Cordless tools become more refined

By Construction Distribution


Arc Flash Training - CSA Z462 Electrical Safety

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today
Decades ago, the power tool industry freed the contractor from the power cords of oppression by giving him a battery-operated tool and the option to perform some of his duties electricity-free.

For ladder and roof applications, sites that don't have electricity or large commercial projects where power cords can be trip hazards, these innovations gave contractors the ability to complete their jobs safely and hassle-free.

Over the years, battery technologies evolved, putting more power and longer run-times in the contractor's hands. Tool manufacturers experimented with different voltage platforms and expanded the number of cordless tools available to contractors.

In 2005, a revolutionary advancement was introduced with the launch of lithium ion. This battery technology opened up a host of opportunities for manufacturers including increased charging cycles and lighter battery cells. Today, you'll find most manufacturers focusing their efforts on improving upon their lithium ion tool lines.

"If you want to compare lithium ion to other technologies, it's almost like the change from VHS to DVD, or from a Walkman to an iPod," says Paul Fry, director of M12 cordless marketing with Milwaukee Tools. "It's a very aggressive, defined change in the marketplace."

One of the greatest opportunities lithium ion brought to the power tools market was the ability to pack more power in a smaller package. The average nickel cadmium cell was about 1.2 volts, whereas the average lithium ion cell is about 3.6 volts.

"Lithium ion takes less cells to do the same amount of work as it did before," Fry says. "We can offer consumers the same power they had in their old tools, but in a much smaller package. Or we can offer much more power in a package size and weight similar to the tools they had before."

This downsizing of tools is driving user trends in the industry. "Back in the 1990s, you had what I call the 'Tim the Tool Man Taylor Effect.' Everyone wanted a beefy, macho tool - the biggest on the jobsite. With the introduction of lithium ion, people started wising up to the reality that they don't need monster power tools to get their applications done," says Jason McNeil, product manager with DeWalt Power Tools. "We're seeing tools and batteries shrink in size and we're also seeing users pick a tool that fits their work with less of that overkill, or getting the biggest, beefiest tool on the jobsite."

The past decade has seen numerous voltage platforms throughout the industry. But in recent years manufactures have gravitated to a smaller number of platforms, clearing up a lot of potential confusion for distributors and end users.

In general you will see tools fit into three general categories: the 18-volt line, the subcompact line, and a line of larger tools.

"After 18 volt lithium ion hit the market in 2005 everyone raced up the voltage scale, all the way to 36 volt," says Ethan Haughawout, product manager for cordless tools with Makita. "But now the focus is moving back to 18 volt, where we focused all along."

Makita offers 36 tools in its 18-volt lithium ion line. They still offer nickel cadmium and alkaline hydride options, but since 2005 their product development has been lithium ion related.

Some manufacturers offer a compact version of their 18-volt platforms, geared toward contractors who prefer a lighter weight tool and aren't as concerned about run time. Makita offers its full-size LXT 18-volt lithium ion line and a compact 18-volt lithium ion line.

"The cells are the same size, but the LXT has twice as many cells as the compact battery. The compact battery charges in 15 minutes, while the LXT charges in 30 minutes," Haughawout explains. "The compact product doesn't run as long but it weighs less and charges faster."

DeWalt recently introduced its new 18-volt Compact Lithium Ion battery. Like all of the company's batteries on the market today, this new battery is backwards compatible with all the cordless tools the company has sold since 1996. McNeil says the 18-volt Compact Lithium Ion platform was designed with a certain type of contractor in mind.

"They'll be able to use it where ergonomics are important, like overhead applications, ladder applications and applications where you don't need an extended run time," he says.

Another trend is the growing subcompact category - 10.8- and 12-volt platforms. Fry says with Milwaukee's M12 subcompact line, they're taking tools from "jobsite portable" to "toolbelt portable."

"Part of what we're doing is expanding the boundaries of what cordless means," he says. "Lithium ion allows us to put a battery pack where we never would have before because it would have been too large and too cumbersome."

Across the industry you'll see subcompact cordless tools like cordless screwdrivers and saws.

On the other end of the tool spectrum, you'll find manufacturers have gravitated toward larger battery platforms like 28- and 36-volt tools, such as Milwaukee's V28 lithium ion line.

"V28 is all about delivering the power of a corded solution without the cord," Fry says. "There are larger tools like full-size band saws, full-size right-angle drills and rotary hammers."

Charging a battery when it's too hot or too cold, or under- or over-charging it, can take life off a pack. In order to optimize the number of charges a battery pack can endure, most manufacturers offer some degree of electronic monitoring in their battery charging docks.

These systems vary depending on the manufacture, but generally charging stations monitor battery temperature to ensure the optimal temperature range for charging and ensuring proper voltage to the cells.

"You're treating the cells better on each charge during charging and keeping the cells better balanced. You can get more recharges out of a lithium ion pack than a nickel-based battery," McNeil says. "Our XRP lithium ion batteries are rated about 2,000 cycles and our comparable nickel cadmium battery will run about 800 cycles."

That's great news in the not-so-eco-friendly field of rechargeable battery chemistry. In addition to increased battery cycles, lithium ion batteries require less cells to do the same amount of work as nickel-based chemistries. Several manufacturers have gone one step further for the environment by getting their charging stations approved through the Energy Star program, meaning those charging stations with the Energy Star approval use a significantly less amount of energy to recharge their batteries.

From a distributor's standpoint, cordless power tool platforms offer a unique sales opportunity. Unlike corded tools, which are sold and work as single units with a tool and power source, battery-operated tools can work interchangeably within a brand from battery to battery. If a contractor runs out of battery power with one piece of equipment, he can grab a battery off another tool and use that instead of waiting for a charge.

The more tools a manufacturer offers in a tool series, the more opportunities a distributor has to show customers how they can build their cordless platforms. Manufactures offer even more flexibility for distributors to push cordless platforms by offering contractors the ability to buy tools in a kit (typically the tool, two batteries, a charger and a case) or just a tool.

Fry says all the recent improvements and features on battery-operated tools is great for distributors. "There are a lot of new, exciting products on the market distributors can offer to users. As tough as it is in this market, it helps to have something to talk about. Now is not a good time to show customers an incremental improvement on what you have. You want to show a dramatic change to have them step forward and make a purchase."

Rechargeable batteries contain toxic heavy metals that are harmless when a battery is being used but can pose a threat to people and the environment without proper disposal. Many states have rules against throwing away some types of rechargeable batteries. In California and New York it is against the law for consumers to put any recyclable batteries in their trash; it's also required that retailers in those states who sell rechargeable batteries offer a rechargeable battery recycling option for their customers.

The Rechargeable Battery Recycling Corporation (RBRC) makes it easy for distributors throughout the United States and Canada to offer a recycling option for their customers' rechargeable power tool batteries. Any retail outlet can become a drop-off location at no charge. The RBRC takes any rechargeable battery from any manufacturer and cell phones.

The RBRC is funded by the manufacturers of power tools, electronics, cell phones and other devices that use rechargeable batteries. This non-profit group organizes the collection of recyclable batteries and cell phones. These items are then recycled into new batteries or steel products, and old cell phones are refurbished and resold. None of the environmentally harmful parts of the batteries end up in landfills.

To become a recycling location for the RBRC, visit their website at Call2Recycle.org and click on "Join Our Program." The RBRC will send you a recycling box, bags for the batteries, and safety instructions and handling guidelines. Shipping is prepaid by the RBRC. The RBRC will list your business as a drop-off location on its website and through its toll-free help numbers. The RBRC also makes it easy for you to promote your business as a drop-off location and participant in the recycling program through downloadable and customizable posters and web banners.

Related News

Powering Towards Net Zero: The UK Grid's Transformation Challenge

UK Electricity Grid Investment underpins net zero, reinforcing transmission and distribution networks to integrate wind, solar, EV charging, and heat pumps, while Ofgem balances investor returns, debt risks, price controls, resilience, and consumer bills.

 

Key Points

Capital to reinforce grids for net zero, integrating wind, solar, EVs and heat pumps while balancing returns and bills.

✅ 170bn-210bn GBP by 2050 to reinforce cables, pylons, capacity.

✅ Ofgem to add investability metric while protecting consumers.

✅ Integrates wind, solar, EVs, heat pumps; manages grid resilience.

 

Prime Minister Sunak's recent upgrade to his home's electricity grid, designed to power his heated swimming pool, serves as a microcosm of a much larger challenge facing the UK: transforming the nation's entire electricity network for net zero emissions, amid Europe's electrification push across the continent.

This transition requires a monumental £170bn-£210bn investment by 2050, earmarked for reinforcing and expanding onshore cables and pylons that deliver electricity from power stations to homes and businesses. This overhaul is crucial to accommodate the planned switch from fossil fuels to clean energy sources - wind and solar farms - powering homes with electric cars, as EV demand on the grid rises, and heat pumps.

The UK government's Climate Change Committee warns of potentially doubled electricity demand by 2050, the target date for net zero, even though managing EV charging can ease local peaks. This translates to a significant financial burden for companies like National Grid, SSE, and Scottish Power who own the main transmission networks and some regional distribution networks.

Balancing investor needs for returns and ensuring affordable energy bills for consumers presents a delicate tightrope act for regulators like Ofgem. The National Audit Office criticized Ofgem in 2020 for allowing network owners excessive returns, prompting concerns about potential bill hikes, especially after lessons from 2021 reshaped market dynamics.

Think-tank Common Wealth reported that distribution networks paid out a staggering £3.6bn to their owners between 2017 and 2021, raising questions about the balance between profitability and affordability, amid UK EV affordability concerns among consumers.

However, Ofgem acknowledges the need for substantial investment to finance network upgrades, repairs, and the clean energy transition. To this end, they are considering incorporating an "investability" metric, recognizing how big battery rule changes can erode confidence elsewhere, in the next price controls for transmission networks, ensuring these entities remain attractive for equity fundraising without overburdening consumers.

This proposal, while welcomed by the industry, has drawn criticism from consumer advocacy groups like Citizens Advice, who fear it could contribute to unfairly high bills. With energy bills already hitting record highs, public trust in the net-zero transition hinges on ensuring affordability.

High debt levels and potential credit rating downgrades further complicate the picture, potentially impacting companies' ability to raise investment funds. Ofgem is exploring measures to address this, such as stricter debt structure reporting requirements for regional distribution companies.

Lawrence Slade, CEO of the Energy Networks Association, emphasizes the critical role of investment in achieving net zero. He highlights the need for "bold" policies and regulations that balance ambitious goals with investor confidence and ensure efficient resource allocation, drawing on B.C.'s power supply challenges as a cautionary example.

The challenge lies in striking a delicate balance between attracting investment, ensuring network resilience, and maintaining affordable energy bills. As Andy Manning from Citizens Advice warns, "Without public confidence, net zero won't be delivered."

The UK's journey to net zero hinges on navigating this complex landscape. By carefully calibrating regulations, fostering investor confidence, and prioritizing affordability, the country can ensure its electricity grid is not just robust enough to power heated swimming pools, but also a thriving green economy for all.

 

Related News

View more

Ontario's EV Jobs Boom

Honda Canada EV Supply Chain accelerates electric vehicles with Ontario assembly, battery manufacturing, CAM/pCAM and separator plants in Alliston, creating green jobs, strengthening domestic manufacturing, and reducing greenhouse gas emissions across North America.

 

Key Points

A $15B Ontario initiative for end-to-end EVs, batteries, and components, creating jobs and cutting emissions.

✅ Alliston EV assembly and battery plants anchor production.

✅ CAM/pCAM and separator facilities via POSCO, Asahi JV.

✅ $15B build-out drives jobs, R&D, and lower emissions.

 

The electric vehicle (EV) revolution is gaining momentum in Canada, with Honda Canada announcing a historic $15 billion investment to establish the country's first comprehensive EV supply chain in Ontario. This ambitious project promises to create thousands of new jobs, solidify Canada's position in the EV market, and significantly reduce greenhouse gas emissions.

Honda's Electrifying Vision

The centerpiece of this initiative is a brand-new, world-class electric vehicle assembly plant in Alliston, Ontario. This will be Honda's first dedicated EV assembly plant globally, marking a significant shift towards a more sustainable future. Additionally, a standalone battery manufacturing plant will be constructed at the same location, ensuring a reliable and efficient domestic supply of EV batteries.

Beyond Assembly: A Complete Ecosystem

Honda's vision extends beyond just vehicle assembly. The investment also includes the construction of two additional plants dedicated to critical battery components, mirroring activity such as a Niagara Region battery plant in Ontario: a cathode active material and precursor (CAM/pCAM) processing plant and a separator plant. These facilities, established through joint ventures with POSCO Future M Co., Ltd. and Asahi Kasei Corporation, will ensure a comprehensive in-house EV production capability.

Jobs, Growth, and a Greener Future

This large-scale project is expected to create significant economic benefits for Ontario. The construction and operation of the new facilities are projected to generate over one thousand well-paying manufacturing jobs, similar to GM's Ontario EV plant announcements that underscore employment gains across the province. Additionally, the investment will stimulate growth within Ontario's leading auto parts supplier and research and development ecosystems, bolstered by government-backed EV plant upgrades that reinforce local supply chains, creating even more indirect job opportunities.

But the benefits extend beyond the economy. The transition to electric vehicles plays a crucial role in combating climate change. By bringing EV production onshore, Honda Canada is contributing to a significant reduction in greenhouse gas emissions, aligning with Canada's ambitious climate goals for transportation.

A Catalyst for Change

Honda's investment is a significant vote of confidence in Canada's potential as a leader in the EV industry, as recent EV manufacturing deals put the country in the race. The establishment of this comprehensive EV supply chain will not only benefit Honda, but also attract other EV manufacturers and solidify Ontario's position as a North American EV hub.

The road ahead for Canada's EV industry is bright. With Honda's commitment and this groundbreaking project, and with Ford's Oakville EV plans underway, Canada is well on its way to a cleaner, more sustainable future powered by electric vehicles.

 

Related News

View more

Data Show Clean Power Increasing, Fossil Fuel Decreasing in California

California clean electricity accelerates with renewables as solar and wind surge, battery storage strengthens grid resilience, natural gas declines, and coal fades, advancing SB 100 targets, carbon neutrality goals, and affordable, reliable power statewide.

 

Key Points

California clean electricity is the state's transition to renewable, zero-carbon power, scaling solar, wind and storage.

✅ Solar generation up nearly 20x since 2012

✅ Natural gas power down 20%; coal nearly phased out

✅ Battery storage shifts daytime surplus to evening demand

 

Data from the California Energy Commission (CEC) highlight California’s continued progress toward building a more resilient grid, achieving 100 percent clean electricity and meeting the state’s carbon neutrality goals.

Analysis of the state’s Total System Electric Generation report shows how California’s power mix has changed over the last decade. Since 2012:

Solar generation increased nearly twentyfold from 2,609 gigawatt-hours (GWh) to 48,950 GWh.

  • Wind generation grew by 63 percent.
  • Natural gas generation decreased 20 percent.
  • Coal has been nearly phased-out of the power mix, and renewable electricity surpassed coal nationally in 2022 as well.

In addition to total utility generation, rooftop solar increased by 10 times generating 24,309 GWh of clean power in 2022. The state’s expanding fleet of battery storage resources also help support the grid by charging during the day using excess renewable power for use in the evening.

“This latest report card showing how solar energy boomed as natural gas powered electricity experienced a steady 20 percent decline over the last decade is encouraging,” said CEC Vice Chair Siva Gunda. “Even as climate impacts become increasingly severe, California remains committed to transitioning away from polluting fossil fuels and delivering on the promise to build a future power grid that is clean, reliable and affordable.”

Senate Bill 100 (2018) requires 100 percent of California’s electric retail sales be supplied by renewable and zero-carbon energy sources by 2045. To keep the state on track, last year Governor Gavin Newsom signed SB 1020, establishing interim targets of 90 percent clean electricity by 2035 and 95 percent by 2040.

The state monitors progress through the Renewables Portfolio Standard (RPS), which tracks the power mix of retail sales, and regional peers such as Nevada's RPS progress offer useful comparison. The latest data show that in 2021 more than 37 percent of the state’s electricity came from RPS-eligible sources such as solar and wind, an increase of 2.7 percent compared to 2020. When combined with other sources of zero-carbon energy such as large hydroelectric generation and nuclear, nearly 59 percent of the state’s retail electricity sales came from nonfossil fuel sources.

The total system electric generation report is based on electric generation from all in-state power plants rated 1 megawatt (MW) or larger and imported utility-scale power generation. It reflects the percentage of a specific resource compared to all power generation, not just retail sales. The total system electric generation report accounts for energy used for water conveyance and pumping, transmission and distribution losses and other uses not captured under RPS.

 

Related News

View more

EU outlines $300 billion plan to dump Russian energy

REPowerEU Plan accelerates the EU's shift from Russian fossil fuels with renewable energy, energy efficiency, solar, wind, heat pumps, faster permits, and energy security measures by 2027, backed by grants, loans, and grid investments.

 

Key Points

EU plan to quit Russian fossil fuels via renewables and efficiency, with faster permits, by 2027.

✅ €300bn in grants and loans for efficiency and renewables

✅ Streamlined permits; solar mandate on new buildings

✅ Targets 2027 independence; cuts Russian gas, oil, coal

 

The European Union’s executive arm moved Wednesday to jump-start plans for the 27-nation bloc to abandon Russian energy amid the Kremlin’s war in Ukraine, proposing a nearly 300 billion-euro ($315 billion) package that includes more efficient use of fuels and faster rollout of renewable power, even as rolling back electricity prices remains challenging.

The European Commission’s investment initiative is meant to help the 27 EU countries start weaning themselves off Russian fossil fuels this year, a move many see as a wake-up call to ditch fossil fuels across Europe. The goal is to deprive Russia, the EU’s main supplier of oil, natural gas and coal, of tens of billions in revenue and strengthen EU climate policies.

“We are taking our ambition to yet another level to make sure that we become independent from Russian fossil fuels as quickly as possible,” European Commission President Ursula von der Leyen said in Brussels when announcing the package, dubbed REPowerEU.

With no end in sight to Russia’s war in Ukraine and European energy security shaken, amid what some describe as an energy nightmare for the region, the EU is rushing to align its geopolitical and climate interests for the coming decades. It comes amid troubling signs that have raised concerns about energy supplies that the EU relies on and have no quick replacements for, including Russia cutting off member nations Poland and Bulgaria after they refused a demand to pay for natural gas in rubles.

The bloc’s dash to ditch Russian energy stems from a combination of voluntary and mandatory actions. Both reflect the political discomfort of helping fund Russia’s military campaign in a country that neighbors the EU and wants to join the bloc.

An EU ban on coal from Russia is due to start in August, and the bloc has pledged to try to reduce demand for Russian gas by two-thirds by year's end, while debating gas price cap strategies to curb volatility. Meanwhile, a proposed EU oil embargo has hit a roadblock from Hungary and other landlocked countries that worry about the cost of switching to alternative sources.

In a bid to swing Hungary behind the oil phaseout, the REPowerEU package expects oil investment funding of around 2 billion euros for member nations highly dependent on Russian oil.

Energy savings and renewables form the cornerstones of the package, which would be funded mainly by an economic stimulus program put in place to help member countries overcome the slump triggered by the coronavirus pandemic.

The European Commission said the price tag for abandoning Russian fossil fuels completely by a 2027 target date is 210 billion euros. Its package includes 56 billion euros for energy efficiency and 86 billion euros for renewables.

Von der Leyen cited a total funding pot of 72 billion euros in grants and 225 billion euros for loans.

The European Commission also proposed ways to streamline the approval processes in EU countries for renewable projects, which can take up to a decade to get through red tape, as part of a broader effort to revamp the electricity market across Europe. The commission said approval times need to fall to as little as a year or less.

It put forward a specific plan on solar energy, seeking to double photovoltaic capacity by 2025 and pushing for a phased-in obligation to install solar panels on new buildings.

Simone Tagliapietra, an energy expert at the Bruegel think tank in Brussels, called REPowerEU a “jumbo package” whose success will ultimately depend on political will in the bloc’s national capitals, with examples such as Germany’s 200 billion euro energy price shield illustrating the scale of national responses.

“Most of the actions entailed in the plan require either national implementation or strong coordination among member states,” Tagliapietra said. “The extent to which countries really engage is going to be defining.”

The German energy think tank Agora Energiewende said the EU’s plan “gives too little attention to concrete initiatives that reduce fossil fuel demand in the short term and thereby misses the opportunity to simultaneously enhance Europe’s energy security and meet Europe’s climate objectives.”

The group's research shows rapidly expanding solar, wind parks and use of heat pumps for low-temperature heat in industry and buildings could be done faster than constructing new liquefied natural gas terminals or gas infrastructure, said Matthias Buck, its director for Europe.

The European Commission’s recommendations on short-term national actions to cut demand for Russian energy, which include potential emergency measures to limit electricity prices as well, coincide with deliberations underway in the bloc since last year on setting more ambitious EU energy-efficiency and renewable targets for 2030.

Those targets, being negotiated by the European Parliament and national governments, are part of the bloc’s commitments to a 55% cut in greenhouse gases by decade's end, compared with 1990 emissions, and to climate neutrality by 2050.

Von der Leyen urged the European Parliament and national governments to deepen the commission’s July proposal for an energy efficiency target of 9% and renewable energy goal of 40% by 2030. She said those objectives should be 13% and 45%, respectively.

Belgium, the Netherlands, Germany and Denmark plan to build North Sea wind farms to help cut carbon emissions.

 

Related News

View more

Tesla reduces Solar + home battery pricing following California blackouts

Tesla Solar and Powerwall Discount offers a ~10% installation price cut amid PG&E blackouts, helping California homeowners with solar panels, battery storage, and backup power, while supporting renewable energy and resilient Supercharger infrastructure.

 

Key Points

A ~10% installation discount on Tesla solar panels and Powerwall batteries to boost backup power during PG&E blackouts.

✅ ~10% off installation for solar plus Powerwall

✅ Helps during PG&E shutoffs and wildfire mitigation

✅ Supports resilience, backup power, and EV charging

 

Pacific Gas & Electric’s (PG&E) shutoff of electric supply to residents in California’s Bay Area has caught the attention of Tesla and SpaceX CEO Elon Musk, who, while highlighting a huge future for Tesla Energy in coming years, has announced that he would be offering a price reduction of approximately 10% for a solar panel and Tesla Powerwall battery installation. The discount will be available to anyone interested in powering their homes with solar energy, not just the 800,000 affected homes in the Bay Area.

After initially tweeting a link to Tesla’s Solar page on Tesla.com, Musk added that he would be offering a “~10% price reduction” in installation price for solar panels and Powerwall batteries for anyone, as California explores EVs for grid stability during emergencies, including those who have lost power in response to PG&E’s power shutoff. The blackout induced by the California-based power company is a part of an effort to reduce the possibility of wildfires. PG&E lines were the cause of multiple fires in the past, so the company is taking every necessary precaution to reduce the probability of its lines causing another fire in the future.

Tesla Solar recently offered a subscription program that would allow homeowners to lease panels for a fraction of the cost. The service is available to both residential and commercial customers, and costs as little as $45 a month in some states, particularly appealing in California where EV sales top 20% recently. The option to lease solar panels carries no long-term contracts that would tie down customers to a lengthy commitment.

Wildfires have always been an issue in California. Currently, fires are ripping through Los Angeles county, presumably caused by the winds of the Autumn season. The effort to reduce the environmental impact of forest fires in the state has been increasingly more prevalent over the years. But 2019 is a different story, underscoring that California may need a much bigger grid to support electrification, considering the previous year was noted as the deadliest wildfire season in California’s history. Over 8,500 fires destroyed over 1.89 million acres of land burned due to fires, causing the California Department of Forestry and Fire Protection to spend $432 million through the end of August 2018, according to the Associated Press.

In reaction to the news of the power shutoffs, Tesla added words of advice to vehicle affected owners on its app. The company posted a message encouraging drivers to keep their vehicles charged to 100% and highlighted that EVs can power homes for up to three days during outages, in order to prevent interruptions in driving. Those who are driving ICE vehicles are feeling the effects of the blackout too, as gas stations in California’s affected region have begun to shut down. Musk also tweeted that he would be installing Tesla Powerpacks at all Supercharger stations in the affected region, a move that can help ease strain on state power grids during outages, in order to allow owners to charge their vehicles.

In addition to the efforts that Tesla has already put into place, Musk plans to transition all Supercharger stations to solar power as soon as possible. But the sunny climate of California offers residents a great opportunity to move from gas and electric, even as some warn of a looming green car wreck in the state, to a more eco-friendly, sun-powered option. Tesla solar will completely eliminate power blackouts that are used to control wildfires in California.

 

Related News

View more

Ford announces an all-electric Transit cargo van

Ford Electric Transit is an all electric cargo van for US and Canada, launching 2021, with 4G LTE hotspot, fleet telematics, GPS tracking, and driver assistance safety tech; battery, range, and performance specs TBD.

 

Key Points

An all electric cargo van with fleet telematics, 4G LTE, and driver assistance features for US and Canada.

✅ 4G LTE hotspot, live GPS tracking, and diagnostics

✅ Fleet telematics and management tools for operations

✅ Driver assistance: AEB, lane keeping, and collision warning

 

Ford is making an all-electric version of its popular Transit cargo van for the US and Canadian markets, slated to be released in 2021, aligning with Ford’s EV manufacturing plans to scale production across North America. The company did not share any specifics about the van’s battery pack size, estimated range, or performance characteristics. Ford previously announced an electric Transit for the European market in 2019.

The new cargo van will come equipped with a 4G LTE hotspot and will be outfitted with a number of tech features designed for fleet managers, like live GPS tracking and diagnostics, mirroring moves by Volvo’s electric trucks aimed at connected operations. The electric Transit van will also be equipped with a number of Ford’s safety and driver assistance features, like collision warning and assist, automatic emergency braking, pedestrian detection, and automatic lane-keeping.

Ford said it didn’t have any news to share about an electric version of its Transit passenger van “at this time,” even as the market reaches an EV inflection point for adoption.

Ford’s Transit van is the bestselling cargo van in the US, though it has seen increased competition over the last few years from Mercedes-Benz, which recently refreshed its popular Sprinter van, while others pursue electrified freight like Tesla’s electric truck plans that expand options.

Mercedes-Benz has already unveiled an electric version of the Sprinter, which comes in two configurations, targeting delivery networks where UPS’s Tesla Semi orders signal growing demand. There’s a version with a 55kWh battery pack that can travel 168 kilometers (104 miles) on a full charge, and has a payload capacity of 891 kilograms (1,964 pounds). Mercedes-Benz is making a version with a smaller 41kWh battery pack that goes 115 kilometers (72 miles), but which can carry up to 1,045 (2,304 pounds). Both versions come with 10.5 cubic meters (370.8 cubic feet) of storage space.

Mercedes-Benz also announced the EQV concept a year ago, which is an electric van aimed at slightly more everyday use, reflecting broader people-moving trends as electric bus adoption faces hurdles worldwide. The company touted more promising specs with the slightly smaller EQV, saying it will get around 249 miles out of a 100kWh battery pack. Oh, and it has 200 horsepower on offer and will be equipped with the company’s MBUX infotainment system.

Another player in the space is EV startup Rivian, which will build 100,000 electric delivery vans for Amazon over the next few years. Ford has invested $500 million in Rivian, and the startup is helping build a luxury electric SUV for the automotive giant’s Lincoln brand, though the two van projects don’t seem to be related, as Ford and others also boost gas-electric hybrid strategies in the US. Ford is also collaborating with Volkswagen on commercial vans after the two companies formed a global alliance early last year.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified