'Energy Citizens' rally vs. climate, energy bill

By Associated Press


NFPA 70b Training - Electrical Maintenance

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today
About 200 people rallied in opposition to climate and energy legislation passed by the U.S. House.

The rally in Anchorage was sponsored by the Alaska Energy Forum. It had the backing of the American Petroleum Institute, which is supporting similar "Energy Citizen" gatherings in other oil-producing states.

Speakers took aim at the Waxman-Markey climate and energy bill, also known as the American Clean Energy and Security Act.

The legislation would require the United States to reduce carbon dioxide and other greenhouse gas emissions by 17 percent from 2005 levels by 2020 and by about 80 percent by mid-century.

Former gubernatorial candidate Andrew Halcro says the measure is politically driven and will harm the country's economy with job losses.

Related News

Britain's energy security bill set to become law

UK Energy Security Bill drives private investment, diversifies from fossil fuels with hydrogen and offshore wind, strengthens an independent system operator, and extends the retail price cap to shield consumers from volatile gas markets.

 

Key Points

A UK plan to reform energy, cut fossil fuel reliance, boost hydrogen and wind, and extend the retail price cap.

✅ Targets £100bn private investment and 480,000 jobs by 2030.

✅ Creates an independent system operator for grid planning.

✅ Extends retail energy price cap; mitigates volatile gas costs.

 

The British government said that plans to bolster the country's energy security, diversify away from fossil fuels amid the Europe energy crisis and protect consumers from spiralling prices are set to become law.

Britain's energy security bill will be introduced to Parliament on Wednesday and includes 26 measures to reform the energy system, including ending the gas-electricity price link, and reduce its dependency on fossil fuels and exposure to volatile gas prices.

Global energy prices have skyrocketed this year, and UK natural gas and electricity have risen sharply, particularly after Russia's invasion of Ukraine which has led to many European countries trying to reduce reliance on Russian pipeline gas and seek cheaper alternatives.

The bill will help drive 100 billion pounds ($119 billion) of private sector investment by 2030 into industries to diversify Britain's energy supply, including hydrogen and offshore wind, which could help lower costs as a 16% decrease in bills in April is anticipated, and create around 480,000 jobs by the end of the decade, the government said.

"We’re going to slash red tape, get investment into the UK, and grab as much global market share as possible in new technologies to make this plan a reality," Business and Energy Secretary Kwasi Kwarteng, amid high winter energy costs, said in a statement.

The bill will establish a new independent system operator to coordinate and plan Britain's energy system, while MPs move to restrict prices for gas and electricity through oversight.

It will also enable the extension of a cap on retail energy prices beyond 2023, with the price cap cost under scrutiny, which limits the amount suppliers can charge for each unit of gas and electricity.

The bill will also enable the secretary of state to prevent potential disruptions to the downstream oil sector due to industrial action or malicious protests, the government added.

 

Related News

View more

We Need a Total Fossil Fuel Lockdown for a Climate Revolution

Renewables 2020 Global Status Report highlights renewable energy gaps beyond power, urging decarbonization in heating, cooling, and transport, greener COVID-19 recovery, market reforms, and rapid energy transition to cut CO2 emissions and fossil fuel dependence.

 

Key Points

REN21's annual report on renewable energy progress and policy gaps across power, heating, cooling, and transport.

✅ Calls for decarbonizing heating, cooling, and transport.

✅ Warns COVID-19 recovery must avoid fossil fuel lock-in.

✅ Urges market reforms to boost energy efficiency and renewables.

 

Growth in renewable power has been impressive over the past five years, with over 30% of global electricity now coming from renewables worldwide. But too little is happening in heating, cooling and transport. Overall, global hunger for energy keeps increasing and eats up progress, according to REN21's Renewables 2020 Global Status Report (GSR), released today. The journey towards climate disaster continues, unless we make an immediate switch to efficient and renewable energy in all sectors in the wake of the COVID-19 pandemic.

"Year after year, we report success after success in the renewable power sector. Indeed, renewable power has made fantastic progress. It beats all other fuels in growth and competitiveness. Many national and global organisations already cry victory. But our report sends a clear warning: The progress in the power sector is only a small part of the picture. And it is eaten up as the world's energy hunger continues to increase. If we do not change the entire energy system, we are deluding ourselves," says Rana Adib, REN21's Executive Director.

The report shows that in the heating, cooling and transport sectors, the barriers are still nearly the same as 10 years ago. "We must also stop heating our homes and driving our cars with fossil fuels," Adib claims.

There is no real disruption in the COVID-19 pandemic

In the wake of the extraordinary economic decline due to COVID-19, the IEA predicts energy-related CO2 emissions are expected to fall by up to 8% in 2020. But 2019 emissions were the highest ever, and the relief is only temporary. Meeting the Paris targets would require an annual decrease of at least 7.6% to be maintained over the next 10 years, and UN analysis on NDC ambition underscores the need for faster action. Says Adib: "Even if the lock-downs were to continue for a decade, the change would not be sufficient. At the current pace, with the current system and current market rules, it would take the world forever to come anywhere near a no-carbon system."

"Many recovery packages lock us into a dirty fossil fuel economy"

Recovery packages offer a once-in-a-lifetime chance to make the shift to a low-carbon economy, and green energy investments could accelerate COVID-19 recovery. But according to Adib there is a great risk for this enormous chance to be lost. "Many of these packages include ideas that will instead lock us further into a dirty fossil fuel system. Some directly promote natural gas, coal or oil. Others, though claiming a green focus, build the roof and forget the foundation," she says. "Take electric cars and hydrogen, for example. These technologies are only green if powered by renewables."

Choosing an energy system that supports job creation and social justice

The report points out that "green" recovery measures, such as investment in renewables and building efficiency, are more cost-effective than traditional stimulus measures and yield more returns. It also documents that renewables deliver on job creation, energy sovereignty, accelerated energy access in developing countries, and clean, affordable and sustainable electricity for all objectives worldwide, alongside reduced emissions and air pollution.

"Renewables are now more cost-effective than ever, and recent IRENA analysis shows their potential to decarbonise the energy sector, providing an opportunity to prioritize clean economic recovery packages and bring the world closer to meeting the Paris Agreement Goals. Renewables are a key pillar of a healthy, safe and green COVID-19 recovery that leaves no one behind," said Inger Andersen, Executive Director of the UN Environment Programme (UNEP). "By putting energy transition at the core of economic recovery, countries can reap multiple benefits, from improved air quality to employment generation."

This contrasts with the true cost of fossil fuels, estimated to be USD 5.2 trillion if costs of negative impacts such as air pollution, effects of climate change, and traffic congestion are counted.

Renewable energy systems support energy sovereignty and democracy, empowering citizens and communities, instead of big fossil fuel producers and consumers. "When spending stimulus money, we have to decide: Do we want an energy system that serves some or a system that serves many?", says Adib. "But it's not only about money. We must end any kind of support to the fossil economy, particularly when it comes to heating, cooling and transport. Governments need to radically change the market conditions and rules and demonstrate the same leadership as during the COVID-19 pandemic."

The report finds:

Total final energy demand continues to be on the rise (1.4% annually from 2013 to 2018). Despite significant progress in renewable power generation, the share of renewables in total final energy demand barely increased (9.6% in 2013 to 11% in 2018). Compared to the power sector, the heating, cooling and transport sectors lag far behind (renewable energy share in power, 26%, heating and cooling, 10%, transport, 3%).

Today's progress is largely the result of policies and regulations initiated years ago and focus on the power sector. Major barriers seen in heating, cooling and transport are still almost the same a decade on. Policies are needed to create the right market conditions.

The renewable energy sector employed around 11 million people worldwide in 2018

In 2019, the private sector signed power purchase agreements (PPAs) for a record growth of over 43% from 2018 to 2019 in new renewable power capacity.

The global climate strikes have reached unprecedented levels with millions of people across 150 countries. They have pushed governments to step up climate ambitions. As of April 2020, 1490 jurisdictions - spanning 29 countries and covering 822 million citizens - had issued "climate emergency" declarations, many of which include plans and targets for more renewable-based energy systems.

While some countries are phasing out coal, examples such as Europe's green surge show how renewables can soar as emissions fall, yet others continued to invest in new coal-fired power plants. In addition, funding from private banks for fossil fuel projects has increased each year since the signing of the Paris Agreement, totaling USD 2.7 trillion over the last three years.

"It is clear, renewable power has become mainstream and that is great to see. But the progress in this one sector should not lead us to believe that renewables are a guaranteed success. Governments need to take action beyond economic recovery packages. They also need to create the rules and the environment to switch to an efficient and renewables-based energy system, and action toward 100% renewables is urgently needed worldwide. Globally. Now." concludes Arthouros Zervos, President of REN21.

 

Related News

View more

Green hydrogen, green energy: inside Brazil's $5.4bn green hydrogen plant

Enegix Base One Green Hydrogen Plant will produce renewable hydrogen via electrolysis in Ceara, Brazil, leveraging 3.4 GW baseload renewables, offshore wind, and hydro to scale clean energy, storage, and export logistics.

 

Key Points

A $5.4bn Ceara, Brazil project to produce 600m kg of green hydrogen annually using 3.4 GW of baseload renewables.

✅ 3.4 GW baseload from hydro and offshore wind pipelines

✅ Targets 600m kg green hydrogen per year via electrolysis

✅ Focus on storage, transport, and export supply chains

 

In March, Enegix Energy announced some of the most ambitious hydrogen plans the world has ever seen. The company signed a memorandum of understanding (MOU) with the government of the Brazilian state of Ceará to build the world’s largest green hydrogen plant in the state on the country’s north-eastern coast, and the figures are staggering.

The Base One facility will produce more than 600 million kilograms of green hydrogen annually from 3.4GW of baseload renewable energy, and receive $5.4bn in investment to get the project off the ground and producing within four years.

Green hydrogen, hydrogen produced by electrolysis that is powered by renewables, has significant potential as a clean energy source. Already seeing increased usage in the transport sector, the power source boasts the energy efficiency and the environmental viability to be a cornerstone of the world’s energy mix.

Yet practical challenges have often derailed large-scale green hydrogen projects, from the inherent obstacle of requiring separate renewable power facilities to the logistical and technological challenges of storing and transporting hydrogen. Could vast investment, clever planning, and supportive governments and programs like the DOE’s hydrogen hubs initiative help Enegix to deliver on green hydrogen’s oft-touted potential?

Brazilian billions
The Base One project is exceptional not only for its huge scale, but the timing of its construction, with demand for hydrogen set to increase dramatically over the next few decades. Figures from Wood Mackenzie suggest that hydrogen could account for 1.4 billion tonnes of energy demand by 2050, one-tenth of the world’s supply, with green hydrogen set to be the majority of this figure.

Yet considering that, prior to the announcement of the Enegix project, global green hydrogen capacity was just 94MW, advances in offshore green hydrogen and the development of a project of this size and scope could scale up the role of green hydrogen by orders of magnitude.

“We really need to [advance clean energy] without any emissions on a completely clean, carbon neutral and net-zero framework, and so we needed access to a large amount of green energy projects,” explains Wesley Cooke, founder and CEO of Enegix, a goal aligned with analyses that zero-emissions electricity by 2035 is possible, discussing the motivation behind the vast project.

With these ambitious goals in mind, the company needed to find a region with a particular combination of political will and environmental traits to enable such a project to take off.


“When we looked at all of these key things: pipeline for renewables, access to water, cost of renewables, and appetite for renewables, Brazil really stood out to us,” Cooke continues. “The state of Ceará, that we’ve got an MOU with the government in at the moment, ticks all of these boxes.”

Ceará’s own clean energy plans align with Enegix’s, at least in terms of their ambition and desire for short-term development. Last October, the state announced that it plans to add 5GW of new offshore wind capacity in the next five years. With BI Energia alone providing $2.5bn in investment for its 1.2GW Camocim wind facility, there is significant financial muscle behind these lofty ambitions.

“One thing I should add is that Brazil is very blessed when it comes to baseload renewables,” says Cooke. “They have an incredibly high percentage of their country-wide energy that comes from renewable sources and a lot of this is in part due to the vast hydro schemes that they have for hydro dams. Not a lot of countries have that, and specifically when you’re trying to produce hydrogen, having access to vast amounts of renewables [is vital].”

Changing perceptions and tackling challenges
This combination of vast investment and integration with the existing renewable power infrastructure of Ceará could have cultural impacts too. The combination of state support for and private investment in clean energy offsets many of the narratives emerging from Brazil concerning its energy policies and environmental protections, even as debates over clean energy's trade-offs persist in Brazil and beyond, from the infamous Brumadinho disaster to widespread allegations of illegal deforestation and gold mining.

“I can’t speak for the whole of Brazil, but if we look at Ceará specifically, and even from what we’ve seen from a federal government standpoint, they have been talking about a hydrogen roadmap for Brazil for quite some time now,” says Cooke, highlighting the state’s long-standing support for green hydrogen. “I think we came in at the perfect time with a very solid plan for what we wanted to do, [and] we’ve had nothing but great cooperation, and even further than just cooperation, excitement around the MOU.”

This narrative shift could help overcome one of the key challenges facing many hydrogen projects, the idea that its practical difficulties render it fundamentally unsuitable for baseload power generation. By establishing a large-scale green hydrogen facility in a country that has recently struggled to present itself as one that is invested in renewables, the Base One facility could be the ultimate proof that such clean hydrogen projects are viable.

Nevertheless, practical challenges remain, as is the case with any energy project of this scale. Cooke mentions a number of solutions to two of the obstacles facing hydrogen production around the world: renewable energy storage and transportation of the material.

“We were looking at compressed hydrogen via specialised tankers [and] we were looking at liquefied hydrogen, [as] you have to get liquefied hydrogen very cool to around -253°, and you can use 30% to 40% of your total energy that you started with just to get it down to that temperature,” Cooke explains.

“The other aspect is that if you’re transporting this internationally, you really have to think about the supply chain. If you land in a country like Indonesia, that’s wonderful, but how do you get it from Indonesia to the customers that need it? What is the supply chain? What does that look like? Does it exist today?”

The future of green hydrogen
These practical challenges present something of a chicken and egg problem for the future of green hydrogen: considerable up-front investment is required for functions such as storage and transport, but the difficulties of these functions can scare off investors and make such investments uncommon.

Yet with the world’s environmental situation increasingly dire, more dramatic, and indeed risky, moves are needed to alter its energy mix, and Enegix is one company taking responsibility and accepting these risks.

“We need to have the renewables to match the dirty fuel types,” Cooke says. “This [investment] will really come from the decisions that are being made right now by large-scale companies, multi-billion-euro-per-year revenue companies, committing to building out large scale factories in Europe and Asia, to support PEM [hydrolysis].”

This idea of large-scale green hydrogen is also highly ambitious, considering the current state of the energy source. The International Renewable Energy Agency reports that around 95% of hydrogen comes from fossil fuels, so hydrogen has a long ways to go to clean up its own carbon footprint before going on to displace fossil fuel-driven industries.

Yet this displacement is exactly what Enegix is targeting. Cooke notes that the ultimate goal of Enegix is not simply to increase hydrogen production for use in a single industry, such as clean vehicles. Instead, the idea is to develop green hydrogen infrastructure to the point where it can replace coal and oil as a source of baseload power, leapfrogging other renewables to form the bedrock of the world’s future energy mix.

“The problem with [renewable] baseload is that they’re intermittent; the wind’s not always blowing and the sun’s not always shining and batteries are still very expensive, although that is changing. When you put those projects together and look at the levelised cost of energy, this creates a chasm, really, for baseload.

“And for us, this is really where we believe that hydrogen needs to be thought of in more detail and this is what we’re really evangelising about at the moment.”

A more hydrogen-reliant energy mix could also bring social benefits, with Cooke suggesting that the same traits that make hydrogen unwieldy in countries with established energy infrastructures could make hydrogen more practically viable in other parts of the world.

“When you look at emerging markets and developing markets at the moment, the power infrastructure in some cases can be quite messy,” Cooke says. “You’ve got the potential for either paying for the power or extending your transmission grid, but rarely being able to do both of those.

“I think being able to do that last mile piece, utilising liquid organic hydrogen carrier as an energy vector that’s very cost-effective, very scalable, non-toxic, and non-flammable; [you can] get that power where you need it.

“We believe hydrogen has the potential to be very cost-effective at scale, supporting a vision of cheap, abundant electricity over time, but also very modular and usable in many different use cases.”

 

Related News

View more

California Legislators Prepare Vote to Crack Down on Utility Spending

California Utility Spending Bill scrutinizes how ratepayer funds are used by utilities, targeting lobbying, advertising, wildfire prevention cost pass-throughs, and CPUC oversight to curb high electricity bills and increase accountability and transparency statewide.

 

Key Points

Legislation restricting utilities from using ratepayer money for lobbying and ads, with stronger CPUC oversight.

✅ Bans ratepayer-funded lobbying and political advertising

✅ Expands prohibited utility communications and influence spending

✅ Aims to curb bills, boost transparency, and CPUC accountability

 

California's legislators are about to vote on a bill that would impose stricter regulations on how utility companies spend the money they collect from ratepayers. This legislation directly responds to the growing discontent among Californians who are already grappling with high electricity bills, as Californians ask why electricity prices are soaring amid wildfire prevention efforts.

Consumer rights groups have been vehemently critical of how utilities have been allocating customer funds, amid growing calls for regulatory action from state officials. They allege that a substantial portion of this money is being funnelled into lobbying efforts and advertising campaigns that yield no direct benefits for the customers themselves.

The proposed bill would significantly broaden the definition of what constitutes prohibited advertising and political influence activities on the part of utility companies, separate from income-based fixed electricity charges proposals that affect rate design. This would effectively restrict the ways in which utilities can utilize customer funds for such purposes.

While consumer advocacy groups have favored the legislation, it has drawn opposition from utility companies and some labor unions, as lawmakers weigh overturning income-based utility charges in parallel debates. Opponents contend that it would hinder utilities' ability to communicate effectively with their customers and advocate for their interests. Additionally, they express concerns that the bill could result in job losses within the utility sector.

The vote on the bill is expected to take place on Monday. The outcome of the vote is uncertain, but it is sure to be a closely watched development for Californians struggling with the burden of high electricity bills, with many wondering about major changes to their electric bills in the near term.

 

California's Electricity Rates: A Burden for Residents

A recent report by the California Public Utilities Commission (CPUC) revealed that the average Californian household spends a significantly higher amount on electricity compared to the national average. This disparity in electricity rates can be attributed to a number of factors, including the financial costs associated with wildfire prevention measures, investments in renewable energy infrastructure, and maintenance of aging electrical grids, even as the state considers revamping electricity rates to clean the grid.

 

Examples of Utility Company Spending that Raise Concerns

Consumer rights groups have specifically highlighted instances where utility companies have used customer money to fund lavish executive compensation packages, sponsor professional sports teams, and finance political campaigns. They argue that these expenditures do not provide any tangible benefits to ratepayers and should not be funded through customer bills.

 

The Need for Accountability and Prioritization

Proponents of the bill believe that the legislation is necessary to ensure that utility companies are held accountable for how they spend customer funds. They believe that the stricter regulations would compel utilities to prioritize investments that directly improve the quality and reliability of electricity services for Californians, alongside discussions of income-based flat-fee utility bills that could reshape rate structures.

The impending vote on the bill underscores the ongoing tension between the need for reliable electricity services and the desire to keep utility rates affordable for Californians. The outcome of the vote is likely to have a significant impact on how utility companies operate in the state and how much Californians pay for their electricity.

 

Related News

View more

Scottish North Sea wind farm to resume construction after Covid-19 stoppage

NnG Offshore Wind Farm restarts construction off Scotland, backed by EDF Renewables and ESB, CfD 2015, 54 turbines, powering 375,000 homes, 500 jobs, delivering GBP 540 million, with Covid-19 safety measures and staggered workforce.

 

Key Points

A 54-turbine Scottish offshore project by EDF Renewables and ESB, resuming to power 375,000 homes and support 500 jobs.

✅ Awarded a CfD in 2015; 54 turbines off Scotland's east coast.

✅ Projected to power 375,000 homes and deliver GBP 540 million locally.

✅ Staggered workforce return with Covid-19 control measures and oversight.

 

Neart Na Gaoithe (NnG) Offshore Wind Farm, owned by  EDF Renewables and Irish firm ESB, stopped construction in March, even as the world's most powerful tidal turbine showcases progress in marine energy.

Project boss Matthias Haag announced last night the 54-turbine wind farm would restart construction this week, as the largest UK offshore wind farm begins supplying power, underscoring sector momentum.

Located off Scotland’s east coast, where wind farms already power millions of homes, it was awarded a Contract for Difference (CfD) in 2015 and will look to generate enough energy to power 375,000 homes.

It is expected to create around 500 jobs, and supply chain growth like GE's new offshore blade factory jobs shows wider industry momentum, while also delivering £540 million to the local economy.

Mr Haag, NnG project director, said the wind farm build would resume with a small, staggered workforce return in line social distancing rules, and with broader energy sector conditions, including Hinkley Point C setbacks that challenge the UK's blueprint.

He added: “Initially, we will only have a few people on site to put in place control measures so the rest of the team can start work safely later that week.

“Once that’s happened we will have a reduced workforce on site, including essential supervisory staff.

“The arrangements we have put in place will be under regular review as we continue to closely monitor Covid-19 and follow the Scottish Government’s guidance.”

NnG wind farm, a 54-turbine projects, was due to begin full offshore construction in June 2020 before the Covid-19 outbreak, at a time when a Scottish tidal project had just demonstrated it could power thousands of homes.

EDF Renewables sold half of the NnG project to Irish firm ESB in November last year, and parent company EDF recently saw the Hinkley C reactor roof lifted into place, highlighting progress alongside renewables.

The first initial payment was understood to be around £50 million.

 

Related News

View more

A robot is killing weeds by zapping them with electricity

Electric weed-zapping farm robots enable precision agriculture, using autonomous mapping, per-plant targeting, and robotics to reduce pesticides, improve soil health, boost biodiversity, and lower costs with data-driven, selective weeding and seed-planting workflows.

 

Key Points

Autonomous machines that map fields, electrocute weeds per plant, and plant seeds, cutting pesticides, inputs, and costs.

✅ Precision agriculture: per-plant targeting reduces pesticide use up to 95%.

✅ Autonomous mapping robot surveys 20 hectares per day for weed data.

✅ Electric weeding and seeding improve soil health, biodiversity, and ROI.

 

On a field in England, three robots have been given a mission: to find and zap weeds with electricity, as advances in digitizing the electrical system continue to modernize power infrastructure, before planting seeds in the cleared soil.

The robots — named Tom, Dick and Harry — were developed by Small Robot Company to rid land of unwanted weeds with minimal use of chemicals and heavy machinery, complementing emerging options like electric tractors that aim to cut on-farm emissions.
The startup has been working on its autonomous weed killers since 2017, and this April launched Tom, its first commercial robot which is now operational on three UK farms. The other robots are still in the prototype stage, undergoing testing.

Small Robot says robot Tom can scan 20 hectares (49 acres) a day, collecting data, with AI-driven analysis guiding Dick, a "crop-care" robot, to zap weeds. Then it's robot Harry's turn to plant seeds in the weed-free soil.

Using the full system, once it is up and running, farmers could reduce costs by 40% and chemical usage by up to 95%, the company says, and integration with virtual power plants could further optimize energy use on electrified farms.

According to the UN Food and Agriculture Organization six million metric tons of pesticides were traded globally in 2018, valued at $38 billion.

"Our system allows farmers to wean their depleted, damaged soils off a diet of chemicals," says Ben Scott-Robinson, Small Robot's co-founder and CEO.

Zapping weeds
Small Robot says it has raised over £7 million ($9.9 million). Scott-Robinson says the company hopes to launch its full system of robots by 2023, which will be offered as a service at a rate of around £400 ($568) per hectare. The monitoring robot is placed at a farm first and the weeding and planting robots delivered only when the data shows they're needed — a setup that ultimately relies on a resilient grid, where research into preventing ransomware attacks is increasingly relevant.

To develop the zapping technology, Small Robot partnered with another UK-based startup, RootWave, while innovations like electricity from snow highlight the breadth of emerging energy tech.

"It creates a current that goes through the roots of the plant through the soil and then back up, which completely destroys the weed," says Scott-Robinson. "We can go to each individual plant that is threatening the crop plants and take it out."

"It's not as fast as it would be if you went out to spray the entire field," he says. "But you have to bear in mind we only have to go into the parts of the field where the weeds are." Plants that are neutral or beneficial to the crops are left untouched.

Small Robot calls this "per plant farming" — a type of precise agriculture where every plant is accounted for and monitored.

A business case
For Kit Franklin, an agricultural engineering lecturer from Harper Adams University, efficiency remains a hurdle, even as utilities use AI to adapt to electricity demands that could support wider on-farm electrification.

"There is no doubt in my mind that the electrical system works," he tells CNN Business. "But you can cover hundreds of hectares a day with a large-scale sprayer ... If we want to go into this really precise weed killing system, we have to realize that there is an output reduction that is very hard to overcome."

But Franklin believes farmers will adopt the technology if they can see a business case.

"There's a realization that farming in an environmentally friendly way is also a way of farming in an efficient way," he says. "Using less inputs, where and when we need them, is going to save us money and it's going to be good for the environment and the perception of farmers."

As well as reducing the use of chemicals, Small Robot wants to improve soil quality and biodiversity.

"If you treat a living environment like an industrial process, then you are ignoring the complexity of it," Scott-Robinson says. "We have to change farming now, otherwise there won't be anything to farm."

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified