PDA-friendly standards now at your fingertips

By Electricity Forum


Substation Relay Protection Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
Canadian Standards Association (CSA), a leading developer of standards and codes, today showcased its new Mobile Device Format (MDF) for standards to go at the Standards Publishing Advisory Board (SPAB) Annual conference in Fort Lauderdale, Florida.

The custom-designed document reader allows content heavy publications to be easily read on a mobile and hand-held computing devices such as Personal Digital Assistants (PDAs), full-size Smart Phones, and Pocket PCs.

A 2007 survey sampling of 32,000 CSA customers showed that more than half of the respondents currently owned a PDA, Smart Phone or Pocket PC and that 75 per cent were interested in viewing CSA standards on mobile devices.

“Mobile devices are gaining popularity across a wide range of vertical markets in North America and are increasingly seen as a convenient way to access and share information” said Suzanne Kiraly, President, Standards, Canadian Standards Association. “As the first known standard development organization to offer standards and related products in an interactive mobile device format, CSA is leading the way in promoting new, innovative technologies with advanced features and capabilities that deliver the best, most efficient products and services to our clients, members and end users.”

MDF was developed in cooperation with Alcaeus Innovations Inc., of Nova Scotia, which creates high-end mobile software and web application tools for companies throughout North America and Europe. The Alcaeus Mobile Editions Software (AMES) is a custom-designed document reader that reads the converted CSA PDF publication files. It is specifically designed to function on the Microsoft Windows Mobile Operating System and will soon be available for Blackberry devices. MDF standards are “Internet free” and once downloaded, the standards reside on the mobile device where they can be instantly accessed in the office, on a job site, or in the field.

The MDF standards are specifically designed to be economical for mobile devices. A file of 80 pages in PDF format may consume 3.5 megabytes (MB) of memory, but in MDF the same file would consume less than 5 per cent or 146 kilobytes. A mobile device with a 256 MB memory card may store as much as 1,300 publications of as many as 600 pages in length without losing any of the original publication structure.

MDF standards also include a dynamic search function allowing for input key terms, clauses or phrases for quick searching; an easy-to-read display with tables and diagrams automatically adjusted for landscape or portrait mode; interactive features such as dynamic equations in the standard so that users can enter variables and calculate answers electronically; easy and quick retrieval of searched items.

Related News

Electric vehicles are a hot topic in southern Alberta

Canada Electric Vehicle Adoption is accelerating as EV range doubles, fast-charging networks expand along the Trans-Canada Highway, and drivers shift from internal combustion to clean transportation to cut emissions and support climate goals.

 

Key Points

Canada Electric Vehicle Adoption reflects rising EV uptake, longer range, and expanding fast-charging infrastructure.

✅ Average EV range in Canada has nearly doubled in six years.

✅ Fast chargers expanding along Trans-Canada and major corridors.

✅ Gasoline and diesel demand projected to fall sharply by 2040.

 

As green technology for vehicles continues to grow in popularity, with a recent EV event in Regina drawing strong interest, attendance at a seminar in southern Alberta Wednesday showed plenty people want to switch to electric.

FreeU, a series of informal education sessions about electric power and climate change, including electricity vs hydrogen considerations, helped participants to learn more about the world-changing technology.

Also included at the talks was a special electric vehicle meet up, where people interested in the technology could learn about it, first hand, from drivers who've already gone gasless despite EV shortages and wait times in many regions.

"That's kind of a warning or a caution or whatever you want to call it. You get addicted to these things and that's a good example."

James Byrne, a professor of geography at the University of Lethbridge says people are much more willing these days to look to alternatives for their driving needs, though cost remains a key barrier for many.

"The internal combustion engine is on its way out. It served us well, but electric vehicles are much cleaner, aligning with Canada's EV goals set by policymakers today."

According to the Canada Energy Regulator, the average range of electric vehicles in Canada have almost doubled in the past six years.

The agency also predicts a massive decrease in gasoline and diesel use (359 petajoules and 92 petajoules respectively) in Canada by 2040. In that same timeframe, electricity use, even though fossil-fuel share remains, is expected to increase by 118 petajoules.

The country is also developing its network of fast charging stations, so running out of juice will be less of a worry for prospective buyers, even as 2035 EV mandate debate continues among analysts.

"They have just about Interstate in the U.S. covered," Marshall said. "In Canada, they're building out the [Trans-Canada Highway] right now."

 

Related News

View more

Trump's Vision of U.S. Energy Dominance Faces Real-World Constraints

U.S. Energy Dominance envisions deregulation, oil and gas growth, LNG exports, pipelines, and geopolitical leverage, while facing OPEC pricing power, infrastructure bottlenecks, climate policy pressures, and accelerating renewables in global markets.

 

Key Points

U.S. policy to grow fossil fuel output and exports via deregulation, bolstering energy security, geopolitical influence.

✅ Deregulation to expand drilling, pipelines, and export capacity

✅ Exposed to OPEC pricing, global shocks, and cost competitiveness

✅ Faces infrastructure, ESG finance, and renewables transition risks

 

Former President Donald Trump has consistently advocated for “energy dominance” as a cornerstone of his energy policy. In his vision, the United States would leverage its abundant natural resources to achieve energy self-sufficiency, flood global markets with cheap energy, and undercut competitors like Russia and OPEC nations. However, while the rhetoric resonates with many Americans, particularly those in energy-producing states, the pursuit of energy dominance faces significant real-world challenges that could limit its feasibility and impact.

The Energy Dominance Vision

Trump’s energy dominance strategy revolves around deregulation, increased domestic production of oil and gas, and the rollback of climate-oriented restrictions. During his presidency, he emphasized opening federal lands to drilling, accelerating the approval of pipelines, and, through an executive order, boosting uranium and nuclear energy initiatives, as well as withdrawing from international agreements like the Paris Climate Accord. The goal was not only to meet domestic energy demands but also to establish the U.S. as a major exporter of fossil fuels, thereby reducing reliance on foreign energy sources.

This approach gained traction during Trump’s first term, with the U.S. achieving record levels of oil and natural gas production. Energy exports surged, making the U.S. a net energy exporter for the first time in decades. Yet, critics argue that this policy prioritizes short-term economic gains over long-term sustainability, while supporters believe it provides a roadmap for energy security and geopolitical leverage.

Market Realities

The energy market is complex, influenced by factors beyond the control of any single administration, with energy crisis impacts often cascading across sectors. While the U.S. has significant reserves of oil and gas, the global market sets prices. Even if the U.S. ramps up production, it cannot insulate itself entirely from price shocks caused by geopolitical instability, OPEC production cuts, or natural disasters.

For instance, despite record production in the late 2010s, American consumers faced volatile gasoline prices during an energy crisis driven by $5 gas and external factors like tensions in the Middle East and fluctuating global demand. Additionally, the cost of production in the U.S. is often higher than in countries with more easily accessible reserves, such as Saudi Arabia. This limits the competitive advantage of U.S. energy producers in global markets.

Infrastructure and Environmental Concerns

A major obstacle to achieving energy dominance is infrastructure. Expanding oil and gas production requires investments in pipelines, export terminals, and refineries. However, these projects often face delays due to regulatory hurdles, legal challenges, and public opposition. High-profile pipeline projects like Keystone XL and Dakota Access have become battlegrounds between industry proponents and environmental activists, and cross-border dynamics such as support for Canadian energy projects amid tariff threats further complicate permitting, highlighting the difficulty of reconciling energy expansion with environmental and community concerns.

Moreover, the transition to cleaner energy sources is accelerating globally, with many countries committing to net-zero emissions targets. This trend could reduce the demand for fossil fuels in the long run, potentially leaving U.S. producers with stranded assets if global markets shift more quickly than anticipated.

Geopolitical Implications

Trump’s energy dominance strategy also hinges on the belief that U.S. energy exports can weaken adversaries like Russia and Iran. While increased American exports of liquefied natural gas (LNG) to Europe have reduced the continent’s reliance on Russian gas, achieving total energy independence for allies is a monumental task. Europe’s energy infrastructure, designed for pipeline imports from Russia, cannot be overhauled overnight to accommodate LNG shipments.

Additionally, the influence of major producers like Saudi Arabia and the OPEC+ alliance remains significant, even as shifts in U.S. policy affect neighbors; in Canada, some viewed Biden as better for the energy sector than alternatives. These countries can adjust production levels to influence prices, sometimes undercutting U.S. efforts to expand its market share.

The Renewable Energy Challenge

The growing focus on renewable energy adds another layer of complexity. Solar, wind, and battery storage technologies are becoming increasingly cost-competitive with fossil fuels. Many U.S. states and private companies are investing heavily in clean energy to align with consumer preferences and global trends, amid arguments that stepping away from fossil fuels can bolster national security. This shift could dampen the domestic demand for oil and gas, challenging the long-term viability of Trump’s energy dominance agenda.

Moreover, international pressure to address climate change could limit the expansion of fossil fuel infrastructure. Financial institutions and investors are increasingly reluctant to fund projects perceived as environmentally harmful, further constraining growth in the sector.

While Trump’s call for U.S. energy dominance taps into a desire for economic growth and energy security, it faces numerous challenges. Global market dynamics, infrastructure bottlenecks, environmental concerns, and the transition to renewable energy all pose significant barriers to achieving the ambitious vision.

For the U.S. to navigate these challenges effectively, a balanced approach that incorporates both traditional energy sources and investments in clean energy is likely needed. Striking this balance will require careful policymaking that considers not just immediate economic gains but also long-term sustainability and global competitiveness.

 

Related News

View more

China to build 525-MW hydropower station on Yangtze tributary

Baima Hydropower Station advances China renewable energy on the Wujiang River, a Yangtze tributary in Chongqing; a 525 MW cascade project approved by NDRC, delivering 1.76 billion kWh and improving river shipping.

 

Key Points

An NDRC-approved 525 MW project on Chongqing's Wujiang River, producing 1.76 billion kWh and improving navigation.

✅ 10.2 billion yuan investment; final cascade plant on Wujiang in Chongqing

✅ Expected output: 1.76 billion kWh; capacity 525 MW; NDRC approval

✅ Improves river shipping; relocation of 5,000 residents in Wulong

 

China plans to build a 525-MW hydropower station on the Wujiang River, a tributary of the Yangtze River, in Southwest China's Chongqing municipality, aligning with projects like the Lawa hydropower station elsewhere in the Yangtze basin.

The Baima project, the last of a cascade of hydropower stations on the section of the Wujiang River in Chongqing, has gotten the green light from the National Development and Reform Commission, China's state planning agency, even as some independent power projects elsewhere face uncertainty, such as the Siwash Creek project in British Columbia, the Chongqing Municipal Commission of Development and Reform said Monday.

The project, in Baima township of Wulong district, is expected to involve an investment of 10.2 billion yuan ($1.6 billion), as China explores compressed air generation to bolster grid flexibility, it said.

#google#

With a power-generating capacity of 525 MW, it is expected to generate 1.76 billion kwh of electricity a year, supporting efforts to reduce coal power production nationwide, and help improve the shipping service along the Wujiang River.

More than 5,000 local residents will be relocated to make room for the project, which forms part of a broader energy mix alongside advances in nuclear energy in China.

 

Related News

View more

"Knowledge Gap" Is Contributing To On-the-job Electrical Injuries

BC Hydro Trades Electrical Safety addresses electric contact incidents among trade workers, emphasizing power line hazards, overhead lines clearance, the 3 m rule, jobsite planning, and safety training to prevent injuries during spring and summer.

 

Key Points

BC Hydro Trades Electrical Safety is guidance and training to reduce power-line contact risks for trade workers.

✅ Stay at least 3 m from overhead power lines and equipment

✅ Plan worksites and spot hazards before starting tasks

✅ Use BC Hydro electrical awareness training near electricity

 

A BC Hydro report finds serious electrical contact incidents are more common among trades workers, and research shows this is partly due to a knowledge gap in the electricity sector in Canada.

Trade workers were involved in more than 60 per cent of electric contact incidents that led to serious injuries over the last three years, according to BC Hydro.

One-in-five trade workers have also either made contact or had a close call with electric equipment.

A recent worksite electrocution case underscores the consequences of contact.

“New research finds many have had a close call with electricity on the job or have witnessed unsafe work near overhead lines or electrical equipment,” BC Hydro staff said in the report.

“A gap in electrical safety knowledge is a contributing factor in most of these incidents.”

Most electrical contact incidents take place in the spring and summer, when trade workers are working outdoors and are working in close proximity to power lines.

BC Hydro offered tips for trades workers who may work closely to possible electrical contact points:

  • Look up and down – Observe the site beforehand and plan work so you can avoid contact with power lines
  • Stay back – You and your tools should stay at least 3 m away from an overhead power line
  • Call for help – If you come across a fallen power line, or a tree branch or object contacts a line—stay back 10 metres and call 911. Never try and move it yourself. If you must work closer than 3 m to a power line at your worksite, call BC Hydro before you begin.
  • Learn about the risks – BC Hydro offers in-person and online electrical awareness training, such as arc flash training, for anyone who works near electricity.

The report found that 38 per cent of trades workers who participated in the report said they only feel “somewhat informed” about safety measures around working near electricity and 71 per cent were unable to identify the correct distance they should be away from active power lines or electrical equipment.

BC Hydro said trade workers should participate in its electrical awareness training courses, including arc flash training, to make sure all safety measures are taken.

 

Related News

View more

California’s Solar Power Cost Shift: A Misguided Policy Threatening Energy Equity

California Rooftop Solar Cost Shift examines PG&E rate hikes, net metering changes, and utility infrastructure spending impacts on low-income households, distributed generation, and clean energy adoption, potentially raising bills and undermining grid resilience.

 

Key Points

A claim that rooftop solar shifts fixed grid costs to others; critics cite PG&E rates, avoided costs, and impacts.

✅ PG&E rates outpace national average, underscoring cost drivers.

✅ Net metering cuts risk burdening low- and middle-income homes.

✅ Distributed generation avoids infrastructure spend and grid strain.

 

California is grappling with soaring electricity prices across the state, with Pacific Gas & Electric (PG&E) rates more than double the national average and increasing at an average of 12.5% annually over the past six years. In response, Governor Gavin Newsom issued an executive order directing state energy agencies to identify ways to reduce power costs. However, recent policy shifts targeting rooftop solar users may exacerbate the problem rather than alleviate it.

The "Cost Shift" Theory

A central justification for these pricing changes is the "cost shift" theory. This theory posits that homeowners with rooftop solar panels reduce their electricity consumption from the grid, thereby shifting the fixed costs of maintaining and operating the electrical grid onto non-solar customers. Proponents argue that this leads to higher rates for those without solar installations.

However, this theory is based on a flawed assumption: that PG&E owns 100% of the electricity generated by its customers and is entitled to full profits even for energy it does not deliver. In reality, rooftop solar users supply only about half of their energy needs and still pay for the rest. Moreover, their investments in solar infrastructure reduce grid strain and save ratepayers billions by avoiding costly infrastructure projects and reducing energy demand growth, aligning with efforts to revamp electricity rates to clean the grid as well.

Impact on Low- and Middle-Income Households

The majority of rooftop solar users are low- and middle-income households. These individuals often invest in solar panels to lower their energy bills and reduce their carbon footprint. Policy changes that undermine the financial viability of rooftop solar disproportionately affect these communities, and efforts to overturn income-based charges add uncertainty about affordability and access.

For instance, Assembly Bill 942 proposes to retroactively alter contracts for millions of solar consumers, cutting the compensation they receive from providing energy to the grid, raising questions about major changes to your electric bill that could follow if their home is sold or transferred. This would force those with solar leases—predominantly lower-income individuals—to buy out their contracts when selling their homes, potentially incurring significant financial burdens.

The Real Drivers of Rising Energy Costs

While rooftop solar users are being blamed for rising electricity rates, calls for action have mounted as the true culprits lie elsewhere. Unchecked utility infrastructure spending has been a significant factor in escalating costs. For example, PG&E's rates have increased rapidly, yet the utility's spending on infrastructure projects has often been criticized for inefficiency and lack of accountability. Instead of targeting solar users, policymakers should scrutinize utility profit motives and infrastructure investments to identify areas where costs can be reduced without sacrificing service quality.

California's approach to addressing rising electricity costs by targeting rooftop solar users is misguided. The "cost shift" theory is based on flawed assumptions and overlooks the substantial benefits that rooftop solar provides to the grid and ratepayers. To achieve a sustainable and equitable energy future, the state must focus on controlling utility spending, promoting clean energy access for all, especially as it exports its energy policies across the West, and ensuring that policies support—not undermine—the adoption of renewable energy technologies.

 

Related News

View more

Is Ontario embracing clean power?

Ontario Clean Energy Expansion signals IESO-backed renewables, energy storage, and low-CO2 power to meet EV-driven demand, offset Pickering nuclear retirement, and balance interim gas-fired generation while advancing grid reliability, decarbonization, and net-zero targets.

 

Key Points

Ontario Clean Energy Expansion plans to grow renewables and storage, manage short-term gas, and meet rising demand.

✅ IESO long-term procurements for renewables and storage

✅ Interim reliance on gas to replace Pickering capacity

✅ Targets align with net-zero grid reliability goals

 

After cancelling hundreds of renewable power projects four years ago, the Doug Ford government appears set to expand clean energy to meet a looming electricity shortfall across the province.

Recent announcements from Ontario Energy Minister Todd Smith and the province’s electric grid management agency suggest the province plans to expand low-CO2 electricity with new wind and solar plans in the long-term, even as it ramps up gas-fired power over the next five years.

The moves are in response to an impending electricity shortfall as climate-conscious drivers switch to electric vehicles, farmers replace field crops with greenhouses and companies like ArcelorMittal Dofasco in Hamilton switch from CO2-heavy manufacturing to electricity-based production. Forecasters predict Canada will need to double its power supply by 2050.

While Ontario has a relatively low-CO2 power system, the province’s electricity supply will be reduced in 2025 when Ontario Power Generation closes the 50-year-old Pickering nuclear station, now near the end of its operating life. This will remove 3,100 megawatts of low-CO2 generation, about eight per cent of the province’s 40,000-megawatt total.

The impending closure has created a difficult situation for the Independent Electricity System Operator (IESO), the provincial agency managing Ontario’s grid. Last year, it forecasted it would need to sharply increase CO2-polluting natural gas-fired power to avoid widespread blackouts.

This would mean drivers switching to electric vehicles or companies like Dofasco cutting CO2 through electrification would end up causing higher power system emissions.

It would also fly in the face of the federal government’s ambition to create a net-zero national electricity system by 2035, a critical part of Canada’s pledge to reduce CO2 emissions to zero by 2050.

Yet the Ford government has appeared reluctant to expand clean energy. In the 2018 election, clean electricity was a key issue as it appealed to anti-turbine voters in rural Ontario and cancelled more than 700 renewable energy contracts shortly after taking office, taking 400 megawatts out of the system.

But there are signs the government is having a change of heart. IESO recently released a list of 55 companies approved to submit bids for 3,500 megawatts of long-term electricity contracts starting between 2025 and 2027, and the energy minister has outlined a plan to address growing energy needs as well.

The companies include a variety of potential producers, ranging from Canadian and global renewable companies to local utilities and small startups. Most are renewable power or energy storage companies specializing in low- or zero-emission power. IESO plans additional long-term bid offerings in the future.

This doesn’t mean gas generation will be turned off. IESO will contract yearly production from existing gas plants until 2028 (the annual contract in 2023 will be for about 2,000 megawatts). As well, IESO has issued contracts to four gas-fired producers, a small wind company and a storage company to begin production of about 700 megawatts to boost gas plant output starting between 2024 and 2026.

While this represents an expansion of existing gas-fired generation, Smith has asked IESO to report on a gas moratorium, saying he doesn’t believe new gas plants will be needed over the long term.

The NDP and Greens criticized the government for relying on gas in the near term. But clean energy advocates greeted the long-term plans positively.

The IESO process “will contribute to a clean, reliable and affordable grid,” said the Canadian Renewable Energy Association.

Rachel Doran, director of policy and strategy at Clean Energy Canada, said in an email the potential gas generation moratorium “is an encouraging step forward,” although she criticized the “unfortunate decision to replace near-term nuclear power capacity with climate-change-causing natural gas.”

There will have to be a massive clean energy expansion to green Ontario’s grid well beyond what has been announced in recent days for Ontario to meet its future energy needs (think a doubling of Ontario’s current 40,000-megawatt capacity by 2050).

But these first steps hold promise that Ontario is at least starting on the path to that goal, rather than scrambling to keep the lights on with CO2-polluting natural gas.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.