Berlin Electric Utility Wins National Safety Award


berlin-electric-utility-wins-national-safety-award

NFPA 70e Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$199
Coupon Price:
$149
Reserve Your Seat Today

Berlin Electric Utility APPA Safety Award recognizes Gold Designation performance in public power, highlighting OSHA-aligned incident rates, robust safety culture, worker safety training, and operational reliability that keeps the community's electric service resilient.

 

Key Points

A national honor for Berlin's Gold Designation recognizing safety performance, worker protection, and reliable service.

✅ Gold Designation in 15,000-29,999 worker hours APPA category

✅ OSHA-based incident rate and robust safety culture

✅ Training, PPE, and reliability focus in public power operations

 

The Town of Berlin Electric Utility Department has been recognized for its outstanding safety practices with the prestigious Safety Award of Excellence from the American Public Power Association (APPA), a distinction also reflected in Medicine Hat Electric Utility for health and safety excellence, highlighting industry-wide commitment to worker protection.

Recognition for Excellence

In an era when workplace safety is a critical concern, with organizations highlighting leadership in worker safety across the sector, the Town of Berlin Electric Utility Department’s achievement stands out. The department earned the Gold Designation award in the category for utilities with 15,000 to 29,999 worker hours of annual worker exposure. This category is part of the APPA’s annual Safety Awards, which are designed to recognize the safety performance of public power utilities across the United States.

Out of more than 200 utilities that participated in the 2024 Safety Awards, Berlin's Electric Utility Department distinguished itself with an exemplary safety record. The utility’s ranking was based on its low incidence of work-related injuries and illnesses, alongside its robust safety programs and strong safety culture.

What the Award Represents

The Safety Award of Excellence is given to utilities that demonstrate effective safety protocols and practices over the course of the year. The APPA evaluates utilities based on their incident rate, which is calculated using the number of work-related reportable injuries or illnesses relative to worker hours. This measurement adheres to guidelines established by the Occupational Safety and Health Administration (OSHA), ensuring a standardized approach to assessing safety.

For the Town of Berlin Electric Utility Department, achieving the Gold Designation award signifies a year of outstanding safety performance. The award reflects the department’s dedication to preventing accidents and creating a work environment where safety is prioritized at every level.

Why Safety Matters

For utilities like the one in Berlin, safety is not just about preventing injuries—it's about fostering a culture of care and responsibility. Electric utility workers face unique and significant risks, ranging from the dangers of working with high-voltage systems, including hazards near downed power lines that require extreme caution, to the physical demands of the job. A utility’s ability to minimize these risks and keep its workforce safe is a direct reflection of its safety practices, training, and overall management.

The commitment to safety extends beyond just the immediate work environment. Utilities that place a high value on safety typically invest in ongoing training, safety gear, and processes, and even contingency measures like staff living on site during outbreaks, that ensure all employees are well-prepared to handle the challenges of their roles. The Town of Berlin Electric Utility Department has taken these steps seriously, providing its workers with the resources they need to stay safe while maintaining the power supply for the local community.

The Importance of Worker Safety in Public Power

The American Public Power Association’s Safety Award program highlights the best practices in public utilities, which, as the U.S. grid overseer's pandemic warning reminded the sector, play a crucial role in providing essential services to communities across the country. Public power utilities, like Berlin’s, are governed by local or municipal entities rather than for-profit corporations, which often allows them to have a closer relationship with their communities. As a result, these utilities often go above and beyond when it comes to worker safety, understanding that the well-being of employees directly impacts the quality of service provided to residents.

For the Town of Berlin, this award not only highlights the utility's commitment to its employees but also reinforces the importance of the work that public utilities do in keeping communities safe and powered. Berlin's recognition underscores the significance of maintaining a safe work environment, especially when the safety of first responders and utility workers, as seen when nuclear plant workers raised concerns over virus precautions, directly impacts the public’s access to reliable services.

What’s Next for Berlin’s Electric Utility Department

Receiving the Safety Award of Excellence is a remarkable achievement, but for the Town of Berlin Electric Utility Department, it’s not the end of their safety journey—it’s just one more step in their ongoing commitment to improvement. The department’s leadership, including the safety team, has emphasized the importance of continually evaluating and enhancing safety protocols to stay ahead of potential risks. This includes adopting new safety technologies, refining training programs, and ensuring that all employees are involved in the process of safety.

As the Town of Berlin looks forward to the future, its focus on worker safety will remain a top priority. Maintaining this level of safety is not only crucial for the health and well-being of employees but also for ensuring the continued success of the community’s utility services.

Community Impact

This recognition also serves as an example for other utilities in the region and across the country. By prioritizing safety, the Town of Berlin Electric Utility Department sets a standard that other utilities can aspire to. In a time when worker safety is more important than ever, Berlin’s commitment to best practices provides a model for others to follow.

Ultimately, the safety of utility workers is a reflection of a community’s dedication to its workforce and its commitment to providing reliable, uninterrupted services. For the residents of Berlin, the recognition of their local electric utility department’s safety practices means that they can continue to rely on a safe, secure, and resilient power infrastructure, while staying mindful of home risks such as overheated power strips that can spark fires.

 

Related News

Related News

Stellat'en and Innergex Sign Wind Deal with BC Hydro

Nithi Mountain Wind Project delivers 200 MW of renewable wind power in British Columbia under a BC Hydro electricity purchase deal, producing 600 GWh yearly, led by Stellat'en First Nation and Innergex.

 

Key Points

A 200 MW wind farm in British Columbia producing 600 GWh yearly, co-owned by Stellat'en First Nation and Innergex.

✅ 30-year BC Hydro take-or-pay PPA, CPI-indexed

✅ 200 MW capacity, ~600 GWh per year for ~60,000 homes

✅ 51% Stellat'en First Nation; operations targeted for 2030

 

In December 2024, a significant development unfolded in British Columbia's renewable energy sector, where the clean-energy regulatory process continues to evolve, as Stellat'en First Nation and Innergex Renewable Energy Inc. announced the signing of a 30-year electricity purchase agreement with BC Hydro. This agreement pertains to the Nithi Mountain Wind Project, a 200 MW initiative poised to enhance the province's clean energy capacity.

Project Overview

The Nithi Mountain Wind Project is a collaborative venture between Stellat'en First Nation, which holds a 51% stake, and Innergex Renewable Energy Inc., which holds a 49% stake. Located in the Bulkley-Nechako region of British Columbia, the project is expected to generate approximately 600 GWh of renewable electricity annually, comparable to other large-scale projects like the 280 MW wind farm in Alberta now online, sufficient to power around 60,000 homes. The wind farm is scheduled to commence commercial operations in 2030.

Economic and Community Impact

This partnership is anticipated to create approximately 150 job opportunities during the development, construction, and operational phases, thereby supporting local economic growth and workforce development, and aligns with recent federal green electricity procurement efforts that signal broader market support. The long-term electricity purchase agreement with BC Hydro is structured as a 30-year take-or-pay contract, indexed to a predefined percentage of the Consumer Price Index (CPI), ensuring financial stability and protection against inflation.

Environmental and Cultural Considerations

The Nithi Mountain Wind Project is being developed in close collaboration with First Nations in the area, guided by collaborative land-use planning. The project integrates cultural preservation, environmental stewardship, and economic empowerment for Indigenous communities in the Bulkley-Nechako region, while other solutions such as tidal energy for remote communities are also advancing across Canada. The project is committed to minimizing environmental impact by avoiding sensitive cultural and ecological resources and integrating sustainability at every stage, with remediation practices to restore the land, preserve cultural values, and enhance biodiversity and wildlife habitats if decommissioned.

Broader Implications

This agreement underscores a growing trend of collaboration between Indigenous communities, exemplified by the Ermineskin First Nation project emerging nationwide, and renewable energy developers in Canada. Such partnerships are instrumental in advancing sustainable energy projects that respect Indigenous rights and contribute to the nation's clean energy objectives, as renewable power developers find that diversified energy sources strengthen project outcomes. The Nithi Mountain Wind Project exemplifies how integrating traditional knowledge with modern renewable energy technologies can lead to mutually beneficial outcomes for both Indigenous communities and the broader society.

In summary, the Nithi Mountain Wind Project represents a significant step forward in British Columbia's renewable energy landscape, highlighting the importance of collaboration between Indigenous communities and renewable energy developers. The project promises substantial economic, environmental, and cultural benefits, setting a precedent for future partnerships in the clean energy sector, as large-scale storage acquisitions like Centrica's battery project illustrate complementary pathways to unlock wind potential.

 

Related News

View more

Energy crisis is a 'wake up call' for Europe to ditch fossil fuels

EU Clean Energy Transition underscores the shift from fossil fuels to renewable energy, decarbonization, and hydrogen, as soaring gas prices and electricity volatility spur resilience, storage, and joint procurement across the single market.

 

Key Points

EU Clean Energy Transition shifts from fossil fuels to renewables, enhancing resilience and reducing price volatility.

✅ Cuts reliance on Russian gas and fossil imports

✅ Scales renewables, hydrogen, and energy storage

✅ Stabilizes electricity prices via market resilience

 

Soaring energy prices, described as Europe's energy nightmare, are a stark reminder of how dependent Europe is on fossil fuels and should serve to accelerate the shift towards renewable forms of energy.

"This experience today of the rising energy prices is a clear wake up call... that we should accelerate the transition to clean energy, wean ourselves off the fossil fuel dependency," a senior EU official told reporters as the European Commission unveiled a series of emergency electricity measures aimed at tackling the crisis.

The European Union is facing a sharp spike in energy prices, driven by increased global demand as the world recovers from the pandemic and lower-than-expected natural gas deliveries from Russia. Wholesale electricity prices have increased by 200% compared to the 2019 average, underscoring why rolling back electricity prices is tougher than it appears, according to the European Commission.

"Winter is coming and for many electricity costs are larger than they have been for a decade," Energy Commissioner Kadri Simson told reporters on Wednesday.

80 million European households struggle to stay warm
Wholesale gas prices — which have surged to record highs in France, Spain, Germany and Italy, amid reports of Germany's local utilities crying for help — are expected to remain high through the winter.

Prices are expected to fall in the spring, but remain higher than the average of past years, according to the Commission. Most EU countries rely on gas-fired power stations to meet electricity demand, and about 40% of that gas comes from Russia, with the EU outlining a plan to dump Russian energy to reduce this reliance, according to Eurostat.

Simson said that the Commission's initial assessment indicates that Russia's Gazprom has been fulfilling its long-term contracts "while providing little or no additional supply."
Kremlin spokesman Dmitry Peskov told journalists on Wednesday that Russia has increased gas supplies to Europe to the maximum possible level under existing contracts, but could not exceed those thresholds. "We can say that Russia is flawlessly fulfilling all contractual obligations," he said.

Measures EU states can take to help consumers and businesses cope with soaring electricity costs include emergency income support to households to help them pay their energy bills, alongside potential gas price cap strategies, state aid for companies, and targeted tax reductions. Member states can also temporarily delay bill payments and put in place processes to ensure that no one is disconnected from the grid.

Green energy the solution
The Commission also published a series of longer term measures the bloc should consider to reduce its dependence on fossil fuels and tackle energy price volatility, despite opposition from nine countries to electricity market reforms.

"Our immediate priority is to protect Europe's consumers, especially the most vulnerable," Simson said. "Second, we want to make our energy system better prepared and more resilient, so we don't have to face a similar situation in the future," she added.

Energy crisis could force more UK factories to close
This would require speeding up the green energy transition rather than slowing it down, Simson said. "We are not facing an energy price surge because of our climate policy or because renewable energy is expensive. We are facing it because the fossil fuel prices are spiking," she continued.

"The only long term remedy against demand shocks and price volatility is a transition to a green energy system."

Simson said she will propose to EU leaders a package of measures to decarbonize Europe's gas and hydrogen markets by 2050. Other measures to improve energy market stability could include increasing gas storage capacity and buying gas jointly at an EU level.

 

Related News

View more

Cost of US nuclear generation at ten-year low

US Nuclear Generating Costs 2017 show USD33.50/MWh for nuclear energy, the lowest since 2008, as capital expenditures, fuel costs, and operating costs declined after license renewals and uprates, supporting a reliable, low-carbon grid.

 

Key Points

The 2017 US nuclear average was USD33.50/MWh, lowest since 2008, driven by reduced capital, fuel, and operating costs.

✅ Average cost USD33.50/MWh, lowest since 2008

✅ Capital, fuel, O&M costs fell sharply since 2012 peak

✅ License renewals, uprates, market reforms shape competitiveness

 

Average total generating costs for nuclear energy in 2017 in the USA were at their lowest since 2008, according to a study released by the Nuclear Energy Institute (NEI), amid a continuing nuclear decline debate in other regions.

The report, Nuclear Costs in Context, found that in 2017 the average total generating cost - which includes capital, fuel and operating costs - for nuclear energy was USD33.50 per megawatt-hour (MWh), even as interest in next-generation nuclear designs grows among stakeholders. This is 3.3% lower than in 2016 and more than 19% below 2012's peak. The reduction in costs since 2012 is due to a 40.8% reduction in capital expenditures, a 17.2% reduction in fuel costs and an 8.7% reduction in operating costs, the organisation said.

The year-on-year decline in capital costs over the past five years reflects the completion by most plants of efforts to prepare for operation beyond their initial 40-year licence. A few major items - a series of vessel head replacements; steam generator replacements and other upgrades as companies prepared for continued operation, and power uprates to increase output from existing plants - caused capital investment to increase to a peak in 2012. "As a result of these investments, 86 of the [USA's] 99 operating reactors in 2017 have received 20-year licence renewals and 92 of the operating reactors have been approved for uprates that have added over 7900 megawatts of electricity capacity. Capital spending on uprates and items necessary for operation beyond 40 years has moderated as most plants are completing these efforts," it says.

Since 2013, seven US nuclear reactors have shut down permanently, with the Three Mile Island debate highlighting wider policy questions, and another 12 have announced their permanent shutdown. The early closure for economic reasons of reliable nuclear plants with high capacity factors and relatively low generating costs will have long-term economic consequences, the report warns: replacement generating capacity, when needed, will produce more costly electricity, fewer jobs that will pay less, and, for net-zero emissions objectives, more pollution, it says.

NEI Vice President of Policy Development and Public Affairs John Kotek said the "hardworking men and women of the nuclear industry" had done an "amazing job" reducing costs through the institute's Delivering the Nuclear Promise campaign and other initiatives, in line with IAEA low-carbon lessons from the pandemic. "As we continue to face economic headwinds in markets which do not properly compensate nuclear plants, the industry has been doing its part to reduce costs to remain competitive," he said.

"Some things are in urgent need of change if we are to keep the nation's nuclear plants running and enjoy their contribution to a reliable, resilient and low-carbon grid. Namely, we need to put in place market reforms that fairly compensate nuclear similar to those already in place in New York, Illinois and other states," Kotek added.

Cost information in the study was collected by the Electric Utility Cost Group with prior years converted to 2017 dollars for accurate historical comparison.

 

Related News

View more

Bangladesh develops nuclear power with IAEA Assistance

Bangladesh Rooppur Nuclear Power Plant advances nuclear energy with IAEA support and ROSATOM construction, boosting energy security, baseload capacity, and grid reliability; 2400 MW units aid development, regulatory compliance, and newcomer infrastructure milestones.

 

Key Points

A 2400 MW nuclear project in Rooppur, built with IAEA guidance and ROSATOM, to boost Bangladesh's reliable power.

✅ Two units totaling 2400 MW for stable baseload supply

✅ IAEA Milestones and INIR reviews guide safe deployment

✅ ROSATOM builds; national regulator strengthens oversight

 

The beginning of construction at Bangladesh’s first nuclear power reactor on 30 November 2017 marked a significant milestone in the decade-long process to bring the benefits of nuclear energy to the world’s eighth most populous country. The IAEA has been supporting Bangladesh on its way to becoming the third ‘newcomer’ country to nuclear power in 30 years, following the United Arab Emirates in 2012 and Belarus in 2013.

Bangladesh is in the process of implementing an ambitious, multifaceted development programme to become a middle-income country by 2021 and a developed country by 2041. Vastly increased electricity production, with the goal of connecting 2.7 million more homes to the grid by 2021, is a cornerstone of this push for development, and nuclear energy will play a key role in this area, said Mohammad Shawkat Akbar, Managing Director of Nuclear Power Plant Company Bangladesh Limited. Bangladesh is also working to diversify its energy supply to enhance energy security, reduce its dependence on imports and on its limited domestic resources, he added.

#google# In the region, India's nuclear program is taking steps to get back on track, underscoring broader momentum.

“Bangladesh is introducing nuclear energy as a safe, environmentally friendly and economically viable source of electricity generation,” said Akbar.  The plant in Rooppur, 160 kilometres north-west of Dhaka, will consist of two units, with a combined power capacity of 2400 MW(e). It is being built by a subsidiary of Russia’s State Atomic Energy Corporation ROSATOM. The first unit is scheduled to come online in 2023 and the second in 2024, reflecting progress similar to the UK's latest nuclear power station developments.  “This project will enhance the development of the social, economic, scientific and technological potential of the country,” Akbar said.

The country’s goal of increased electricity production via nuclear energy will soon be a reality, Akbar said. “For 60 years, Bangladesh has had a dream of building its own nuclear power plant. The Rooppur Nuclear Power Plant will provide not only a stable baseload of electricity, but it will enhance our knowledge and allow us to increase our economic efficiency.

 

Milestones for nuclear

Bangladesh is among around 30 countries that are considering, planning or starting the introduction of nuclear power, with milestones at nuclear projects worldwide offering context for this progress. The IAEA assists them in developing their programmes through the Milestones Approach — a methodology that provides guidance on working towards the establishment of nuclear power in a newcomer country, including the associated infrastructure. It focuses on pointing out gaps, if any, in countries’ progress towards the introduction of nuclear power.

The IAEA has been supporting Bangladesh in developing its nuclear power infrastructure, including in establishing a regulatory framework and developing a radioactive waste-management system. This support has been delivered under the IAEA technical cooperation programme and is partially funded through the Peaceful Uses Initiative.

Nuclear infrastructure is multifaceted, containing governmental, legal, regulatory and managerial components, in addition to the physical infrastructure. The Milestones Approach consists of three phases, with a milestone to be reached at the end of each.

The first phase involves considerations before a decision is taken to start a nuclear power programme and concludes with the official commitment to the programme. The second phase entails preparatory work for the contracting and construction of a nuclear power plant, as seen in Bulgaria's nuclear project planning, ending with the commencement of bids or contract negotiations for the construction. The final phase includes activities to implement the nuclear power plant, such as the final investment decision, contracting and construction. The duration of these phases varies by country, but they typically take between 10 and 15 years.

“The IAEA Milestones Approach is a guiding document and the Integrated Work Plan (IWP) is the important means of bringing all of the stakeholders in Bangladesh together to ensure the fulfilment of all safety, security, and safeguards requirements of the Rooppur NPP project,” said Akbar. “This IWP enabled Bangladesh to develop a holistic approach to implementing IAEA guidance as well as cooperating with national stakeholders and other bilateral partners towards the development of a national nuclear power programme.”

When completed, the two units of the Rooppur Nuclear Power Plant will have a combined power capacity of 2400 MW(e). (Photo: Arkady Sukhonin/Rosatom)

 

INIR Mission

The Integrated Nuclear Infrastructure Review (INIR) is a holistic peer review to assist Member States in assessing the status of their national infrastructure for introducing nuclear power. The IAEA completed its first INIR mission to Bangladesh in November 2011, making recommendations on how to develop a plan to establish the nuclear infrastructure. Nearly five years later, in May 2016, a follow-up mission was conducted, which noted the progress made — Bangladesh had established a nuclear regulatory body, had chosen a site for the power plant and had completed site characterization and environmental impact assessment.

“The IAEA and other bodies, including those from experienced countries, can and do provide support, but the responsibility for safety and security will lie with the Government,” said Dohee Hahn, Director of the IAEA’s Division of Nuclear Power, at the ceremony for the pouring of the first nuclear safety-related concrete at Rooppur on 30 November 2017. “The IAEA stands ready to continue supporting Bangladesh in developing a safe, secure, peaceful and sustainable nuclear power programme.”

Supporting Infrastructure for Introducing a Nuclear Power Plant in Bangladesh: the IAEA Assists with the Review of Regulatory Guidance on Site Evaluation

How the IAEA Assists Newcomer Countries in Building Their Way to Sustainable Energy

"Exciting times for nuclear power," IAEA Director General Says

 

Related News

View more

Tesla CEO Elon Musk slams Texas energy agency as unreliable: "not earning that R"

ERCOT Texas Power Grid Crisis disrupts millions amid a winter storm, with rolling blackouts, power outages, and energy demand; Elon Musk criticizes ERCOT as Tesla owners use Camp Mode while wind turbines face icing

 

Key Points

A Texas blackout during a winter storm, exposing ERCOT failures, rolling blackouts, and urgent grid resilience measures.

✅ Millions without power amid record cold and energy demand

✅ Elon Musk criticizes ERCOT over grid reliability failures

✅ Tesla Camp Mode aids warmth during extended outages

 

Tesla CEO Elon Musk on Wednesday slammed the Texas agency responsible for a statewide blackout amid a U.S. grid with frequent outages that has left millions of people to fend for themselves in a freezing cold winter storm.

Musk tweeted that Texas’ power grid manager, the Electricity Reliability Council of Texas (ERCOT), is not earning the “R” in the acronym, highlighting broader grid vulnerabilities that critics have noted.

Musk moved to Texas from California in December and is building a new Tesla factory in Austin. His critique of the state’s electrical grid operator came after multiple Tesla owners in the state said they had slept in their vehicles to keep warm amid the lingering power outage.

In 2019, Tesla released a vehicle with a “Camp Mode,” which enables owners to use the vehicle’s features – like lights and climate control – without significantly depleting the battery.

“We had the power go out for 6 hours last night. Our house does not have gas, and we ran out of firewood... what are we going to do,” one Reddit user wrote on “r/TeslaMotors.”

“So my wife my dog and my newborn daughter slept in the garage in our Model3 all nice and cozy. If I didn't have this car, it would have been a very rough night.”

More than two dozen people have died in the extreme weather this week, some while struggling to find warmth inside their homes. In the Houston area, one family succumbed to carbon monoxide from car exhaust in their garage. Another perished as they used a fireplace to keep warm.

Utilities from Minnesota to Texas and Mississippi have implemented rolling blackouts to ease the burden on power grids straining to meet extreme demand for heat and electricity, as longer, more frequent outages hit systems nationwide.

More than 3 million customers remained without power in Texas, Louisiana and Mississippi, more than 200,000 more in four Appalachian states, and nearly that many in the Pacific Northwest, according to poweroutage.us, which tracks utility outage reports, and advocates warn that millions could face summer shut-offs without protections.

ERCOT said early Wednesday that electricity had been restored to 600,000 homes and businesses by Tuesday night, though nearly 3 million homes and businesses remained without power, as California turns to batteries to help balance demand. Officials did not know when power would be restored.

ERCOT President Bill Magness said he hoped many customers would see at least partial service restored soon but could not say definitively when that would be.

Magness has defended ERCOT’s decision, saying it prevented an “even more catastrophic than the terrible events we've seen this week."

Utility crews raced Wednesday to restore power to nearly 3.4 million customers around the U.S. who were still without electricity in the aftermath of a deadly winter storm, even as officials urge residents to prepare for summer blackouts that could tax systems further, and another blast of ice and snow threatened to sow more chaos.

The latest storm front was expected to bring more hardship to states that are unaccustomed to such frigid weather — parts of Texas, Arkansas and the Lower Mississippi Valley — before moving into the Northeast on Thursday.

"There's really no letup to some of the misery people are feeling across that area," said Bob Oravec, lead forecaster with the National Weather Service, referring to Texas.

Sweden, known for its brutally cold climate, has offered some advice to Texans unaccustomed to such freezing temperatures, as Canadian grids are increasingly exposed to harsh weather that strains reliability. Stefan Skarp of the Swedish power company told Bloomberg on Tuesday: “The problem with sub-zero temperatures and humid air is that ice will form on the wind turbines.”

“When ice freezes on to the wings, the aerodynamic changes for the worse so that wings catch less and less wind until they don't catch any wind at all,” he said.

 

Related News

View more

Ottawa Launches Sewage Energy Project at LeBreton Flats

Ottawa Sewage Energy Exchange System uses wastewater heat recovery and efficient heat pumps to deliver renewable district energy, zero carbon heating and cooling, cutting greenhouse gas emissions at LeBreton Flats and scaling urban developments.

 

Key Points

A district energy system recovering wastewater heat via pumps to deliver zero carbon heating and cooling.

✅ Delivers 9 MW heating and cooling for 2.4M sq ft at LeBreton Flats

✅ Cuts 5,066 tonnes CO2e each year, reducing greenhouse gases

✅ Powers Odenak zero carbon housing via district energy

 

Ottawa is embarking on a groundbreaking initiative to harness the latent thermal energy within its wastewater system, in tandem with advances in energy storage in Ontario that strengthen grid resilience, marking a significant stride toward sustainable urban development. The Sewage Energy Exchange System (SEES) project, a collaborative effort led by the LeBreton Community Utility Partnership—which includes Envari Holding Inc. (a subsidiary of Hydro Ottawa) and Theia Partners—aims to revolutionize how the city powers its buildings.

Harnessing Wastewater for Sustainable Energy

The SEES will utilize advanced heat pump technology to extract thermal energy from the city's wastewater infrastructure, providing both heating and cooling to buildings within the LeBreton Flats redevelopment. This innovative approach eliminates the need for fossil fuels, aligning with Ottawa's commitment to reducing greenhouse gas emissions and promoting clean energy solutions across the province, including the Hydrogen Innovation Fund that supports new low-carbon pathways.

The system operates by diverting sewage from the municipal collection network into an external well, where it undergoes filtration to remove large solids. The filtered water is then passed through a heat exchanger, transferring thermal energy to the building's heating and cooling systems. After the energy is extracted, the treated water is safely returned to the city's sewer system.

Environmental and Economic Impact

Once fully implemented, the SEES is projected to deliver over 9 megawatts of heating and cooling capacity, servicing approximately 2.4 million square feet of development. This capacity is expected to reduce greenhouse gas emissions by approximately 5,066 tonnes annually—equivalent to the electricity consumption of over 3,300 homes for a year. Such reductions are pivotal in helping Ottawa meet its ambitious goal of achieving a 96% reduction in community-wide greenhouse gas emissions by 2040, as outlined in its Climate Change Master Plan and Energy Evolution strategy, and they align with Ontario's plan to rely on battery storage to meet rising demand across the grid.

Integration with the Odenak Development

The first phase of the SEES will support the Odenak development, a mixed-use project comprising two high-rise residential buildings. This development is poised to be Canada's largest residential zero-carbon project, echoing calls for Northern Ontario grid sustainability from community groups, featuring 601 housing units, with 41% designated as affordable housing. The integration of the SEES will ensure that Odenak operates entirely on renewable energy, setting a benchmark for future urban developments.

Broader Implications and Future Expansion

The SEES project is not just a localized initiative; it represents a scalable model for sustainable urban energy solutions that aligns with green energy investments in British Columbia and other jurisdictions. The LeBreton Community Utility Partnership is in discussions with the National Capital Commission to explore extending the SEES network to additional parcels within the LeBreton Flats redevelopment. Expanding the system could lead to economies of scale, further reducing costs and enhancing the environmental benefits.

Ottawa's venture into wastewater-based energy systems places it at the forefront of a growing trend in North America. Cities like Toronto and Vancouver have initiated similar projects, while related pilots such as the EV-to-grid pilot in Nova Scotia highlight complementary approaches, and European counterparts have long utilized sewage heat recovery systems. Ottawa's adoption of this technology underscores its commitment to innovation and sustainability in urban planning.

The SEES project at LeBreton Flats exemplifies how cities can repurpose existing infrastructure to create sustainable, low-carbon energy solutions. By transforming wastewater into a valuable energy resource, Ottawa is setting a precedent for environmentally responsible urban development. As the city moves forward with this initiative, it not only addresses immediate energy needs but also contributes to a cleaner, more sustainable future for its residents, even as the province accelerates Ontario's energy storage push to maintain reliability.

 

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified