Price on carbon will determine coal's future

By Restructuring Today


CSA Z462 Arc Flash Training - Electrical Safety Essentials

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today
With growing demand, power firms are going to have to build new baseload but whether they will choose coal or nuclear power isn't known, panelists said at the EIA's 2008 Energy Conference.

The answer depends on how the federal government decides to treat carbon prices, said President of the Alfred P Sloan Foundation and MIT Professor Paul Joskow.

In the now unlikely event that the government doesn't put a price on carbon, coal would win out in most areas since it costs far less to build.

But if the country is serious about cutting greenhouse gases by 60% to 80% by mid-century, the high price on carbon that would result would make nuclear the best option.

Hitting those targets would require carbon prices that average between $50 and $100 dollars.

A $27 price on coal would double the cost of coal, while a $50 price would triple it.

Dominion decided on nuclear to meet rising baseload demand in its regulated Virginia territory, said the firm's Vice President of Nuclear Development Eugene Grecheck.

PJM projects that by 2017 the area will need of 4,000 mw more power than it has now.

Just the data centers going up in the Washington, DC suburbs of Loudon County are enough to eat up the production from a new nuclear plant, he added.

With uncertainty on carbon prices and loan guarantees from the federal government taking out a lot of the risk, nuclear is the way to go, said Grecheck.

His firm is building a coal plant in southwest Virginia that the state all but mandated - but even that project is under heavy opposition and Dominion doesn't want to deal with similar issues at voluntary coal plants.

Once the uncertainty of carbon prices is over and if they come in low enough, coal could still be the default choice for baseload, said Jamie Heller, president of Hellerworx.

If carbon prices are at $10 with relatively low fuel prices, coal is less expensive than gas but once those values rise, coal begins to lose out to natural gas, he predicted.

Thus far, the market has been deciding against coal in light of carbon uncertainty. Some 17,000 mw were canceled last year and the Sierra Club claimed 65 victories in the war on coal.

Related News

The CIB and private sector partners to invest $1.7 billion in Lake Erie Connector

Lake Erie Connector Investment advances a 1,000 MW HVDC transmission link connecting Ontario to the PJM Interconnection, enhancing grid reliability, clean power trade, and GHG reductions through a public-private partnership led by CIB and ITC.

 

Key Points

A $1.7B public-private HVDC project linking Ontario and PJM to boost reliability, cut GHGs, and enable clean power trade.

✅ 1,000 MW, 117 km HVDC link between Ontario and PJM

✅ $655M CIB and $1.05B private financing, ITC to own-operate

✅ Cuts system costs, boosts reliability, reduces GHG emissions

 

The Canada Infrastructure Bank (CIB) and ITC Investment Holdings (ITC) have signed an agreement in principle to invest $1.7 billion in the Lake Erie Connector project.

Under the terms of the agreement, the CIB will invest up to $655 million or up to 40% of the project cost. ITC, a subsidiary of Fortis Inc., and private sector lenders will invest up to $1.05 billion, the balance of the project's capital cost.

The CIB and ITC Investment Holdings signed an agreement in principle to invest $1.7B in the Lake Erie Connector project.

The Lake Erie Connector is a proposed 117 kilometre underwater transmission line connecting Ontario with the PJM Interconnection, the largest electricity market in North America, and aligns with broader regional efforts such as the Maine transmission line to import Quebec hydro to strengthen cross-border interconnections.

The 1,000 megawatt, high-voltage direct current connection will help lower electricity costs for customers in Ontario and improve the reliability and security of Ontario's energy grid, complementing emerging solutions like battery storage across the province. The Lake Erie Connector will reduce greenhouse gas emissions and be a source of low-carbon electricity in the Ontario and U.S. electricity markets.

During construction, the Lake Erie Connector is expected to create 383 jobs per year and drive more than $300 million in economic activity, and complements major clean manufacturing investments like a $1.6 billion battery plant in the Niagara Region that supports the EV supply chain. Over its life, the project will provide 845 permanent jobs and economic benefits by boosting Ontario's GDP by $8.8 billion.

The project will also help Ontario to optimize its current infrastructure, avoid costs associated with existing production curtailments or shutdowns. It can leverage existing generation capacity and transmission lines to support electricity demand, alongside new resources such as the largest battery storage project planned for southwestern Ontario.

ITC continues its discussions with First Nations communities and is working towards meaningful participation in the near term and as the project moves forward to financial close.

The CIB anticipates financial close late in 2021, pending final project transmission agreements, with construction commencing soon after. ITC will own the transmission line and be responsible for all aspects of design, engineering, construction, operations and maintenance.

ITC acquired the Lake Erie Connector project in August 2014 and it has received all necessary regulatory and permitting approvals, including a U.S. Presidential Permit and approval from the Canada Energy Regulator.

This is the CIB's first investment commitment in a transmission project and another example of the CIB's momentum to quickly implement its $10B Growth Plan, amid broader investments in green energy solutions in British Columbia that support clean growth.

 

Endorsements

This project will allow Ontario to export its clean, non-emitting power to one of the largest power markets in the world and, as a result, benefit Canadians economically while also significantly contributing to greenhouse gas emissions reductions in the PJM market. The project allows Ontario to better manage peak capacity and meet future reliability needs in a more sustainable way. This is a true win-win for both Canada and the U.S., both economically and environmentally.
Ehren Cory, CEO, Canada Infrastructure Bank

The Lake Erie Connector has tremendous potential to generate customer savings, help achieve shared carbon reduction goals, and increase electricity system reliability and flexibility. We look forward to working with the CIB, provincial and federal governments to support a more affordable, customer-focused system for Ontarians. 
Jon Jipping, EVP & COO, ITC Investment Holdings Inc., a subsidiary of Canadian-based Fortis Inc. 

We are encouraged by this recent announcement by the Canada Infrastructure Bank. Mississaugas of the Credit First Nation has an interest in projects within our historic treaty lands that have environmental benefits and that offer economic participation for our community.
Chief Stacey Laforme, Mississaugas of the Credit First Nation

While our evaluation of the project continues, we recognize this project can contribute to the economic resilience of our Shareholder, the Mississaugas of the Credit First Nation. Subject to the successful conclusion of our collaborative efforts with ITC, we look forward to our involvement in building the necessary infrastructure that enable Ontario's economic engine.
Leonard Rickard, CEO, Mississaugas of the Credit Business Corporation

The Lake Erie Connector demonstrates the advantages of public-private partnerships to develop critical infrastructure that delivers greater value to Ontarians. Connecting Ontario's electricity grid to the PJM electricity market will bring significant, tangible benefits to our province. This new connection will create high-quality jobs, improve system flexibility, and allow Ontario to export more excess electricity to promote cost-savings for Ontario's electricity consumers.
Greg Rickford, Minister of Energy, Northern Development and Mines, Minister of Indigenous Affairs

With the US pledging to achieve a carbon-free electrical grid by 2035, Canada has an opportunity to export clean power, helping to reduce emissions, maximizing clean power use and making electricity more affordable for Canadians. The Lake Erie Connector is a perfect example of that. The Canada Infrastructure Bank's investment will give Ontario direct access to North America's largest electricity market - 13 states and D.C. This is part of our infrastructure plan to create jobs across the country, tackle climate change, and increase Canada's competitiveness in the clean economy, alongside innovation programs like the Hydrogen Innovation Fund that foster clean technology.


Quick Facts

  • The Lake Erie Connector is a 1,000 megawatt, 117 kilometre long underwater transmission line connecting Ontario and Pennsylvania.
  • The PJM Interconnection is a regional transmission organization coordinating the movement of wholesale electricity in all or parts of Delaware, Illinois, Indiana, Kentucky, Maryland, Michigan, New Jersey, North Carolina, Ohio, Pennsylvania, Tennessee, Virginia, West Virginia and the District of Columbia.
  • The project will help to reduce electricity system costs for customers in Ontario, and aligns with ongoing consultations on industrial electricity pricing and programs, while helping to support future capacity needs.
  • The CIB is mandated to invest CAD $35 billion and attract private sector investment into new revenue-generating infrastructure projects that are in the public interest and support Canadian economic growth.
  • The investment commitment is subject to final due diligence and approval by the CIB's Board.

 

Related News

View more

Seattle City Light's Initiative Helps Over 93,000 Customers Reduce Electricity Bills

Seattle City Light Energy Efficiency Programs help 93,000 residents cut bills with rebates, home energy audits, weatherization, conservation workshops, and sustainability tools, reducing electricity use and greenhouse gas emissions across Seattle communities.

 

Key Points

They are utility programs that lower electricity use and bills via rebates, energy audits, and weatherization services.

✅ Rebates for ENERGY STAR appliances and efficient HVAC upgrades

✅ Free audits with tailored recommendations and savings roadmaps

✅ Weatherization aid for low-income households and renters

 

In a noteworthy achievement for both residents and the environment, Seattle City Light has successfully helped more than 93,000 customers reduce their electricity bills through various energy efficiency programs. This initiative not only alleviates financial burdens for many households, amid concerns about pandemic-era shut-offs that heightened energy insecurity, but also aligns with the city’s commitment to sustainability and responsible energy use.

The Drive for Energy Efficiency

Seattle City Light, the city’s publicly owned electric utility, has been at the forefront of promoting energy efficiency among its customers. Recognizing that energy costs can strain household budgets, the utility has developed a range of programs and tracks emerging utility rate designs to help residents lower their energy consumption and, consequently, their bills.

One of the main aspects of this initiative is the emphasis on education and awareness. By providing customers with tools and resources to understand their energy usage, City Light empowers residents to make informed choices that can lead to substantial savings and prepare for power outage events as well.

Key Programs and Services

Seattle City Light offers a variety of programs aimed at reducing energy consumption. Among the most popular are:

  1. Energy Efficiency Rebates: Customers can receive rebates for purchasing energy-efficient appliances, such as refrigerators, washing machines, and HVAC systems. These appliances are designed to consume less electricity than traditional models, resulting in lower energy bills over time.

  2. Home Energy Audits: Free energy audits are available for residential customers. During these audits, trained professionals assess homes for energy efficiency and provide recommendations on improvements. This personalized service allows homeowners to understand specific changes that can lead to savings.

  3. Weatherization Assistance: This program is particularly beneficial for low-income households. By improving insulation, sealing air leaks, and enhancing overall energy efficiency, residents can maintain comfortable indoor temperatures without over-relying on heating and cooling systems.

  4. Community Workshops: Seattle City Light conducts workshops that educate residents about energy conservation strategies. These sessions cover topics such as smart energy use, seasonal tips for reducing consumption, and the benefits of renewable energy sources, highlighting examples of clean energy engagement in other cities.

The Impact on Households

The impact of these initiatives is profound. By assisting over 93,000 customers in lowering their electricity bills, Seattle City Light not only provides immediate financial relief but also encourages a long-term commitment to energy conservation. This collective effort has resulted in significant reductions in overall energy consumption, contributing to a decrease in greenhouse gas emissions—a critical step in the fight against climate change.

Additionally, the programs have been particularly beneficial for low-income households. By targeting these communities, Seattle City Light ensures that the benefits of energy efficiency reach those who need them the most, promoting equity-focused regulation and access to essential resources.

Looking Ahead: Challenges and Opportunities

While the success of these initiatives is commendable, challenges remain. Fluctuating energy prices can still pose difficulties for many households, especially those on fixed incomes, as some utilities explore minimum charges for low-usage customers in their rate structures. Seattle City Light recognizes the need for ongoing support and resources to help residents navigate these financial challenges.

The utility is committed to expanding its programs to reach even more customers in the future. This includes enhancing outreach efforts to ensure that residents are aware of the available resources, even as debates like utility revenue in a free-electricity future shape planning, and potentially forming partnerships with local organizations to broaden the impact of its initiatives.

 

Related News

View more

Alberta gives $40M to help workers transition from coal power jobs

Alberta Coal Transition Support offers EI top-ups, 75% wage replacement, retraining, tuition vouchers, and on-site advice for workers leaving thermal coal mines and coal-fired power plants during the provincial phase-out.

 

Key Points

Alberta Coal Transition Support is a $40M program providing EI top-ups, retraining, and tuition vouchers to coal workers.

✅ 75% EI top-up; province requests federal alignment

✅ Tuition vouchers and retraining for displaced workers

✅ On-site transition services; about 2,000 workers affected

 

Alberta is putting aside $40 million to help workers losing their jobs as the province transitions away from thermal coal mines and coal-fired power plants, a shift connected to the future of work in the electricity sector over the next decade.

Labour Minister Christina Gray says the money will top up benefits to 75 per cent of a worker’s previous earnings during the time they collect employment insurance, amid regional shifts such as how COVID-19 reshaped Saskatchewan in recent months.

Alberta is asking the federal government to not claw back existing benefits as the province tops up those EI benefits, as utilities face pressures like Manitoba Hydro cost-cutting during the pandemic, while also extending EI benefits for retiring coal workers.

Gray says even if the federal government does not step up, the province will provide the funds to match that 75 per cent threshold, a contrast to problems such as Kentucky miners' cold checks seen elsewhere.

There will also be help for workers in the form of tuition vouchers, retraining programs like the Nova Scotia energy training program that connects youth to the sector, and on-site transitioning advice.

The province estimates there are 2,000 workers affected.

 

Related News

View more

Quebec premier inaugurates La Romaine hydroelectric complex

La Romaine Hydroelectric Complex anchors Quebec's hydropower expansion, showcasing Hydro-Québec ingenuity, clean energy, electrification, and grid capacity gains along the North Shore's Romaine River to power industry and nearly 470,000 homes.

 

Key Points

A four-station, $7.4B hydro project on Quebec's Romaine River producing 8 TWh a year for electrification and industry.

✅ Generates 8 TWh yearly, powering about 470,000 homes

✅ Largest Quebec hydro build since James Bay project

✅ Key to clean energy, grid capacity, and electrification

 

Quebec Premier François Legault has inaugurated the la Romaine hydroelectric complex on the province's North Shore.

The newly inaugurated Romaine hydroelectric complex could serve as a model for future projects, such as the Carillon Generating Station investment now planned in the province, Legault said.

"It brings me a lot of pride. It is truly the symbol of Quebec ingenuity," he said as he opened the vast power plant.

Legault was accompanied at today's event by Jean Charest, who was Quebec premier when construction began in 2009, as well as Hydro-Québec president and CEO Michael Sabia. 

La Romaine is comprised of four power stations and is the largest hydro project constructed in the province since the Robert Bourassa generation facility, which was commissioned in 1979. It is the biggest hydro installation since the James Bay project, bolstering Hydro-Québec's hydropower capacity across the grid today.

The construction work for Romaine-4 was supposed to finish in 2020, but it was delayed the COVID-19 pandemic, the death of four workers due to security flaws and soil decomposition problems. 

The $7.4-billion la Romaine complex can produce eight terawatt hours of electricity per year, enough to power nearly 470,000 homes.

It generates its power from the Romaine River, located north of Havre-St-Pierre, Que., near the Labrador border, where long-standing Newfoundland and Labrador tensions over Quebec's projects sometimes resurface today.

Legault said that Quebec still doesn't have enough electricity to meet demand from industry, including recent allocations of electricity for industrial projects across the province, and Quebecers need to consider more ways to boost the province's ability to power future projects. The premier has said previously that demand is expected to surge by an additional 100 terawatt-hours by 2050 — half the current annual output of the provincially owned utility.

Legault's environmental plan of reducing greenhouse gases and achieving carbon neutrality by 2050 hinges on increased electrification and a strategy to wean off fossil fuels provincewide, so the electricity needs for transport and industry will be massive.

An updated strategic plan from Hydro-Quebec will be presented in November outlining those needs, president and CEO Michael Sabia told reporters on Thursday, after recent deals with NB Power underscored interprovincial demand.

Legault said the report will trigger a broader debate on energy transition and how the province can be a leader in the green economy. He said he wasn't ruling out any potential power sources — except for a return to nuclear power at this stage.

 

Related News

View more

European responses to Covid-19 accelerate electricity system transition by a decade - Wartsila

EU-UK Coal Power Decline 2020 underscores Covid-19's impact on power generation, with renewables rising, carbon emissions falling, and electricity demand down, revealing resilient grids and accelerating the energy transition across European markets.

 

Key Points

Covid-19's impact on EU-UK power: coal down, renewables up, lower emissions intensity and reduced electricity demand.

✅ Coal generation down 25.5% EU-UK; 29% in March 10-April 10 period

✅ Renewables share up to 46%; grids remained stable and flexible

✅ Electricity demand fell 10%; emissions intensity dropped 19.5%

 

Coal based power generation has fallen by over a quarter (25.5%) across the European Union (EU) and United Kingdom (UK) in the first three months of 2020, compared to 2019, as a result of the response to Covid-19, with renewable energy reaching a 43% share, as wind and solar outpaced gas across the EU, according to new analysis by the technology group Wärtsilä.

The impact is even more stark in the last month, with coal generation collapsing by almost one third (29%) between March 10 and April 10 compared to the same period in 2019, making up only 12% of total EU and UK generation. By contrast, renewables delivered almost half (46%) of generation – an increase of 8% compared to 2019.

In total, demand for electricity across the continent is down by one tenth (10%), mirroring global demand declines of around 15%, due to measures taken to combat Covid-19, the biggest drop in demand since the Second World War. The result is an unprecedented fall in carbon emissions from the power sector, with emission intensity falling by 19.5% compared to the same March 10-April 10 period last year. The analysis comes from the Wärtsilä Energy Transition Lab, a new free-to-use data platform developed by Wärtsilä to help the industry, policy makers and the public understand the impact of Covid-19 on European electricity markets and analyse what this means for the future design and operation of its energy systems. The goal is to help accelerate the transition to 100% renewables.

Björn Ullbro, Vice President for Europe & Africa at Wärtsilä Energy Business, said: “The impact of the Covid-19 crisis on European energy systems is extraordinary. We are seeing levels of renewable electricity that some people believed would cause systems to collapse, yet they haven’t – in fact they are coping well. The question is, what does this mean for the future?”

“What we can see today is how our energy systems cope with much more renewable power – knowledge that will be invaluable, aligning with IAEA low-carbon insights, to accelerate the energy transition. We are making this new platform freely available to support the energy industry to adapt and use the momentum this tragic crisis has created to deliver a better, cleaner energy system, faster.”

The figures mark a dramatic shift in Europe’s energy mix – one that was not anticipated to occur until the end of the decade. The impact of the Covid-19 crisis has effectively accelerated the energy transition in the short-term, even as later lockdowns saw power demand hold firm in parts of Europe, providing a unique opportunity to see how energy systems function with far higher levels of renewables.

Ullbro added: “Electricity demand across Europe has fallen due to the lockdown measures applied by governments to stop the spread of the coronavirus. However, total renewable generation has remained at pre-crisis levels with low electricity prices, combined with renewables-friendly policy measures, crowding out gas and fossil fuel power generation, especially coal. This sets the scene for the next decade of the energy transition.”

These Europe-wide impacts are mirrored at a national level, for example:

  • In the UK, renewables now have a 43% share of generation, following a stall in low-carbon progress in 2019 (up 10% on the same March 10-April 10 period in 2019) with coal power down 35% and gas down 24%.
  • Germany has seen the share of renewables reach 60% (up 12%) and coal generation fall 44%, resulting in a fall in the carbon intensity of its electricity of over 30%.
  • Spain currently has 49% renewables with coal power down by 41%.
  • Italy has seen the steepest fall in demand, down 21% so far.

An industry first, the Wärtsilä Energy Transition Lab has been specifically developed as an open-data platform for the energy industry to understand the impact of Covid-19 and help accelerate the energy transition. The tool provides detailed data on electricity generation, demand and pricing for all 27 EU countries and the UK, combining Entso-E data in a single, easy to use platform. It will also allow users to model how systems could operate in future with higher renewables, as global power demand surpasses pre-pandemic levels, helping pinpoint problem areas and highlight where to focus policy and investment.

 

Related News

View more

Disruptions in the U.S. coal, nuclear power industries strain the economy and invite brownouts

Electric power market crisis highlights grid reliability risks as coal and nuclear retire amid subsidies, mandates, and cheap natural gas; intermittent wind and solar raise blackout concerns, resilience costs, and pricing distortions across regulated markets.

 

Key Points

Reliability and cost risks as coal and nuclear retire; subsidies distort prices; intermittent renewables strain grid.

✅ Coal and nuclear retirements reduce baseload capacity

✅ Subsidies and mandates distort market pricing signals

✅ Intermittent renewables increase blackout and grid risk

 

Is anyone paying any attention to the crisis that is going on in our electric power markets?

Over the past six months at least four major nuclear power plants have been slated for shutdown, including the last one in operation in California. Meanwhile, dozens of coal plants have been shuttered as well — despite low prices and cleaner coal. Some of our major coal companies may go into bankruptcy.

This is a dangerous game we are playing here with our most valuable resource — outside of clean air and water. Traditionally, we've received almost half our electric power nationwide from coal and nuclear power, and for good reason. They are cheap sources of power and they are highly resilient and reliable.

The disruption to coal and nuclear power wouldn't be disturbing if this were happening as a result of market forces. That's only partially the case.

#google#

The amazing shale oil and gas revolution is providing Americans with cheap gas for home heating and power generation. Hooray. The price of natural gas has fallen by nearly two-thirds over the last decade and this has put enormous price pressure on other forms of power generation.

But this is not a free-market story of Schumpeterian creative destruction. If it were, then wind and solar power would have been shutdown years ago. They can't possibly compete on a level playing field with $3 natural gas.

In most markets solar and wind power survive purely because the states mandate that as much as 30 percent of residential and commercial power come from these sources. The utilities have to buy it regardless of price, even as electricity demand is flat in many regions. What a sweet deal. The California state legislature just mandated that every new home spend $10,000 on solar panels on the roof.

Well over $100 billion of subsidies to big wind and big solar were doled out over the last decade, and even with the avalanche of taxpayer subsidies and bailout funds many of these companies like Solyndra (which received $500 million in handouts) failed, underscoring why a green revolution hasn't materialized as promised.

These industries are not anywhere close to self sufficiency. In 2017 amid utility trends to watch the wind industry admitted that without a continuation of a multi-billion tax credit, the wind turbines would stop turning.

This combines with the left's war on coal through regulations that have destroyed coal plants in many areas. (Thank goodness for the exports of coal or the industry would be in much bigger trouble.)

Bottom line: Our power market is a Soviet central planner's dream come true and it is extinguishing our coal and nuclear industries.

 

Why should anyone care?

First, because government subsidies, regulations and mandates make electric power more expensive. Natural gas prices have fallen by two-thirds, but electric power costs have still risen in most areas — thanks to the renewable mandates.

More importantly, the electric power market isn't accurately pricing in the value of resilience and reliability. What is the value of making sure the lights don't go off? What is the cost to the economy and human health if we have rolling brownouts and blackouts because the aging U.S. grid doesn't have enough juice during peak demand.

Politicians, utilities and federal regulators are shortsightedly killing our coal and nuclear capacities without considering the risk of future energy shortages and power disruptions. Once a nuclear plant is shutdown, you can't just fire it back up again when you need it.

Wind and solar are notoriously unreliable. Most places where wind power is used, coal plants are needed to back up the system during peak energy use and when the wind isn't blowing.

The first choice to fix energy markets is to finally end the tangled web of layers and layers of taxpayer subsidies and mandates and let the market choose. Alas, that's nearly impossible given the political clout of big wind and solar.

The second best solution is for the regulators and utilities to take into account the grid reliability and safety of our energy. Would people be willing to pay a little more for their power to ensure against brownouts? I sure would. The cost of having too little energy far exceeds the cost of having too much.

A glass of water costs pennies, but if you're in a desert dying of thirst, that water may be worth thousands of dollars.

I'll admit I'm not sure what the best solution is to the power plant closures. But if we have major towns and cities in the country without electric power for stretches of time because of green energy fixation, Americans are going to be mighty angry and our economy will take a major hit.

When our manufacturers, schools, hospitals, the internet and iPhones shut down, we're not going to think wind and solar power are so chic.

If the lights start to go out five or 10 years from now, we will look back at what is happening today and wonder how we could have been so darn stupid.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.