power OEB Compliance Penalty highlights a $75,000 fine for improper disconnection notices, 14-day rule violations, process oversight failures, refunds, LEAP support, and corrective training to strengthen consumer protection and regulatory adherence in Ontario areas.

 

Key Points

A $75,000 OEB fine to NT Power for improper disconnection notices; refunds, LEAP support, and improved compliance.

✅ $75k administrative monetary penalty; $25k LEAP donation; refunds

✅ 870 notices misdated; 14-day rule training implemented

✅ 10 disconnects reconnected; $100 goodwill credits

 

The Ontario Energy Board recently ruled against Newmarket-Tay Power Distribution Ltd. (NT Power), fining them $75,000 for failing to issue timely disconnection notices to 870 customers between April and August 2022. These notices did not comply with the Ontario Energy Board's distribution system code, similar to standards reaffirmed in the OEB decision on Hydro One rates earlier this year, which mandates a minimum 14-day notice period before disconnection.

Out of the affected customers, ten had their electricity services disconnected, and six were additionally charged reconnection fees. However, NT Power has since reconnected all disconnected customers and refunded the reconnection fees, as confirmed by the Ontario Energy Board.

In response to these issues, NT Power has voluntarily accepted an assurance of compliance. This agreement stipulates that NT Power will pay a $75,000 administrative monetary penalty. Furthermore, they will make an additional payment of $25,000 to the Salvation Army's Northridge Community Church, which administers the Low-income Energy Assistance Program (LEAP) within NT Power's service area, aligning with broader efforts to reduce costs for industry highlighted by Canadian Manufacturers & Exporters recently, according to the association.

This is not the first time NT Power has faced compliance issues in this regard. The utility company admitted that this incident marks the second instance in three years where they failed to adhere to their disconnection-related obligations as outlined in the code, and sector governance debates, including the Manitoba Hydro board debate, underscore how oversight remains a national focus.

In a statement to NewmarketToday, NT Power acknowledged a similar issue three years ago when they were alerted to problems with their disconnection process. They promptly made adjustments to align their in-house procedures with the requirements of the Ontario Energy Board. Unfortunately, they neglected to implement a secondary check, leading to disconnect notices being dated a few days too early.

Alex Braletic, NT Power's Vice President of Engineering and Operation, clarified that no customers were actually disconnected prematurely, and debates over paying for electricity in India illustrate how enforcement challenges differ globally, but the issued letters contained inaccuracies. He added that NT Power has since instituted additional verification procedures to prevent such errors from occurring again.

The Ontario Energy Board emphasized that NT Power has assured them that corrective measures have been taken to ensure that their staff involved in the disconnection process receive proper training and management oversight, and recent market reactions such as Hydro One shares falling after leadership changes underscore the importance of strong governance to guarantee compliance with regulatory requirements.

Brian Hewson, Vice President of Consumer Protection and Industry Performance at the Ontario Energy Board, stated, referencing earlier Ontario rate reductions for businesses that complemented consumer protections, "As a result of the actions we have taken and NT Power’s assurance that it is aware of its obligations and has taken steps to improve its processes, consumers will be better protected."

Braletic encouraged NT Power's customers who are facing difficulties paying their electricity bills to reach out to their customer service department or visit their website. He emphasized that various programs and services are available to provide relief for bills, and amid ongoing Toronto Hydro impersonation scams customers should contact NT Power directly. NT Power is committed to collaborating with customers proactively and connecting them with assistance to avoid serving them with disconnection notices.

Furthermore, NT Power plans to send a letter to the ten affected customers and provide each of them with a $100 bill credit as a goodwill gesture.

 

Related News

View more

Brenmiller Energy and New York Power Authority Showcase Thermal Storage Success

bGen Thermal Energy Storage stores high-temperature heat in crushed rocks, enabling on-demand steam, hot water, or hot air; integrates renewables, shifts load with off-peak electricity, and decarbonizes campus heating at SUNY Purchase with NYPA.

 

Key Points

A rock-based TES system storing heat to deliver steam, hot water, or hot air using renewables or off-peak power.

✅ Uses crushed rocks to store high-temperature heat

✅ Cuts about 550 metric tons CO2 annually at SUNY Purchase

✅ Integrates renewables and off-peak electricity with NYPA

 

Brenmiller Energy Ltd. (NASDAQ: BNRG), in collaboration with the New York Power Authority (NYPA), a utility pursuing grid software modernization to improve reliability, has successfully deployed its first bGen™ thermal energy storage (TES) system in the United States at the State University of New York (SUNY) Purchase College. This milestone project, valued at $2.5 million, underscores the growing role of TES in advancing sustainable energy solutions.

Innovative TES Technology

The bGen™ system utilizes crushed rocks to store high-temperature heat, which can be harnessed to generate steam, hot air, or hot water on demand. This approach allows for the efficient use of excess renewable energy or off-peak electricity, and parallels microreactor storage advances that broaden thermal options, providing a reliable and cost-effective means of meeting heating needs. At SUNY Purchase College, the bGen™ system is designed to supply nearly 100% of the heating requirements for the Physical Education Building.

Environmental Impact

The implementation of the bGen™ system is expected to eliminate approximately 550 metric tons of greenhouse gas emissions annually. This reduction aligns with New York State's ambitious climate goals, including a 40% reduction in greenhouse gas emissions by 2030, even as transmission constraints can limit cross-border imports. The project also demonstrates the potential of TES to support the state's transition to a cleaner and more resilient energy system.

Collaborative Effort

The successful deployment of the bGen™ system at SUNY Purchase College is the result of a collaborative effort between Brenmiller Energy and NYPA. The project was partially funded by a grant from the Israel-U.S. Binational Industrial Research and Development (BIRD) Foundation. This partnership highlights the importance of international cooperation in advancing innovative energy technologies, as seen in OPG-TVA nuclear collaboration efforts across North America.

Future Prospects

The successful installation and operation of the bGen™ system at SUNY Purchase College serve as a model for broader adoption of TES technology in institutional settings, as OPG's SMR commitment signals parallel low-carbon investment across the region. Brenmiller Energy and NYPA plan to share the project's findings through a webinar hosted by the Renewable Thermal Collaborative on May 19, 2025. This initiative aims to promote the scalability and replicability of TES solutions across New York State and beyond.

As the demand for sustainable energy solutions continues to grow, the successful deployment of the bGen™ system at SUNY Purchase College marks a significant step forward in the integration of TES technology into the U.S. energy landscape, while projects like Pickering B refurbishment underscore parallel clean power investments. The project not only demonstrates the feasibility of TES but also sets a precedent for future initiatives aimed at reducing carbon emissions and enhancing energy efficiency.

Brenmiller Energy's commitment to innovation and sustainability positions the company as a key player in the evolving energy sector. With continued support from partners like NYPA and the BIRD Foundation, and as jurisdictions advance first SMR deployments in North America, Brenmiller Energy is poised to expand the reach of its TES solutions, contributing to a more sustainable and resilient energy future.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.